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Abstract: The paper presents a possible way to obtain a numerical model for structural vibration active 
control. Using data and analysis results from different commercial software tools, such as ANSYS, 
ZAERO and MATLAB, one can find an optimal model to test the system dynamic response and design 
an active control law. Different algorithms for resolving the eigenvalue problem and different methods 
for system order reduction are presented here. A wing composite model as a representative aerospace 
structure is design and numerical tested for flutter. 
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1. INTRODUCTION 

The aeroelastic phenomenon named flutter is usually the 
worst situation in real flight conditions. Numerical tests of a 
computational model are the first step in any flutter analysis. 
Large scale models with thousands of DOF are always a 
problem for engineers. In most applications, the main 
problem is to limit the modeling uncertainties and to reduce 
the system’s order so that you not loose important effects on 
the model dynamics. Each particular case needs experimental 
system identification in order to validate the numerical model 
accuracy.  

In order to obtain a complete numerical aeroservoelastic 
model some authors used a minimum-states formulation for 
the unsteady aerodynamic loads by resorting to balanced 
truncation techniques to reduce the dimension of an initial 
high order model [Bianchin et. al. (2003)]. A work presents a 
systematic guideline for the use of piezoelectric stack and 
monolithic patch smart materials in intelligent structures 
using the finite element method. Analytical, numerical, and 
experimental results are employed to verify the performance 
of piezoelectric stacks and patches as well as to determine the 
natural frequencies of typical strut and panel structures. 
These intelligent structures are employed to develop an 
actuator optimum voltage for active vibration suppression 
using modal, harmonic, and transient finite element analyses 
for a range of frequency encompassing a natural frequency 
[Ghasemi-Nejha et. al. (2006)].  A performance criterion is 
proposed for the optimization of piezoelectric patch actuator 
locations on flexible plate structures based on maximizing the 
controllability grammian [Peng et. al. (2005)]. This is 
followed by the determination of parameters required for 
actuator location optimization through Structuring Analysis 
in ANSYS Finite Element Analysis Package. Genetic 
Algorithm is then used to implement the optimization. 
Finally, with the actuators bonded on optimized locations, a 
filtered-x LMS-based multichannel adaptive control is 
applied to suppress vibration response of the plate. Other 
study presents a novel approach to optimizing the 
configuration of piezoelectric actuators for vibration control 

of a flexible aircraft fin. The cost function for optimization 
using a genetic algorithm is derived directly from the 
frequency response function (FRF) obtained from a finite 
element model of the fin. In comparison to existing 
approaches, this method allows optimization on much more 
complex geometries where the derivation of an analytical 
cost function is prohibitive or impossible. The optimization 
approach is verified against experimental results obtained 
from a set of 12 actuators fixed to an experimental model of 
the fin [Rader et. al. (2007)]. One of paper presents the 
design of optimal constant gain output feedback based 
controllers for a nonlinear aeroelastic system. Controllers are 
designed for various sensor placements. For optimal sensor 
placement and with knowledge of the disturbance, the 
constant gain output feedback controller performance and 
robustness was found to be equivalent to that of linear 
quadratic regulator and linear quadratic Gaussian controllers 
for the example considered [Patil and Hodges (2002)]. The 
major objective of a paper is to describe a general 
methodology to design control laws in the context of a 
computational aeroelasticity environment [Dumitrache 
(2007)]. The technical approach involves employing a 
systems identification technique to develop an explicit state-
space model for control law design from the output of a 
computational aeroelasticity code. The standard Linear 
Quadratic Gaussian (LQG) technique is employed and the 
computational aeroelasticity code is modified to accept 
control laws and perform closed-loop simulations. Numerical 
results for flutter suppression of the Benchmark Active 
Control Technology wind-tunnel model are given to illustrate 
the approach. A work focuses on the development of a design 
methodology for optimized flutter control of an aeroelastic 
delta wing. The approach rests on two main premises. The 
first is that the application of linear modelling and control 
design techniques can be used to control the predominantly 
nonlinear phenomenon of flutter by preventing its onset. The 
second lies in the spatial optimization of actuator and sensor 
parameters to facilitate control of targeted modes while 
providing roll-off of higher order modes without the need for 
phase-inducing filters [Richard and Clark (2003)].  Many 
papers in the flutter active control field does not present the 
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authors work in order to obtain the numerical model. Other 
kind of papers develops different specialized techniques for 
optimal placement of sensors/actuators, or for model order 
reduction in the case of control systems. On the other side, 
using some dedicated software without analyzing their 
capacity to simulate each particular physical problem, can 
lead to erroneous results. The present work tries to simplify 
and then validate the main steps of obtaining a flutter active 
control model by comparing different techniques results. 

2. FE MODEL DESIGN AND ANALYSIS 

A powerful and useful tool for vibration analysis is the 
ANSYS software.  

In the present case, a model wing with an Eppler 211 airfoil 
and basic dimensions semi-span - 650 mm and chord - 200 
mm, was considered. The wing skin is built on composite 
material E-glass texture/orto-ophthalic resin with 5 layers and 
0.14 mm thickness each of them. The wing spars, placed at 
30 %, respectively, 65 % of chord, are performed of the same 
material. In order to implement an active control law, two 
pairs of MFC (Macro Fiber Composite) actuators were glued 
on the wing skin (Fig.1). Shell 99 elements with 6 DOF per 
node were chosen to predict the composite material behavior. 
A total of 2832 DOF were obtained, which means that the 
model can have 2832 natural modes in a modal analysis. In 
fact, the Block Lanczos algorithm for extracting the model 
eigenvalues, the most accuracy and faster ANSYS solver, 
allows calculating all natural frequencies lower than 1 MHz. 
The Block Lanczos algorithm uses the subspace eigenvalue 
method and is a variation of the classical Lanczos algorithm, 
where the Lanczos recursions are performed using a block of 
vectors, as opposed to a single vector [ANSYS Release]. 
Using this algorithm, only 1395 natural frequencies were 
found between 21.86 and, respectively 59.19 10× Hz. It 
remind the equation for undamped modal analysis 

0Mq Kq+ =&&  (1)
where M and K are the mass and, respectively, the stiffness 
matrices. 
The ANSYS modal analysis also allows printing out the mass 
and the stiffness matrices in a Harwell Boeing sparse matrix 
file format. A MATLAB routine can be develop to read from 
this file the two matrices in the MATLAB sparse format. 

 

Fig. 1. The ANSYS wing model with the two pairs of MFC 
actuators. 

Two MATLAB functions to compute the eigenvalues were 
tested: eigs and sptarn [http://www.mathworks.com]. Both of 
them use Arnoldi algorithm to extract a few eigenvalues. Eigs 
function allowed calculating the first 500 natural frequencies 
and the corresponding eigenvectors with very small errors. 
By comparison, the sptarn function founded all the 1395 
frequencies with very small errors, but the eigenvectors are 
ordered so that  

( )( )norm diagM V K V lmb× − × ×  (2) 

is small. In (2) V is the modal matrix and lmb are the 
eigenvalues of the system. More than that, in the case of 
sptarn function, the convergence is very slow and the 
solution must be search in many defined domain of 
eigenvalues. 

In Table 1 are presented the first 10 estimated natural 
frequencies for each method. The first column shows the 
ANSYS results, the second are the frequencies founded with 
eigs function, the third are frequencies calculated with the 
reduced mass and stiffness (obtained from eigs), and, finally 
it have the results of the sptarn function. One can observe 
that all the algorithms give the same results in the low natural 
frequencies domain. For the first 500 structural modes, the 
maximum difference between the results of the two 
MATLAB functions is 61.8344 10−× Hz. On the other hand, 
the maximum difference between the MATLAB and ANSYS 
results are 0.499 Hz (Fig. 2). In this graphic of errors 
evolution can be observed 3 stages of precision: for the first 
20 modes the errors are less than 0.05 Hz, between the 20th 
and the 200th modes the errors are less than 0.1 Hz, 
respectively, between the 200th and the 500th modes the errors 
grow up to 0.5 Hz. Usually, in vibration structural analysis no 
more than first 20 modes are examined, so it can conclude 
that in the low frequencies domain the MATLAB results are 
very accurate. In order to obtain the equation of system’s 
dynamic in state space it need to move the problem from the 
physical coordinates in modal coordinates. 

0T TV MVq V KVq+ =&&  (3) 

This implies that the modal matrix is needed. Because the 
eigs function generates this matrix, a first system order 
reduction eliminates the structural modes with frequencies 
higher than 30 KHz. 

Table 1. Natural frequencies obtained with different 
algorithms 

ANSYS eigs calculated 
from M and K sptarn 

21.8560 21.8556 21.8556 21.8556 
117.5500 117.5548 117.5548 117.5548 
131.8600 131.8579 131.8579 131.8579 
156.0500 156.0489 156.0489 156.0489 
337.5100 337.5057 337.5057 337.5057 
442.1300 442.1342 442.1342 442.1342 
573.2200 573.2150 573.2150 573.2150 
692.3400 692.3418 692.3418 692.3418 
724.1000 724.0969 724.0969 724.0969 
813.2400 813.2394 813.2394 813.2394 

http://www.mathworks.com
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Fig. 2. Errors evolution between ANSYS and MATLAB 
results. 

3. THE PLACEMENT OF ACTUATORS AND SENSORS 

Many researchers developed some optimal placement 
techniques. Two usual approaches are used: minimizing the 
control energy required by maximizing a measure of the 
controllability Gramian matrix, and maximizing the control 
force [Bruant and Proslier (2005)]. 

In the present case it was tried to obtain the maximum force 
given by the actuators. The actuators are two pairs of MFC 
and for exciting the structure can be use an electromagnetic 
shaker. Two accelerometers with the possibility to measure 
the vertical displacement (z axis) will be considered as 
sensors. As point of applying the perturbation had been 
chosen two possible locations at 1/3 from the leading edge of 
every wing sections: to the free end of the wing and, 
respectively, at 2/3 from the clamped end of the wing. Static 
analyses in ANSYS were ruled. A unit static force was 
applied in these 2 points and, in both case, the maximum 
displacement on z axis appeared on the tip of the wing. It can 
conclude that the sensors will be placed on the tip of the 
wing. Because they must give information in the case of 
some torsional or coupled modes, one of them it will be at the 
leading edge and the other one at the trailing edge of the wing 
section.  

For the actuators placement the system step response can be 
studied. For this step it must be obtained the state space 
equation of the system and the equation of measurement 
output by using the ANSYS static analysis results. Shell 99 
elements from ANSYS does not provide piezoelectric degree 
of freedom, but it can be approximated that the thermal strain 
obtained by applying a unit temperature on the actuators 
surface it is similar with the piezoelectric strain obtained by 
applying 1V. This thermal analogy was used by many authors 
[Mechbal (2005)] with good results. As location were tested 
3 variants: at the root, in the middle and at the tip of the wing. 
Assuming the static interaction cause-effect 

2 1,k k k kKq B u Kq B=  = ξ% %  (4) 

where 2B% represents the matrix of the control influence and 

kq  is the displacement vector  corresponding  to  a  unitary 
electric field ku applied to the k MFC actuator, it can be 

determined the 2B%  matrix. Similarly, by applying a unitary 
force can be obtained the vector of the perturbation 
influence 1B% . In physical coordinates the dynamic equation of 
system is 

2 1Mq Kq B u B+ = + ξ% %&&  (5) 
and using the modal matrix V calculated with eigs function, 
the relation (4) become (in modal coordinates) 

( ) 2 1
2diagx x B u Bi+ ω = + ξ&&  (6) 

where 2 2 1 1,T TB V B B V B=  =% % . In terms of first order state 
form system that means 

( )2
2

( ) ( )
( ) ( )

x t Ax t B u t
y t C x t

= +
=

&  (7) 

where ( )y t  is the measured output and 2C include the 
influence of the z axis displacement for the nodes where the 
sensors are positioned. Two Matlab functions were tested: 
step and lsim for the system step response. In fig. 3 and fig. 4 
similar results for both cases can be noticed. It seems that the 
second variant of placement, when the actuators are in the 
middle position (fig. 5), is the optimal location in order to 
obtain the maximum amplitude of the wing free end. 
Comparing the influence of each pair of actuators it can be 
stated that the actuators from the leading edge are more 
efficient, but the difference is small. The same behaviour has 
been observed regarding the sensors: the signal received from 
the leading edge sensor is a little stronger than the signal 
from the other sensor.  
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Fig. 3. Step response of the system in three cases of actuators 
placement obtained by using step function. 
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Fig. 4. Step response of the system in three cases of 
actuatorsplacement obtained by using lsim function. 

 
Fig. 5. The optimal location for the actuators. 

Table 2. Actuators placement influence 

Actuators 
placement 

on the 
wing span 

Input 1 to 
output 1 

610svd − ×  

Input 1 to 
output 2 

610svd − ×  

Input 2 to 
output 1 

610svd − ×  

Input 2 to 
output 2 

610svd − ×  

Root 0.4681 0.4678 0.4786 0.4782 
Middle 0.7404 0.7374 0.7348 0.7318 

Tip 0.2865 0.2860 0.2840 0.2835 
Quantitative results from each placement are presented in 
Table 2, where input 1 and output 1 represent the pair of 
actuators, respectively the sensor from the leading edge. 

4. MODEL ORDER REDUCTION 

The control laws are usually designed for structures with 
small number of degrees of freedom (DOF), so it must be 
found a way to reduce the modeled system order, with 
thousands of DOF, to a similar system with no more than 10 
DOF for example. There is no efficient solution for this 
problem, as all the methods involve compromise approaches 
[Megretski (2004)]. It is well known that, regarding the 
energy introduced in system, the high frequency modes do 
not have significant influence on the system dynamics. So, a 
simple way to reduce the system order is to eliminate these 
high frequency modes, method that it already applied in this 
work (modal truncation). An other technique uses so called 
Guyan reduction based on the selection of DOF where the 

force is applied and where the sensor is located. This method 
can not be followed in the case of MIMO systems, in which 
case an alternative is to eliminate those modes that are not 
controllable and observable. A measure of the controllability 
and observability degree is the controllability/observability 
grammian defined as 

T

T

2 T
2 20

2 T
2 20

At A t
C

A t At
O

W e B B e dt

W e C C e dt

∞

∞

=

=

∫
∫

 
 
(8) 

These grammians characterize the degree of controllability 
and observability by quantifying how far away from being 
singular the matrices of controllability and observability are. 
In other words it needs to quantify the rank deficiency and a 
possible way is to examine the singular values of the matrix 
[Inman (2006)]. For a stable system Hankel singular values 
indicate the respective state energy of the system. Hence, 
reduced order can be directly determined by examining the 
system Hankel SV's. The singular values of a stable system 
are defined as 

H i O CW Wσ = λ  (9) 

The MATLAB Robust Control Toolbox offers several 
algorithms for model approximation and order reduction. 
Robust control theory quantifies a system uncertainty as 
either additive or multiplicative types. These algorithms let 
control the absolute or relative approximation error, and are 
all based on the Hankel singular values of the system. In a 
first step, it can plot the Hankel SV of the full order system 
and choose the retained system order in view of reduction 
(Fig. 6). It is obviously that the first mode had the main 
contribution, so a 20th order system can be considered 
adequately for the next analysis. The obtained results of five 
model order reduction algorithms (Square-root balanced 
model truncation “balance”, Schur balanced model truncation 
“Schur”, Hankel minimum degree approximation “Hankel”, 
Balanced stochastic truncation “BST” and Normalized 
coprime balanced truncation “NCF”) are similar. The 
retained system frequencies are in almost all the cases 
(excepting Hankel minimum degree approximation): 21.86, 
132.43, 156.94, 1756.16, 2401.52, 5708.54, 8546.60, 
11516.84, 12378.48, respectively 14538.78 Hz, which means 
the frequencies of the mode number: 1, 3 and 4 for sure.  

 
Fig. 6. Hankel SV of the full order system. 
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Upwards to the fourth mode, the reduced system frequencies 
are not exactly the same with the full order system or the FE 
model and the next mode can be the 20th or 21st. A first 
conclusion is that from point of view of the control law the 
first four modes are controllable and observable. Because it 
do not know how these structural modes are coupled with the 
aerodynamic modes, can be useful to obtain a reduced system 
which contains at least the first ten structural modes. So, in a 
next step a modal truncation of the full order system is 
performed by selecting those rows and columns from the 
system matrices which correspond to the first ten modes. The 
L∞ norm can be a measure of how far away from the full 
system is the reduced system. In table 3 these norms for the 
six reduced systems are presented: balance, Schur, Hankel, 
BST, NCF and modal truncation. It notices that the norm 
value in the case of modal truncation reduction is larger than 
the others. The rank calculation of controllability and 
observability matrices confirm that only three from ten 
modes (six states) are full controllable/observable in the 
modal truncation reduced system. A conclusion of this 
section is that the control law must be design on the modes 
number 1, 3 and 4, all the superior modes that are 
controllable/observable having too high frequencies for a 
structural control case. The comparison of the L∞ norm for 
different reduction algorithms and the advantage of diagonal 
form for system matrices (which allows analyzing every 
mode behavior) lead to choose a modal truncation reduction. 
An aeroelastic analysis will determine which of the first ten 
modes will be retained. 

5. FLUTTER ANALYSIS 

The aerodynamic flows also possess a modal character. The 
aeroelastic modes are those that exist when the structural and 
the aerodynamic modes are fully coupled, for example when 
oscillations of a fluid mode excite all structural modes and 
vice verse [Dowell (2004)]. The fluid-structure interaction of 
structural, inertial and aerodynamic forces may lead for a 
structure to become unstable or “flutter”. Flutter is just 
dynamic, rapidly developed, oscillatory instability of a non-
rigid wing that occurs, at the flutter speed. Near this speed the 
fluid and structural modes become strongly coupled. 

A dedicated software for solving the aeroelasticity problems 
is the code ZAERO. The ZAERO flutter module contains two 
flutter solution techniques: the K-method and the g-method. 
The g method is a newly developed flutter solution method 
that generalizes the K-method and the P-K method for true 
damping prediction. It is shown that the P-K method is only 
valid at the conditions of zero damping, zero frequency, or 
linearly varying generalized aerodynamic forces (Qij) with 
respect to reduced frequency. In fact, if Qij is highly 
nonlinear, it is shown that the P-K method may produce 
unrealistic roots due to its inconsistent formulation. The 
flutter module has a built-in atmospheric table as an option to 
perform matched-point flutter analysis. Sensitivity analysis 
with respect to the structural parameters is also included in 
the g-method [http://www.zonatech.com]. The first step for 
ZAERO flutter analysis is to create an external file with 
modal data from ANSYS. This file contains the nodes 
coordinates and the modal solutions for each structural mode. 

ZAERO read the file to calculate the mass and stiffness 
matrices, to interconnect the structural elements with the 
aerodynamic grid and so on. The structural modal damping is 
selected to 2% for each mode. The next step is to define the 
airflow condition: freestream Mach number 0.6, symmetric 
boundary conditions, density (1.25 kg/m3); it must be defined 
the chord, semispan and wing area (identically with the FE 
model), respectively the position for aerodynamic center. 
Next, the panels for generalized aerodynamic forces calculus 
are chosen by defining the number of chord/span divisions, 
length of the tip and the root wing chord, leading edge radius 
at the root/tip normalized by the root/tip chord. It also need to 
specify values for the camber of the airfoil at the wing 
root/tip and the half thickness at the wing root/tip. The 
matrices of aerodynamic influence coefficients can be stored 
in an external file in order not to be calculated on every run 
of the program. A linear method for unsteady subsonic 
aerodynamics (ZONA6) is selected, method with higher-
order panel formulation for lifting surfaces than the Doublet 
Lattice Method (DLM). The spline function establishes the 
displacement/force transferral between the structural Finite 
Element Method (FEM) model and the ZAERO aerodynamic 
model. An Infinite Plate Spline method that jointly assembles 
the spline matrix is chosen. Four possible flutter modes are 
obtained for a maximum speed of 800 m/s (Table 4). Table 5 
presents each structural mode contributions for every flutter 
mode. The first flutter mode appear at 276.94 m/s with a 
reduced frequency of 78.85 Hz and the fourth structural mode 
has the main contribution on this flutter mode. So, the fourth 
structural mode is the first mode that can lead to a wing 
flutter. The same structural mode has the main contribution 
on the third and fourth flutter modes (aeroelastic modes 
which are caused by two aerodynamic lags). 

Table 4. Flutter modes 

 Speed 
[m/s] 

Reduced 
frequency 

[Hz] 

Dynamic 
pressure 

[kg/m/s2] 
Flutter mode 1 276.94 78.85 4.6976E+04 
Flutter mode 2 620.95 352.26 2.3617E+05 
Flutter mode 3 500.02 0.00 1.5314E+05 
Flutter mode 4 390.63 0.00 9.3464E+04 

 
Table 5. Structural modes participation to flutter modes  

Structural 
modes 

Flutter 
mode 1 
partition 

[%] 

Flutter 
mode 2 
partition 

[%] 

Flutter 
mode 3 
partition 

[%] 

Flutter 
mode 4 
partition 

[%] 
Mode 1 7.7041 13.5306 20.0251 20.0272 
Mode 2 6.3594 13.3624 0.0170 0.0085 
Mode 3 3.7219 5.4648 10.8106 10.8080 
Mode 4 100.00 13.3467 100.00 100.00 
Mode 5 6.3802 30.8081 0.0142 0.0228 
Mode 6 6.1950 100.00 0.3321 0.3408 
Mode 7 6.3539 13.1229 0.0635 0.0551 
Mode 8 6.3496 13.9298 0.0443 0.0358 
Mode 9 6.3499 13.5695 0.0388 0.0303 

Mode 10 6.3489 16.2153 0.0238 0.0153 

http://www.zonatech.com
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Fig. 7. Speed versus artificial damping diagram for the most 
important structural modes. 

The next dangerous structural mode seems to be the sixth 
one; also, the first and the fifth structural modes have some 
significant contributions on some of the flutter modes. On the 
other hand it is clearly that the structural modes number 2, 3, 
7, 8, 9 and 10 can not lead to flutter. Consequently, in the VG 
diagram it plot only the first, third, fourth, fifth and sixth 
modes behavior (Fig. 7). 

 

Fig. 8. Singular values for the full order and reduced order 
systems. 

 

Fig. 9. Step response for the full order and reduced order 
systems. 

For the same reason it can conclude that the control law must 
be designed for the first and the fourth structural modes 
(which are controllable and observable, as it already know), 
but the system matrices must contain, also, the third, fifth and 
sixth modes.  

So, a final model order reduction will be a modal truncation 
from the system with the first ten modes to a reduced one 
which includes modes number 1, 3, 4, 5 and 6. From the full 
order system it retains only those lines and rows which 
correspond with these selected modes. A final analysis 
compares the singular values (fig. 8), the L∞ norm (3.3445e-
004), respectively, the step response (fig. 9) of the full order 
and reduced order systems. 

6. CONCLUSIONS 

The present work tries to obtain a simplified model for flutter 
active control in comparison with other author’s research and 
publications [Rocha et al. (2007)]. Different techniques for 
optimal placement of sensors/actuators and model order 
reduction were analyzed and combined. Also, it has tried to 
take into account both the control system engineers and 
mechanical engineers concepts and approaches. Practical and 
software limitations approximate the obtained numerical 
model. A next presentation will design some active control 
laws to test this model, but only an experimental work can 
validate all. The intention is to use an extended Linear 
Quadratic Gaussian with Loop Transfer Recovery control 
law. In order to demonstrate the control performance and 
robustness to parametric uncertainties, the controller and the 
filter will be designed taking into account the selected modes, 
number 1, 3, 4, 5, respectively 6, but the system with all the 
first ten modes will be tested. 

Respectfully thanks to Professor Daniel J. Inman from 
Virginia Tech for his advices and appreciation. 
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