
CEAI, Vol.12, No.4, pp. 24-29, 2010 Printed in Romania

Improved Personal Identification Method Based on Partial Fingerprints

Radu Miron*, Tiberiu Leţia*

*Technical University of Cluj-Napoca, 28 Memorandumului St., Romania
(e-mails: radu.miron@aut.utcluj.ro, tiberiu.letia@aut.utcluj.ro)

Abstract: The most common fingerprint recognition systems are those that are based on minutiae
matching. Latent fingerprints lifted from different objects are usually noisy and broken, resulting in small
and partial usable areas. Minutiae based techniques are widely used because of their temporal
performances, but they do not perform so well on low quality images and in the case of partial fingerprint
they might not be used at all. Therefore, when comparing partial input fingerprints with pre-stored
templates, a different approach is needed. This paper proposes a fuzzy logic algorithm based on
correlating a minutiae set and the regions between ridges for matching partial fingerprints.
Keywords: image processing, pattern recognition, identification algorithms, fuzzy logic, inference.

1. INTRODUCTION

Biometric recognition refers to both physiological and
behavioural characteristics used to automatically recognize
individuals. A number of different biometric identifiers (such
as: iris, hand geometry, face, veins, voice, retina,
handwriting, fingerprints etc) are used in various recognition
applications. According to International Biometric Group
(2009) the fingerprint based technology is the undisputed
biometric leader, considering its market share of almost 67%
in 2009. The same report forecasts that the annual biometric
industry revenues will almost triple by 2014.

Fingerprint ridges begin to develop during the third to fourth
month of fetal development. They are fully developed by the
seventh month and the probability of two fingerprints being
alike is 1 in 1.9 × 1015 (Leung et al. (1991)).

a) b)

Fig. 1. Minutiae types: a) termination, b) bifurcation.

Ridges and furrows are usually parallel, but they can also
come to an end or split, thus creating the two most widely
used types of minutiae (small details): terminations and
bifurcations, respectively. There are other types of minutiae
such as: pores, short ridges (dots or islands), cores, deltas etc.
Although these other types of minutiae can be considered, the
FBI minutiae-coordinate model uses only terminations and
bifurcations (Wegstein (1982)). Usually a minutia is defined
by the triplet {xi, yi, θi}, where xi and yi are the minutia
coordinates and θi is the angle between the tangent to the
ridge line at the minutia location and the horizontal axis
(refer to Fig. 1).

Besides minutiae, the other major fingerprint feature class is
represented by the singularities, which are distinctive

patterns that the ridges form in a fingerprint. Developed by
Sir Edward Henry in the late 1800s, the Henry Classification
System (Henry (1900)) is still used for fingerprint
classification in order to simplify the search and retrieval
process in the recognition system’s data base. The main
fingerprint typologies are: arch, loop and whorl. These
typologies are further divided into subclasses (e.g. right loop
and left loop, tented arch and plain arch).

The major steps involved in an automatic fingerprint
recognition application are: the fingerprint acquisition, the
fingerprint image pre-processing, the feature extraction, the
fingerprint classification and the fingerprint matching.

There are many methods and technologies for each step
involved in fingerprint recognition. The fingerprint matching
is the process of comparing an input fingerprint to pre-
processed ones (or templates) stored in a data base.

According to Maltoni et al. (2005), fingerprint matching can
be grouped into three major classes: (i) correlation-based
matching, (ii) minutiae-based matching and (iii) ridge
feature-based matching.

High quality matching of complete fingerprints can be
performed by many reasonable algorithms. Matching of poor
quality or partial samples is more difficult. Fingerprint
images can be affected by: high displacement and/or rotation,
non-linear distortion (caused by representing a 3D shape in a
2D image), different pressure, skin condition and feature
extraction errors (Maltoni et al. (2003)).

Minutiae based recognition techniques are the most often
used methods in fingerprint recognition commercial
applications because of their temporal performance, but they
don’t perform very well on low quality inputs (Marana
(2005)). The loss of singular points (core and delta) is making
singularity based recognition and indexing techniques
impossible (Le and Bui (2009)).

The miniaturization of fingerprint sensors and their sensing
areas raises a problem regarding the individual’s fingerprint
identification because of the fact that in most civilian

mailto:radu.miron@aut.utcluj.ro
mailto:tiberiu.letia@aut.utcluj.ro)

CONTROL ENGINEERING AND APPLIED INFORMATICS 25

applications (PDA’s, cell phones, laptops etc.) only a partial
fingerprint can be captured. Another example of partial
fingerprint acquisition is the lifted latent prints from a crime
scene. In this case, the fingerprints are usually noisy and
broken, thus reducing the usable areas (Jea, T. (2005)).

This paper proposes to differentiate between the matching
approaches depending on the quality of the input fingerprint
images; it is considered that the high quality of the pre-stored
templates was ensured during the enrolment process. An
input image is considered to have a fair quality if at least one
singularity (loop, whorl or delta) can be extracted. In this
case, a classical minutia based algorithm proposed by Zhang
W. (2002) is used. The novel fuzzy logic based algorithm for
partial fingerprint matching, proposed by this paper,
combines correlation-based and minutiae-based techniques
and it is employed if no singularity is detected in the
fingerprint’s image.

2. SYSTEM’S SOFTWARE ARCHITECTURE

The proposed algorithm can be integrated in a automated
recognition system. The main steps involved in the partial
fingerprint recognition algorithm together with the system
that integrates it are presented in the logic diagram from Fig.
2.

The first step of the algorithm denoted by the block S1 is the
fingerprint acquisition. The input acquisition can be
performed either online, or a set of latent prints can also be
given to the system. The application also allows the
enrolment of individuals if the proposed fingerprint’s quality
is fair. The enrolment process is represented by the S15, ... ,
S18 blocks.

The proposed partial fingerprint matching algorithm is
composed of the S3, ... , S14 blocks and it is described in the
next chapters of this paper.

3. FINGERPRINT IMAGE PROCESSING

Before the proposed matching algorithm can be applied,
some of the fingerprint’s features must be extracted. The
main steps involved in the fingerprint’s image processing are
presented in Fig. 3.

Fig. 3. Fingerprint’s image processing steps.

3.1 Histogram equalization

Histogram equalization was chosen as the first step for the
image enhancement process and in order to adjust the
image’s contrast. This method allows lower contrast regions
of the image to gain a higher contrast.

Fig. 2. The software architecture of the proposed system

The images’ size captured with the optic sensor used to
implement the recognition system presented in this paper is
256×320. The fingerprint’s image is in the grayscale domain,
so the intensity values range from 0 (black) to 255(white).

The image is divided into 32×32 pixels blocks. A simple
local histogram equalization algorithm is performed for each
block, in three steps:

1) Count the pixels of each intensity level (histogram
formation).

2) Calculate the new intensity level for each of the 256
initial levels as in:

 , i=0,..,255, (1)

where nili is the new intensity level, max.intensity level is
255, pixels no. for one block is 1024 and the expression in
brackets represents the number of pixels from the initial
image having a lower than i intensity level or equal to it.

26 CONTROL ENGINEERING AND APPLIED INFORMATICS

3.2 Image segmentation

This step is performed in order to separate the fingerprint
from the background, thus avoiding feature extraction from
noisy areas. A common method is to use the local orientation
and the local ridge frequency of the fingerprint.

Local orientation

In order to determine the local orientation the image is
divided into 32×32 pixels blocks. According to Wang et al.
(2007) the local orientation of a block (denoted by θB) can be
calculated as in:

 (2)

where N is the block size and ∂x(i,j) and ∂y(i,j) are the
gradient magnitudes of the pixel located at (i,j) coordinates
on the x and y directions respectively, and can be calculated
by using the Sobel operators.

Local ridge frequency

The frequency of a block is determined as shown in Fig. 4.

Fig. 4. Local ridge frequency

The intensity levels of the pixels found on the orthogonal
direction through the block’s center to its orientation are
represented in a two dimensional planes. Ideally, the result
has a sinusoidal shape. The local frequency can be
determined by counting the sinusoid’s negative peaks (Ratha
et al. (1995)). The blocks that don’t have a striped oriented
pattern are removed, according to Maltoni (2005).

3.3 Image binarization

Image binarization transforms a greyscale 8-bit image into a
1-bit image (black (’0’) and white (‘1’) only). For better
results, the binarization process can be performed locally,
meaning that a local threshold will be determined for each
block.

3.4 Image thinning

Thinning is a morphological operation that is used to reduce
the ridges’ thickness to one pixel. The algorithm that was
used for this stage of the fingerprint image processing is
proposed by MathWorks (2009). Fig. 5 c) shows the resulting
thinned image.

 a) b) c)
Fig. 5. a) Initial image; b) Segmented and binarized image;
c) Thinned image

3.5 Minutiae extraction

After the thinning process, determining the minutiae is done
by examining the 8-neighberhood of each ridge skeleton
pixel, as shown in Fig. 6.

a) b)

Fig. 6. Minutiae extraction: a) termination, b) bifurcation

3.6 Singularity detection

Most singularity detection methods are based on the local
ridge orientation image. The most well known method based
on the Poincare index was proposed by Kawagoe (1984).
This method does not work on poor quality images and fails
to detect most arch-type fingerprints. Park et al. (2003)
proposes to shift a rectangular window across the fingerprint
image until the upper region of the window contains the most
ridges having an orientation of 0o (refer to Fig. 7). If a
singularity exists, then the ridges’ orientation from the lower
region changes abruptly. The singular point is considered to
be on the lowest ridge from the upper region.

Fig. 7. Ridge distribution in the neighbourhood of a
singularity

3.7 False minutiae reduction

There are a number of false minutiae that have to be removed
from the fingerprint image. This step is necessary in order to
eliminate noisy formations like those presented in Fig. 8.

Fig. 8. False minutiae resulted after image thinning

4. PARTIAL FINGERPRINT MATCHING ALGORITHM

Direct application of correlation-based algorithms is
computationally very expensive, due to the large number of
rotations and translations needed. In order to reduce the
computational time, the proposed algorithm tries to match
two minutiae from the input with two minutiae from the
template. After aligning the two minutiae sets the two images
can be correlated.

Let I and T be the minutiae sets of the input and of the
template fingerprints, respectively. Each minutia m is
denoted by a triplet {x, y, θ}, where x and y are the location’s
coordinates and θ is the minutia’s angle.

CONTROL ENGINEERING AND APPLIED INFORMATICS 27

I= {m1, m2, ..., mk}, mi={xi, yi, θi}, i=1..k,

 T= {m’1, m’2, ..., m’l}, m’j={xj, yj, θj}, j=1..l, (4)

where k and l are the numbers of minutiae in I and T,
respectively.

Both I and T sets are divided into two subsets, each subset
containing only the termination or bifurcation minutiae:

 I= IT U IB,

T= TT U TB, (5)

where IT and IB denote the input’s termination and bifurcation
subsets, and TT and TB denote the template’s termination and
bifurcation subsets, respectively.

The proposed algorithm tries to find two bifurcation minutiae
in the partial input fingerprint at a maximum distance from
each other and matches them to two minutiae from the
template. Bifurcation minutiae are considered to be more
reliable because false terminations can be introduced by the
image capturing or image processing stages. If the input
presents no bifurcations (IB=Ø) then two terminations are
chosen. When there is only one bifurcation then that one and
another termination are considered.

The distance between two minutiae is calculated with the
formula:

 (6)

The following pseudocode presents the minutiae correlation
algorithm:

Algorithm 1: Minutiae correlation algorithm
input: IT, IB;
input: TT, TB;
output: (ma, mb), (m’c, m’d);//minutiae pairs from the input and the
template, respectively.

//determine the two input minutiae
case of cardinal(IB)
 0: choose ma ∈ IT and mb ∈ IT | dist(ma, mb)= max;
 Mc=TT; Md=TT;
 1: choose ma ∈ IB and mb ∈ IT | dist(ma, mb)= max;
 Mc=TB; Md=TT;
 >2: choose ma ∈ IB and mb ∈ IB | dist(ma, mb)= max;
 Mc=TB; Md=TB;
end case;

//determine the corresponding template minutiae
distance=dist(ma, mb); //
m’c:=0; m’d:=0;
for each m’i ∈ Mc do
 for each m’j ∈ Md do
 if (distance ≈ dist(m’i, m’j)) then
 θdiff :=θa-θ’i; //θa, θ’i angles of ma, m’i
 if (θ’j ≈ (θb+θdiff)) then
 m’c:= m’i; m’d:= m’j;
 end if;
 end if;
 end for;
end for;
return (ma, mb), (m’c, m’d);

Another important aspect is that the proposed algorithm
correlates the regions between the thinned ridges, not the
ridges themselves. Choosing to correlate the regions between

the ridges is a good idea, since due to non-linear distortions
and image processing stage; the thinned ridges from the input
and the template can be slightly shifted and/or rotated, even if
the images were taken from the same fingerprint.

In order to compare the input to the template a region
coloring step is required for the both image. First, the
fingerprint regions have to be enclosed from the background.
This is done by uniting the neighbor ridge endings with
straight lines. Second, all the regions are colored. This
process is similarly to the use of Microsoft Paint’s Fill with
color Tool and it is performed by a labelling algorithm. Both
the input and the template are colored as presented in Fig. 9.

a) b)

Fig. 9. a) Template region colouring; b) Input region
colouring

Let RI and RT be the input region sets and the template region
set, respectively. These distinct regions are the result of the
colouring process.

RI = {ri | i=1..m},

RT = {r’j | j=1..n}, (7)

where m and n represent the numbers of different regions
from the input and from the template, respectively.

The input image is shifted along Ox and Oy axes until ma
overlaps mc (xa=xc and ya=yc). The input image is rotated
around the minutia location (xa,ya) until mb overlaps md
(xb=xd and yb=yd). The two images are now considered to be
aligned. The correlation degree of each region is determined
(refer to Algorithm 2).

Algorithm 2: Correlation degree algorithm
input: imI, imT; //the two images: input, template
input: m, n; //the numbers of regions in I and T
output: opi | i=1..m; //maximum number of overlapping pixels
for each ri ∈ RI do

//reset the auxiliary vector aux_op
for i:=1 to n do
 aux_opi :=0;
end for;

 //increment the auxiliary vector’s element corresponding to ith region
 for each imI(j) pixel from ri do
 h:=getRegionIndexForPixel(imI(j));
 aux_oph ++;
 end for;
 opi :=max(aux_op);
end for;
return op;

Algorithm 2 determines the maximum number of overlapping
pixels of each region from RI onto a single region from RT,
after the two images were aligned (denoted by the vector opi,
i=1..m). The correlation degree of each region denoted by cdi
is calculated with the formula:

28 CONTROL ENGINEERING AND APPLIED INFORMATICS

, (8)

where tpi denotes the total number of pixels of each region ri
from RI.

4.1 Fuzzification

In order to determine the correlation degree between the
partial input fingerprint and the template, fuzzy logic rules
are used.

The correlation degrees of each input region are fuzzified by
using the well known membership function presented in Fig.
10. The fuzzified variables denoted by cdfi (i=1..m) take
values in the domain {L, M, H} (i.e. low, medium and high).

Fig. 10. Membership function

Let hcdj, mcdk and lcdl be the sets of high correlation degree,
medium correlation degree and low correlation degree
regions, respectively.

. (9)

The relative surfaces of each of the three set described above
are calculated:

 (10)

where rshcd, rsmcd and rslcd are the relative surfaces of: all
the high correlation degree regions, all the medium
correlation degree regions and all the low correlation degree
regions, respectively, and rsi is the relative surface of the ith
region.

These three parameters are also fuzzified in the domain {L,
M, H} by using the same membership function presented in
Fig. 10, resulting the fuzzy variables: rshcdf, rsmcdf and
rslcdf.

The proposed fuzzy matching algorithm is based on the
inference and uses rules with the following form:
IF (rshcdf is X) AND (rsmcdf is Y) AND (rslcdf is Z) THEN (matchf is W)

where X, Y, Z and W take values in the set {L, M, H}.

The fuzzy logic rules described above are implemented as
shown in Table 1, Table 2 and Table 3. These tables provide
the fuzzy logic values for the output variable matchf.

Table 1. Fuzzy logic rules (rshcdf is H)

rshcdf is H rsmcdf
H M L

rslcdf
H - - H
M - H H
L H H H

Table 2. Fuzzy logic rules (rshcdf is M)

rshcdf is M rsmcdf
H M L

rslcdf
H - M M
M M M M
L M M M

Table 3. Fuzzy logic rules (rshcdf is L)

rshcdf is L rsmcdf
H M L

rslcdf
H M L L
M M L L
L M L L

The table cells that contain no fuzzy values represent the
rules which cannot be activated (e.g.
rshcd+rsmcd+rslcd>100%).

4.2 Defuzzification

Due to the fact that more than one rule can be activated for
the same set of input crisp values (because each fuzzy
variable can have two membership grades as shown in Fig.
10), the defuzzification process involves the use of the rule
strengths. Only rules that have medium and high outputs
influence the final matching score. The strength of each rule
is calculated as in (11). The weight of the rshcdf membership
grade is twice more important than the weight of rsmcdf
membership grade Cherrak et al. (1998).

 (11)

where µk(x) is the membership grade function and i is the
number of the activated rule.

Exception for (11): If rshcd=100% then si=1.

The logical products for each rule must be combined (or
inferred) before performing the defuzzification process that
results in crisp output values.

Fig. 11. Output membership function

Fig. 11 depicts the defuzzification function of the fuzzy
output matchf. The L, M, H intervals’ bounds were

CONTROL ENGINEERING AND APPLIED INFORMATICS 29

experimentally set. Raising the lower bounds of M and H
intervals means a higher security level (or higher rejection
rate). Employing genetic algorithms to determine these
bounds was considered as future work.

The crisp values of the output variable matchf are calculated
by the centre of gravity for singleton method as in (12):

, (12)

where si is the strength of the ith rule and t is the number of
the activated rules for the same input set.

4.3 Combining the matching results of multiple partial prints

Provided that there are n partial prints of the same fingerprint,
the proposed algorithm can calculate a combined matching
score based on the fuzzy logic algorithm presented above.

The crisp values of each partial fingerprint matching score
are denoted by matchi (i=1..n). The ratio between the partial
input fingerprint surface and the total surface of the template
(in pixels) is denoted by relativeSi (i=1..n).

Before the total matching score is calculated, the overlapping
areas of the partial fingerprints must be taken into account.

If two partial fingerprints overlap each other the print that has
a lower matching score yields the overlapping area.

The total matching score (denoted by matchT) is calculated
with the next formula:

 (13)

6. CONCLUSIONS

A fuzzy logic based algorithm that involves the correlation of
the regions enclosed by the thinned ridges of a partial
fingerprint input with those from the template is proposed for
matching partial fingerprints. This algorithm combines the
temporal performances of the minutiae based algorithms with
the reliability of the correlation based ones.

The algorithm proposed for matching partial fingerprints can
be used to restrict the access to low or medium security
resources. The access to such resources might be granted
based on the combined results of successive authentication
attempts during which only partial fingerprints are captured,
not necessarily requiring a good quality input image.

Further improvements of the proposed system involve the use
of genetic algorithms for tuning the defuzzification
parameters and the establishment of a partial fingerprint
database for performance comparisons.

The system’s modules were implemented in Java 2 SE, but at
the moment they are not fully integrated. The system will be
tested on a large fingerprint database as soon as the modules’
integration is completed. The image processing modules were
also implemented in Matlab 7.8 as a prototype. Table 4
presents a temporal performance comparison between the
execution times of the same modules under the two
environments.

Table 4. Temporal performances

 Segmentation
[ms]

Histogram
Equalization

[ms]

Binarization
[ms]

Thinning
[ms]

Matlab
7.8

166 7 10 23

Java
SE 1.6

1120 20 21 520

REFERENCES

Cherrak, I., Jaulent, M.C., Degoulet, P. (1998). A Fuzzy

Classification System to Predict Renal Artery Restenosis
after Angioplasty. Procedings AMIA Symp., p. 582–586.

Henry, E.R. (1900). Classification and Uses of Fingerprints.
Routledge, London.

International Biometric Group (2009), Biometrics Market and
Industry Report 2009-2014, p. 18-37.

Kawagoe, M., and Tojo, A. (1984). Fingerprint Pattern
Classification. Pattern Recognition, volume 17, p.
295−303.

Le, H., and Bui, D. (2009). Online fingerprint identification
with a fast and distortion tolerant hashing. Journal of
Information Assurance and Security 4, p. 117-123.

Leung, W.F., Leung, S.H., Lau, W.H., Luk, A. (1991).
Fingerprint Recognition Using Neural Network, Neural
Networks For Signal Processing – Proceedings Of The
1991 IEEE Workshop.

Maltoni, D. (2005). A Tutorial on Fingerprint Recognition.
Biometric Systems Laboratory - DEIS - University of
Bologna.

Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S. (2003).
Handbook of Fingerprint Recognition. p 3-7. Springer,
New York.

Marana, A.N., Jain, A.K. (2005). Ridge-Based Fingerprint
Matching Using Hough Transform. Computer Graphics
and Image Processing, SIBGRAPI, p. 112-119.

Park, C.H., Oh, S.K., Kwak, D.M., Kim, B.S. (2003). A New
Reference Point Detection Algorithm Based on
Orientation Pattern Labelling in Fingerprint Images.
Pattern Recognition and Image Analysis, IbPRIA, 2003.

Ratha, N.K., Chen, S.Y., Jain, A.K. (1995). Adaptive Flow
Orientation-Based Feature Extraction in Fingerprint
Images. Pattern Recognition, volume 28, no. 11, p.
1657−1672.

The MathWorks, Inc., (2009). Image Processing Toolbox
User’s Guide.

Wang, Y., Hu, J., Han, F. (2007). Enhanced gradient-based
algorithm for the estimation of fingerprint orientation
fields. Applied Mathematics and Computation 185, p.
823–833.

Wegstein, J.H., (1982). An Automated Fingerprint
Identification System. U.S. Government Publication,
Washington, DC: U.S. Dept. of Commerce, National
Bureau of Standards.

Zhang, W., and Wang, Y. (2002). Core-Based Structure
Matching Algorithm of Fingerprint Verification. Pattern
Recognition. Proceedings of the 16th International
Conference on, IEEE, p. 70-74.

