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1. INTRODUCTION 
 
The furnace with rotary hearth (CRV) is one of the basic 
aggregates in the technologic flow for manufacturing 
seamless pipes. Its purpose is to warm up the blocks of 
billets, previously cut at the required lengths, from the 
environment’s temperature to the rolling temperature, leading 
the material from the elastic domain to the plastic one. The 
furnace is heated using methane gas. 
The furnace is a CARUSEL one (with rotary hearth), 
working continuously in the technologic flow of the rolling 
line [1]. 

The furnace has five regulating temperature sectors, which 
have a total of 48 burners, a sector for preheating and a sector 
for loading-unloading. For the supply and evacuation of the 
blocks, the furnace has a loading machine and one for 
evacuation [2].  
The methane gas supply is made through a pipe from the 
natural gas system that branches in two, a main one and a by 
pass one. The gas that exists from these two pipes is being 
sent to other five pipes, each of them supplying one of the 5 
active sectors of the furnace. Sector 6 supplies from the pipe 
of sector 5. While working in service duty, sector 6 is 
thermally inactive.  

The temperatures corresponding to each sector are being 
adjusted by adjusting the gas flow on the corresponding 
pipes. The temperature in each sector is measured using 2 
thermocouples (for redundancy). The signal from the 
thermocouples exit is being sent to the flow controllers. Each 
controller (there is one for each of the 5 active sectors) is of 
PID type and controls the flow on the pipes operating some 
pneumatic actuators as valves situated on the five supply gas 
pipes. 

The air supply is made by 3 ventilators. The obstruction 
mechanisms of ventilators air absorption are blocked from 
the start in order to protect the ventilators motors and then 
they are being started step by step. These three mechanisms 
are of multi-leaf type. The extra air supply is made in such a 
way that it respects the air / gas ratio of 9-10/1 in the furnace. 
The pressure in the furnace is being measured using some 
differential pressure cells in order to keep an overpressure 
comparing to the atmospheric pressure, of 2,5 mm H 2 O. The 
burnt gases are evacuated through a pipe that gets into a heat 

interchanger that has the role to pre heat the air needed for 
burning.  

The methane gas gets from the supply gas system of the 
factory with a variable pressure of about 0.3-1 bar. The 
reduction units have the role to maintain the supply pressure 
of the furnace at a constant level, between 60 and 80 mbar 
with the possibility to adjust. 

2. MODELING THE THERMAL PROCESSES FOR EACH 
SECTOR OF THE FURNACE USING PARTIAL 

DERIVATIVES EQUATIONS 

Modeling the thermal systems in this case can be done 
considering the temperature variation between the furnace 
interior and exterior wall. In this way in the internal centre of 
the furnace we can measure the highest temperature and near 
the walls of the furnace we can measure the lowest 
temperature of that sector. The dependence of temperature on 
length can mathematically be expressed as an exponential 
function. This variation is due to the following three major 
factors [3]: 

i) The burners are assembled in the walls of the furnace 
and the tops of the flames get close to the centers of the 
sectors. On the top of the flames the burning is complete and 
the temperature is higher than within their bodies or at their 
root.   

ii)  The temperature dissipations are due to the isolation of 
the furnace and to the fact that the temperature of the 
neighboring environment is the ambient temperature.  

iii)  The burnings are disposed in opposition and their 
flames meet in the centers of the sectors, the thermal effect 
being stronger. 

The analogue model of the processes with the distributed 
parameters can be expressed using equations and systems of 
partial derivatives equations. Thus, besides the time variable 
(t), in the Cartesian space we introduce the independent 
variables (p), (q) and (r) in the model of processes.  

The axes that determine the Cartesian space are 0p, 0q and 
0r.  
The five thermal systems corresponding to the active sectors 
of the furnace are modeled through equations with partial 
derivatives. All of them have the same structure (the equation 
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order and the number of independent variables) but have 
different coefficients.  

To make it simpler we define the Cartesian variable (s): 

222),,( rqprqpss ++±==                                      (1)  
and 

),( styy = .                                                                          (2) 

Due to the turbulences from the inside of the furnace, due to 
the small height of work space and due to the control of 
temperature on each sector separately, it is not necessary to 
discuss the problem on directions (q) and (r). We also adopt 
the convention that variable (s) has got only positive values. 
In this way relation (1) becomes: 

pppss =++== 222 00)0,0,(                                   (3) 

Introducing variable (s), the equation with partial derivates 
that describes the process work (EDP II.2) becomes: 
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In relation (4) the coefficients are constant and the functions 
y (t,s) and φ 00 (t, s) respect Cauchy conditions of continuity. 

If we consider: 
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where  T=0,1,2….., and S=0,1,2,….. , relation (4) can be 
written as: 
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For a higher generality and in order to have the possibility to 
introduce the model of heating the bills in the process, we 
worked with an equation (EDP II.2).  

Due to the fact that the process has only a significant time 
constant (T 1 ), the time constant (T 2 ) has an insignificant 
value controlled through the very small value of the ( Tλ ) 
parameter. ( Tλ ) parameter is a coefficient that shows the 
proportion between the two time constants. The general 
approach from the first chapter works for all the five active 
sectors of the furnace with rotary hearth. 

3. ANALOGUE MODELING OF THE AUTOMATIC 
CONTROL SYSTEMS 

In order to have a furnace with rotary hearth that works in 
good conditions, more precisely for a good heating of the 
billets in the furnace, we need to control the temperature in 
each active sector of the furnace. The control rule that is 
going to be implemented is of PID type [4]. From now on we 
are going to present the general scheme of automatic control 
of the temperature in the sectors of the furnace. This scheme 

can be applied to any of the five active sectors of the furnace 
with rotary hearth.  

The general scheme of automatic control is presented in 
figure 1. 

 
Fig. 1. General scheme of automatic control. 

 
In figure 1 the significance of the notations is:  

R - controller of PID type;  
EE- actuator;  
TM- transducer;  

w 0 - reference signal;  

m 0 - measure signal; 

a 0 - error signal (a 0 = w 0 - m 0 );  

c 0 - control signal;  

u 0 - execution signal represents the input of methane gas 
flow, after the actuation generated by the controller;  

~
u 0 - disturbance signal (stretching the terminology, it can 

be considered the flow of methane gas that has to be 
subtracted from signal u 0 , equivalent to the negative thermal 
effect generated by the introduction of billets in the furnace); 

 y 00 - output signal (sector temperature). 

The thermal processes work, as shown in the previous 
chapter, is modeled using equations with partial derivates of 
second order (EDP II.2) with two independent variables (time 
(t) and space variable (s)) in Cartesian coordinates. 

The analogue modeling of the system presented in figure 1 
starts from the following system of equations: 

Transducer:    
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PID controller:  
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Actuator:  
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Process EDP II.2: 
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Only a subscript attached to the elements from relations 
(7)….(10) signifies the derivate order of those elements 
related to the independent variable (t). In the previous 
relations, the following symbols have also been used: K T - 
the proportionality constant of the transducer,      T T - time 
constant of the transducer,            K PR - proportionality 
constant of the controller, K IR -integration constant of the 
controller,  K DR - derivation constant of the controller,    T R - 
inertial time constant of the controller, K EE - proportionality 
constant of the actuator  and T EE - time constant of the 
actuator. 

The relations (7), (8), (9) and (10) give the elements of the 
state vector x that in transposed form is being presented in 
relation (11): 

      (11)                           

We can notice that the vector x has got 8 elements, so it has 
the dimension (8·1) ( x(8·1)). Also m 0 , m1 , c 0 , c1 , u 0 , u1  
are functions that depend only on the time variable (t), and 
y 00 and y10  are functions that depend on time (t) and on the 
independent variable length (s). 

 When we consider the values M=8 and N=20, definitive for 
the dimension of matrix M dpx  (the matrix of partial 
derivatives of the state vector), it is presented in relation (12). 

The matrices and vectors that occur in relation (12) are:    
[5] 

-the state vector x of the whole system with dimension 
(8·1) (x(8·1)); 

-the vector of partial derivatives related to time (t) of the 
state vector x T  with dimensions (20·1) (x T ( 20·1)); 

-the matrix of partial derivatives related to independent 
variable (s) of the state vector x S  with dimension (8·8) (x S ( 
8·8)); 

-the matrix of partial derivatives related to time (t) and to 
the independent variable (s) of the state vector x TS with the 
dimension (20·8) (x TS (20·8)). 

Thus it results that the matrix M dpx  has the dimension 

(28·9) (M dpx (28·9)).  

 In relation (12) the lines that correspond to the state 
variables m 0 (t), c 0 (t), u 0 (t) and to their derivates related to 
time (t) contain only elements equal to 0, because when 
deriving functions that depend only on time (t) related to the 
independent variable length (s), the resulted values are 0. 

 Due to the inertia of the components of the automatic control 
system, for the initial conditions (t=t 0 =0): m CI,0 =0, c CI,0 =0, 

u CI,0 =0. The other elements of the state vector that 
correspond to the initial conditions (CI) are: 

       (12)  



54                                    CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

)mK(
T
1m CI0,,00CI1, −⋅⋅= CIT
T

y .                                 (13) 

  ]c)mw(K

)mw(K[
T
1c 

CI0,CI1,CI1,

CI0,CI0,CI1,

−−⋅+

+−⋅⋅=

DR

PR
R .                          (14) 

)ucK(
T

1u CI0,CI0,CI1, −⋅⋅= EE
EE

.                                 (15) 

To calculate the elements y CI,00 , y CI,10 , CIs
y

)( 00
ρ

ρ

∂

∂
 

and CIs
y

)( 10
ρ

ρ

∂

∂
, where ∈ρ {1,2,..,M}, we use the analytical 
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In the previous relations all the elements of the vector 
x CI =x(t 0 ,s) have been calculated and of the matrix 
x CIS , =x S (t 0 ,s). 

The pivot elements are: 
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Using the previous results and replacing them in the relations 
(16), (17), (18) and (19), we get the pivot elements for the 
initial conditions (CI): 
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In the relation (23) CI,00ϕ = CIst ),(00ϕ .  

The vector x CIT ,  is obtained from the state vector, if we 
derive successively its elements in relation to the independent 
variable time (t). The first element of the vector (x T ) is the 
pivot element, meaning (x 0n ). There is also the condition that 
N ≥  n. 

The matrix x CITS ,  is obtained from the elements of the 

matrix (x S ) through their successive derivation in relation to 
the independent variable time (t), starting from the left side to 
the right side of a line and finishing the calculation for a line, 
before passing to the calculation of the line below. The 
elements that result represent partial derivatives in relation to 
time (t) of the elements of matrix (x S ), and T∈{n,n+1,…,n-
1+N}.  

After doing these calculations we can make the matrix 
(M dpx ) for the initial conditions ((M dpx ) CI ) that correspond 
to the start sequence (k-1). 

Using this version we can highlight the evolutions in time of 
the variables u(t), c(t), m(t) and y(t). 

4. NUMERICAL SIMULATION OF THE AUTOMATIC 
CONTROL CIRCUITS 

In order to advance from sequence (k-1) to sequence (k) we 
need to use the Taylor series. According to the method that 
has been presented in [6], in order to calculate the elements 
of the state vector (x) at moment (k) we should apply the 
formula: 
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and in order to calculate the elements of the matrix with 
partial derivates of the state vector, (x S ) at the moment (k) 
we should apply the formula: 
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where τ ∈{0,1,…n-1}, j∈{1,2,3,…,M},  n=8, N=20 şi M=8. 
The formulas presented above are valid if the integration is 
being done in relation to time (t). 

Due to the fact that in relation (12) the maximum derivation 
order in relation to time (t) of function m(t) is 6 (m 6 ), of 

function c(t) is 6 (c 6 ), of function u(t) is 6 (u 6 ), and of 

function y(t) is 6 (y i6 , i ∈{1,2,…,M}, and M=8), the terms 



CONTROL ENGINEERING AND APPLIED INFORMATICS     55 
 
 

     

 

with higher derivation orders are not complete We can notice 
that N+n-1=20+8-1=27.  

The elements (m k0 ), (m k1 ), (c k0 ), (c k1 ), (u k0 ), (u k1 ) 
(y k,00 ) and (y k,10 ) of the state vector (x) are given by the 
relations: 
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In the relations (26), (27), (28) şi (29) τ ∈{0,1}.  

The functions (m 0 ), (m1 ), (c 0 ), (c 1 ), (u 0 ) and (u1 ) do not 
depend on length (s), so the lines that correspond to them 
from the matrix (x S ) contain elements equal to 0. Using the 
Taylor series we can approximate the elements (y jτ ), 
forτ ∈{0,1}, j∈{1,2,…,M}, and M=8, in the following way: 
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After compensating the pair of relations (30) and (31), it 
results: 
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Where in both τ ∈{0,1}, j∈{0,1,2,…,8}. 

Using the calculated values we get the elements of the 
vectors (x T ) and (x TS ) as per the algorithm presented in the 
previous chapter.  

In both versions the numerical simulation is finished when 
t ≥ ft ( final simulation time). 

In all the relations from this subchapter we considered that 
the integration step ( t∆ ) has a value that is small enough, so 
that the numerical integration is being done correctly. The 
value of ( t∆ ) is in general smaller than the 10th part of the 
smaller time constant from the system. This value is chosen 
according to the specific of the application.  

5. THE SIMULATION RESULTS 

The simulation application has been developed in MATLAB 
environment [7]. 

After simulation we have compared the response that resulted 
through numerical integration and the analytical response of 
the system. We calculate the error and represent it on a graph 
(the relative error cumulated in percents). The formula of the 
error cumulated in percents is presented in relation (32): 
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In the relation (32): i represents the integration sequence; i f  

represents the integration final sequence; y Ni  represents the 
value of the system response resulted through numerical 
integration, that corresponds to sequence i; y Ai  represents the 
value of the system analytical response that corresponds to 
sequence i. The value that resulted after calculating the error 
is in percents. 

In the first sector of the furnace, the automatic control system 
has the role to increase the temperature respecting the 
imposed performances, from the value of 1106 0 C 
(temperature which is being maintained in the first sector of 
the furnace when, for different reasons, it does not work in 
service of warming up the billets) to the work value of 
1240 0 C. The temperature of 1106 0 C is maintained constant 
using a constant flow of 85 Nm 3 /h. These values are 
considered values 0 for the automatic control system (0 0 C, 
respectively 0 Nm 3 /h). In other words, the automatic control 
system reacts only when the temperature increases over the 
value of 1106 0 C. If we introduce in the program the 
parameters that correspond to the first sector, the comparative 
graph between the numerical and analytical response in the 
internal centre of the furnace (at 2,5 m distance from both the 
internal and external wall of the furnace, in the 
thermocouples) is presented in figure 2: 

 
Fig. 2.  Analytical response and numerical response of the 
automatic control system for sector 1. 

The temperature reference has been set to the value of 134 0 C 
(1240 0 C-1106 0 C). In figure 2 it can be noticed that the 
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system’s response in both cases tends asymptotically to the 
value of  134 0 C, and then it becomes stable to this value, so 
the stationary error at the position is a stp =0 0 C. The 

overshoot is σ =
st

st

y
yy −max =

134
1349,137 − =2,9%, where 

y max  is the maximum value of the response, and  y st  is the 
steady state value of the response. In this case the overshoot 
is much lower than the imposed value of 10%. The overshoot 
value, as it is situated inside the stationary band of ± 3%, the 
system settling time is smaller than the value of the moment 
when the overshoot occurs. So t r = 0,091 h, a value that is 
much lower than the one imposed (0,15h). On the graph we 
cannot differentiate the two responses due to the very small 
error between them. The maximum value of the cumulated 
error in percents in this case is of 0,32%, right at the 
beginning of the numerical integration, then it falls suddenly  
and remains constant at the value of 2,82· 510− %. 

Figure 3 presents the execution signal (the input gas flow in 
the process) obtained through numerical integration: 

 
Fig. 3.  Simulated execution signal  through numerical 
integration. 

Immediately after starting the simulation, when the controller 
forces the heating of the sector, the maximum value of the 
gas flow is of 1100,6 Nm 3 /h. After the sector temperature 
gets the reference value, the gas flow value remains constant 
at 112 Nm 3 /h. If we add the existing flow of 85 Nm 3 /h, the 
maximum value of the gas flow becomes 1185,5 Nm 3 /h, and 
its steady state value is 197 Nm 3 /h. Comparing the 
maximum value of 1185,5 Nm 3 /h to the maximum pipe flow 
of 1290 Nm 3 /h, we get the physical possibility to apply this 
actuation, as it does not get to the saturation level (the 
maximum pipe flow).  

An important aspect in discussing the problem is to introduce 
the disturbance in the system. In this case the disturbance is 
represented by the quantity of material (slab billet) that has to 
be heated. The quantity of material that corresponds to the 
most unfavourable case (for maximum productivity) is 
equivalent to the methane gas flow needed to heat this 
quantity. In the case of the first sector, the value of the 

“disturbing” methane gas flow is              =1pD -999,05 

Nm 3 /h. The most unfavourable case is featured by a 
disturbance signal of step type, having the value previously 
mentioned, that is present in the system when the furnace 
starts heating to restart the running regime. Theoretically, this 
situation might occur when, previously, there is a failure in 
equipment from the technological flow or even at the furnace, 
and the furnace was completely loaded and was working in 
parameters of maximum productivity. In this kind of 
situations, the temperature in the furnace should be reduced, 
and the hearth should be moved either in only one direction, 
or alternatively in both directions, according to the specific of 
the failure. However, the most unfavourable case will not 
occur because the block will accumulate in the furnace a 
certain quantity of heat during the failure procedure. On the 
other hand, the hypothesis that has previously been presented 
gets very close to it. The simulation will take place 
considering the disturbance equal to 1pD . Figure 4 presents 
the comparative curve between the analytical response and 
the numerical response for the automatic control system, to 
which the disturbance 1pD  is added. In this situation the 
stationary deviation to position is 0, the response time has the 
value t 1r = 0,48h (this high value can be explained through 
the presence of the material that will absorb a big quantity of 
heat), and the overshoot does not occur ( 2σ =0) because the 
temperature increase is much reduced by the presence of 
disturbance. From figure 5 results the maximum value of the 
execution signal of 1203,4 Nm 3 /h and its stabilization value 
of 1110,04 Nm 3 /h. Considering the initial value of the gas 
flow of 85 Nm 3 /h, the total flow is 1288,4 Nm 3 /h, smaller 
than the saturation flow of 1290 Nm 3 /h.  

The controller, rejecting the effect of disturbance in the most 
unfavourable case, can be used for the whole range of 
disturbances, and the performances will be improved while 
their value decreases. The relative error cumulated in 
percentage fluctuates insignificantly from the value point of 
view comparing with the previous case. 

 
Fig. 4. Comparative curve between the analytical response 
and the numerical response of the automatic control system 
for sector 1, when the disturbance is maximum. 
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Fig. 5. The execution signal  simulated through numerical 
integration, when the disturbance is maximum. 

In figure 6 is presented the evolution of intermediary 
variables m 0 (t), a 0 (t) and c 0 (t). 

A situation that might occur is to apply the disturbance after 
the dynamic service finishes, meaning after the sector heats 
without material. The system numerical response in the most 
unfavorable case (maximum disturbance of step type) is 
presented in figure 7. 

In figure 7 the disturbance occurs at the moment t=0,363 h, 
after the free process (without billets) gets to the steady state. 
One can notice that the temperature falls with 38,2 0 C 
immediately after the disturbance occurs, but it gets back at 
the imposed value after 0,645h, the controller rejecting the 
disturbance effect. The execution signal (figure 8) does not 
exceed the maximum rated value of 1290 Nm 3 /h [8]. 

 
Fig  6. Evolution of intermediary variables m 0  (t), a 0  (t) and 
c 0  (t), simulated through numerical integration. 

 
Fig. 7.  Numerical response of the automatic control system 
for sector 1, when the maximum disturbance occurs after the 
sector is heated. 

In figure 9 is presented an extreme case of variation of 
disturbance, that can occur when in the furnace is exactly the 
quantity of slab billets that covers only a sector.  In this way 
the slab billet gets slowly in the sector, absorbing more and 
more heat, gets to the maximum equivalent with 1pD , and 
then leaves the sector slowly, absorbing less and less heat. In 
this case the disturbance is represented by a negative semi-
sine curve that has the formula: 

SSN= 1pD ·sin( )t⋅ω ,                                                         (33) 

where ω -pulsation, t-time,( )t⋅ω )2,( ππ ⋅⋅⋅∈ ii , and i – 
natural uneven number and i>0. 

 
Fig. 8. The execution signal simulated through numerical 
integration, when the maximum perturbation occurs after 
heating sector 1. 
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Fig. 9. Disturbance signal of semi-sine form. 

The usual complete loading + unloading time of a sector is of 
almost 0,6 h. The numerical response of the system, when the 
semi-sine disturbance occurs after the response of the control 
system gets in steady state, is presented in figure 10. 

 
Fig 10. The numerical response of the system, when the 
semi-sine disturbance occurs after heating sector 1. 

The corresponding execution signal, obtained through 
numerical integration, is presented in figure 11. 

 
Fig. 11. The execution signal obtained through numerical 
integration, if the semi-sine disturbance occurs after heating 
sector 1. 

In figure 10 the effect of the disturbance leads to a variation 
of the response around the steady state value of 134 0 C. In 
the first stage the temperature decreases with 34 0 C, and in 
the second stage it increases with 26 0 C over the steady state 
value, after which the response stabilizes to the reference 
value. The temperature variation is acceptable although the 
initial conditions are considered (initial temperature is of 
1106 0 C). The settling time is a little longer than in the 
disturbance of step type case, due to the very fast variation of 
the disturbance signal. Comparing it with the previous case, 
the system response does not decrease that much after the 
disturbance occurs. Also, the maximum value of the 
execution signal (figure 11) is of 1101 Nm 3 /h, and if we add 
the flow of 85 Nm 3 /h to it (initial conditions referring to 
flow), implies a smaller value than the saturation value (1290 
Nm 3 /h). 

The experimental response and the simulated response of the 
process (resulted from the experimental identification 
procedure), for sector one, are presented in figure 12.   

 
Fig. 12. Comparative graph between the experimental step 
response and the simulated step response of the process for 
sector one. 

6. CONCLUSIONS 

1. This paper presents the method of analogue modeling and 
numerical simulation of the automatic control system of the 
temperature value in the furnace with rotary hearth. 

2. The simulation results obtained after the implementation of 
the method have been presented, corresponding to the first 
sector of the furnace. 

3. The automatic control scheme can be used both to control 
the billet temperature and to control the temperature of the 
gases in the work area (the external space to the billet – the 
version that is preferred and which is presented in this paper).  

4. The method of numerical control that is used is a general 
one, the user having access to the values of all the 
intermediate variables. In order to check the performances of 
numerical integration we used as comparison standard the 
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analytical model of the process. In both cases that were 
studied the performances were very good and the cumulated 
relative error in percents as very small values.  

5. Using the equations with partial derivates allows a 
presentation that is very close to reality of the way the 5 
thermal processes work. The case of modeling through 
transfer functions is a particular case of modeling through 
equations with partial derivates.  

6. In order to calculate the controllers we‘ve adapted the 
module method to the partial derivatives equations. Thus the 
obtained performances do not agree completely to the module 
criterion. All the imposed performances have been respected. 

The authors express their thanks to Professor Tiberiu Colosi, 
for his help in elaborating this work.   
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