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Abstract: The most common fingerprint recognition systems are those that are based on minutiae 
matching. Latent fingerprints lifted from different objects are usually noisy and broken, resulting in small 
and partial usable areas. Minutiae based techniques are widely used because of their temporal 
performances, but they do not perform so well on low quality images and in the case of partial fingerprint 
they might not be used at all. Therefore, when comparing partial input fingerprints with pre-stored 
templates, a different approach is needed. This paper proposes a fuzzy logic algorithm based on 
correlating a minutiae set and the regions between ridges for matching partial fingerprints. 
Keywords: image processing, pattern recognition, identification algorithms, fuzzy logic, inference. 

 

1. INTRODUCTION 

Biometric recognition refers to both physiological and 
behavioural characteristics used to automatically recognize 
individuals. A number of different biometric identifiers (such 
as: iris, hand geometry, face, veins, voice, retina, 
handwriting, fingerprints etc) are used in various recognition 
applications. According to International Biometric Group 
(2009) the fingerprint based technology is the undisputed 
biometric leader, considering its market share of almost 67% 
in 2009. The same report forecasts that the annual biometric 
industry revenues will almost triple by 2014. 

Fingerprint ridges begin to develop during the third to fourth 
month of fetal development. They are fully developed by the 
seventh month and the probability of two fingerprints being 
alike is 1 in 1.9 × 1015 (Leung et al. (1991)). 

 
a)                   b) 

Fig. 1. Minutiae types: a) termination, b) bifurcation. 

Ridges and furrows are usually parallel, but they can also 
come to an end or split, thus creating the two most widely 
used types of minutiae (small details): terminations and 
bifurcations, respectively. There are other types of minutiae 
such as: pores, short ridges (dots or islands), cores, deltas etc. 
Although these other types of minutiae can be considered, the 
FBI minutiae-coordinate model uses only terminations and 
bifurcations (Wegstein (1982)). Usually a minutia is defined 
by the triplet {xi, yi, θi}, where xi and yi are the minutia 
coordinates and θi is the angle between the tangent to the 
ridge line at the minutia location and the horizontal axis 
(refer to Fig. 1). 

Besides minutiae, the other major fingerprint feature class is 
represented by the singularities, which are distinctive 

patterns that the ridges form in a fingerprint. Developed by 
Sir Edward Henry in the late 1800s, the Henry Classification 
System (Henry (1900)) is still used for fingerprint 
classification in order to simplify the search and retrieval 
process in the recognition system’s data base. The main 
fingerprint typologies are: arch, loop and whorl. These 
typologies are further divided into subclasses (e.g. right loop 
and left loop, tented arch and plain arch). 

The major steps involved in an automatic fingerprint 
recognition application are: the fingerprint acquisition, the 
fingerprint image pre-processing, the feature extraction, the 
fingerprint classification and the fingerprint matching. 

There are many methods and technologies for each step 
involved in fingerprint recognition. The fingerprint matching 
is the process of comparing an input fingerprint to pre-
processed ones (or templates) stored in a data base. 

According to Maltoni et al. (2005), fingerprint matching can 
be grouped into three major classes: (i) correlation-based 
matching, (ii) minutiae-based matching and (iii) ridge 
feature-based matching. 

High quality matching of complete fingerprints can be 
performed by many reasonable algorithms. Matching of poor 
quality or partial samples is more difficult. Fingerprint 
images can be affected by: high displacement and/or rotation, 
non-linear distortion (caused by representing a 3D shape in a 
2D image), different pressure, skin condition and feature 
extraction errors (Maltoni et al. (2003)). 

Minutiae based recognition techniques are the most often 
used methods in fingerprint recognition commercial 
applications because of their temporal performance, but they 
don’t perform very well on low quality inputs (Marana 
(2005)). The loss of singular points (core and delta) is making 
singularity based recognition and indexing techniques 
impossible (Le and Bui (2009)). 

The miniaturization of fingerprint sensors and their sensing 
areas raises a problem regarding the individual’s fingerprint 
identification because of the fact that in most civilian 
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applications (PDA’s, cell phones, laptops etc.) only a partial 
fingerprint can be captured.  Another example of partial 
fingerprint acquisition is the lifted latent prints from a crime 
scene. In this case, the fingerprints are usually noisy and 
broken, thus reducing the usable areas (Jea, T. (2005)). 

This paper proposes to differentiate between the matching 
approaches depending on the quality of the input fingerprint 
images; it is considered that the high quality of the pre-stored 
templates was ensured during the enrolment process. An 
input image is considered to have a fair quality if at least one 
singularity (loop, whorl or delta) can be extracted. In this 
case, a classical minutia based algorithm proposed by Zhang 
W. (2002) is used. The novel fuzzy logic based algorithm for 
partial fingerprint matching, proposed by this paper, 
combines correlation-based and minutiae-based techniques 
and it is employed if no singularity is detected in the 
fingerprint’s image. 

2. SYSTEM’S SOFTWARE ARCHITECTURE 

The proposed algorithm can be integrated in a automated 
recognition system. The main steps involved in the partial 
fingerprint recognition algorithm together with the system 
that integrates it are presented in the logic diagram from Fig. 
2. 

The first step of the algorithm denoted by the block S1 is the 
fingerprint acquisition. The input acquisition can be 
performed either online, or a set of latent prints can also be 
given to the system. The application also allows the 
enrolment of individuals if the proposed fingerprint’s quality 
is fair. The enrolment process is represented by the S15, ... , 
S18 blocks. 

The proposed partial fingerprint matching algorithm is 
composed of the S3, ... , S14 blocks and it is described in the 
next chapters of this paper.        

3. FINGERPRINT IMAGE PROCESSING 

Before the proposed matching algorithm can be applied, 
some of the fingerprint’s features must be extracted. The 
main steps involved in the fingerprint’s image processing are 
presented in Fig. 3. 

 
Fig. 3. Fingerprint’s image processing steps. 

3.1  Histogram equalization 

Histogram equalization was chosen as the first step for the 
image enhancement process and in order to adjust the 
image’s contrast. This method allows lower contrast regions 
of the image to gain a higher contrast. 

 
Fig. 2. The software architecture of the proposed system 

The images’ size captured with the optic sensor used to 
implement the recognition system presented in this paper is 
256×320. The fingerprint’s image is in the grayscale domain, 
so the intensity values range from 0 (black) to 255(white). 

The image is divided into 32×32 pixels blocks. A simple 
local histogram equalization algorithm is performed for each 
block, in three steps: 

1) Count the pixels of each intensity level (histogram 
formation). 

2) Calculate the new intensity level for each of the 256 
initial levels as in: 

            , i=0,..,255,    (1) 

where nili is the new intensity level, max.intensity level is 
255, pixels no. for one block is 1024 and the expression in 
brackets represents the number of pixels from the initial 
image having a lower than i intensity level or equal to it. 
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3.2  Image segmentation 

This step is performed in order to separate the fingerprint 
from the background, thus avoiding feature extraction from 
noisy areas. A common method is to use the local orientation 
and the local ridge frequency of the fingerprint. 

Local orientation 

In order to determine the local orientation the image is 
divided into 32×32 pixels blocks. According to Wang et al. 
(2007) the local orientation of a block (denoted by θB) can be 
calculated as in: 

                                                      (2) 

where N is the block size and ∂x(i,j) and ∂y(i,j) are the 
gradient magnitudes of the pixel located at (i,j) coordinates 
on the x and y directions respectively, and can be calculated 
by using the Sobel operators. 

Local ridge frequency 

The frequency of a block is determined as shown in Fig. 4. 

 
Fig. 4. Local ridge frequency 

The intensity levels of the pixels found on the orthogonal 
direction through the block’s center to its orientation are 
represented in a two dimensional planes. Ideally, the result 
has a sinusoidal shape. The local frequency can be 
determined by counting the sinusoid’s negative peaks (Ratha 
et al. (1995)).  The blocks that don’t have a striped oriented 
pattern are removed, according to Maltoni (2005). 

3.3  Image binarization  

Image binarization transforms a greyscale 8-bit image into a 
1-bit image (black (’0’) and white (‘1’) only). For better 
results, the binarization process can be performed locally, 
meaning that a local threshold will be determined for each 
block. 

3.4  Image thinning  

Thinning is a morphological operation that is used to reduce 
the ridges’ thickness to one pixel. The algorithm that was 
used for this stage of the fingerprint image processing is 
proposed by MathWorks (2009). Fig. 5 c) shows the resulting 
thinned image. 

 
                      a)                       b)                      c) 
Fig. 5. a) Initial image; b) Segmented and binarized image;  
c) Thinned image 

3.5  Minutiae extraction 

After the thinning process, determining the minutiae is done 
by examining the 8-neighberhood of each ridge skeleton 
pixel, as shown in Fig. 6. 

 
a)                b) 

Fig. 6. Minutiae extraction: a) termination, b) bifurcation 

3.6  Singularity detection 

Most singularity detection methods are based on the local 
ridge orientation image. The most well known method based 
on the Poincare index was proposed by Kawagoe (1984). 
This method does not work on poor quality images and fails 
to detect most arch-type fingerprints. Park et al. (2003) 
proposes to shift a rectangular window across the fingerprint 
image until the upper region of the window contains the most 
ridges having an orientation of 0o (refer to Fig. 7). If a 
singularity exists, then the ridges’ orientation from the lower 
region changes abruptly. The singular point is considered to 
be on the lowest ridge from the upper region. 

 
Fig. 7. Ridge distribution in the neighbourhood of a 
singularity 

3.7  False minutiae reduction 

There are a number of false minutiae that have to be removed 
from the fingerprint image. This step is necessary in order to 
eliminate noisy formations like those presented in Fig. 8. 

 
Fig. 8. False minutiae resulted after image thinning 

4. PARTIAL FINGERPRINT MATCHING ALGORITHM 

Direct application of correlation-based algorithms is 
computationally very expensive, due to the large number of 
rotations and translations needed. In order to reduce the 
computational time, the proposed algorithm tries to match 
two minutiae from the input with two minutiae from the 
template. After aligning the two minutiae sets the two images 
can be correlated. 

Let I and T be the minutiae sets of the input and of the 
template fingerprints, respectively. Each minutia m is 
denoted by a triplet {x, y, θ}, where x and y are the location’s 
coordinates and θ is the minutia’s angle. 
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I= {m1, m2, ..., mk}, mi={xi, yi, θi}, i=1..k, 

 T= {m’1, m’2, ..., m’l}, m’j={xj, yj, θj}, j=1..l,                     (4) 

where k and l are the numbers of minutiae in I and T, 
respectively. 

Both I and T sets are divided into two subsets, each subset 
containing only the termination or bifurcation minutiae: 

 I= IT U IB, 

T= TT U TB,                                                                          (5) 

where IT and IB denote the input’s termination and bifurcation 
subsets,  and TT and TB denote the template’s termination and 
bifurcation subsets, respectively. 

The proposed algorithm tries to find two bifurcation minutiae 
in the partial input fingerprint at a maximum distance from 
each other and matches them to two minutiae from the 
template. Bifurcation minutiae are considered to be more 
reliable because false terminations can be introduced by the 
image capturing or image processing stages. If the input 
presents no bifurcations (IB=Ø) then two terminations are 
chosen. When there is only one bifurcation then that one and 
another termination are considered. 

The distance between two minutiae is calculated with the 
formula: 

                           (6) 

The following pseudocode presents the minutiae correlation 
algorithm: 

Algorithm 1: Minutiae correlation algorithm 
input: IT, IB; 
input: TT, TB; 
output: (ma, mb), (m’c, m’d);//minutiae pairs from the input and the 
template, respectively. 
 
//determine the two input minutiae 
case of cardinal(IB) 
    0:    choose ma ∈ IT and mb ∈ IT | dist(ma, mb)= max; 
           Mc=TT; Md=TT; 
    1:    choose ma ∈ IB and mb ∈ IT | dist(ma, mb)= max; 
           Mc=TB; Md=TT; 
  >2:    choose ma ∈ IB and mb ∈ IB | dist(ma, mb)= max; 
           Mc=TB; Md=TB; 
end case; 

 
//determine the corresponding template minutiae 
distance=dist(ma, mb); // 
m’c:=0; m’d:=0; 
for each m’i ∈ Mc do 
    for each m’j ∈ Md do 
        if (distance ≈ dist(m’i, m’j)) then 
            θdiff :=θa-θ’i; //θa, θ’i angles of ma, m’i 
            if (θ’j ≈ (θb+θdiff)) then 
                m’c:= m’i; m’d:= m’j; 
            end if; 
        end if; 
    end for; 
end for; 
return (ma, mb), (m’c, m’d); 

 

Another important aspect is that the proposed algorithm 
correlates the regions between the thinned ridges, not the 
ridges themselves. Choosing to correlate the regions between 

the ridges is a good idea, since due to non-linear distortions 
and image processing stage; the thinned ridges from the input 
and the template can be slightly shifted and/or rotated, even if 
the images were taken from the same fingerprint.  

In order to compare the input to the template a region 
coloring step is required for the both image. First, the 
fingerprint regions have to be enclosed from the background. 
This is done by uniting the neighbor ridge endings with 
straight lines. Second, all the regions are colored. This 
process is similarly to the use of Microsoft Paint’s Fill with 
color Tool and it is performed by a labelling algorithm. Both 
the input and the template are colored as presented in Fig. 9. 

 
a)                           b) 

Fig. 9. a) Template region colouring; b) Input region 
colouring 

Let RI and RT be the input region sets and the template region 
set, respectively. These distinct regions are the result of the 
colouring process. 

RI = {ri | i=1..m}, 

RT = {r’j | j=1..n},                                         (7) 

where m and n represent the numbers of different regions 
from the input and from the template, respectively. 

The input image is shifted along Ox and Oy axes until ma 
overlaps mc (xa=xc and ya=yc). The input image is rotated 
around the minutia location (xa,ya) until mb overlaps md 
(xb=xd and yb=yd). The two images are now considered to be 
aligned. The correlation degree of each region is determined 
(refer to Algorithm 2). 

Algorithm 2: Correlation degree algorithm 
input: imI, imT; //the two images: input, template 
input: m, n; //the numbers of regions in I and T 
output: opi | i=1..m; //maximum number of overlapping pixels 
for each ri ∈ RI do 

//reset the auxiliary vector aux_op 
for i:=1 to n do 
    aux_opi :=0;  
end for; 

    //increment the auxiliary vector’s element corresponding to ith region 
    for each imI(j) pixel from ri do 
        h:=getRegionIndexForPixel(imI(j)); 
        aux_oph ++; 
    end for; 
    opi :=max(aux_op); 
end for; 
return op; 

 

Algorithm 2 determines the maximum number of overlapping 
pixels of each region from RI onto a single region from RT, 
after the two images were aligned (denoted by the vector opi, 
i=1..m). The correlation degree of each region denoted by cdi 
is calculated with the formula: 
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where tpi denotes the total number of pixels of each region ri 
from RI. 

4.1  Fuzzification 

In order to determine the correlation degree between the 
partial input fingerprint and the template, fuzzy logic rules 
are used.  

The correlation degrees of each input region are fuzzified by 
using the well known membership function presented in Fig.  
10. The fuzzified variables denoted by cdfi (i=1..m) take 
values in the domain {L, M, H} (i.e. low, medium and high).  

 
Fig. 10. Membership function 

Let hcdj, mcdk and lcdl be the sets of high correlation degree, 
medium correlation degree and low correlation degree 
regions, respectively. 

 
 

 
.                                      (9) 

The relative surfaces of each of the three set described above 
are calculated: 

  

  

                                  (10) 

where rshcd, rsmcd and rslcd are the relative surfaces of: all 
the high correlation degree regions, all the medium 
correlation degree regions and all the low correlation degree 
regions, respectively, and rsi is the relative surface of the ith 
region. 

These three parameters are also fuzzified in the domain {L, 
M, H} by using the same membership function presented in 
Fig. 10, resulting the fuzzy variables: rshcdf, rsmcdf and 
rslcdf. 

The proposed fuzzy matching algorithm is based on the 
inference and uses rules with the following form: 
IF (rshcdf is X) AND (rsmcdf is Y) AND (rslcdf is Z) THEN (matchf is W) 

where X, Y, Z and W take values in the set {L, M, H}. 

The fuzzy logic rules described above are implemented as 
shown in Table 1, Table 2 and Table 3. These tables provide 
the fuzzy logic values for the output variable matchf. 

Table 1.  Fuzzy logic rules (rshcdf is H) 

rshcdf  is H rsmcdf 
H M L 

rslcdf 
H - - H 
M - H H 
L H H H 

Table 2.  Fuzzy logic rules (rshcdf is M) 

rshcdf  is M rsmcdf 
H M L 

rslcdf 
H - M M 
M M M M 
L M M M 

Table 3.  Fuzzy logic rules (rshcdf is L) 

rshcdf  is L rsmcdf 
H M L 

rslcdf 
H M L L 
M M L L 
L M L L 

 

The table cells that contain no fuzzy values represent the 
rules which cannot be activated (e.g. 
rshcd+rsmcd+rslcd>100%).   

4.2  Defuzzification 

Due to the fact that more than one rule can be activated for 
the same set of input crisp values (because each fuzzy 
variable can have two membership grades as shown in Fig. 
10), the defuzzification process involves the use of the rule 
strengths. Only rules that have medium and high outputs 
influence the final matching score. The strength of each rule 
is calculated as in (11). The weight of the rshcdf membership 
grade is twice more important than the weight of rsmcdf 
membership grade Cherrak et al. (1998).    

       (11) 

where µk(x) is the membership grade function and i is the 
number of the activated rule.  

Exception for (11): If rshcd=100% then si=1.  

The logical products for each rule must be combined (or 
inferred) before performing the defuzzification process that 
results in crisp output values.  

 
Fig. 11. Output membership function 

Fig. 11 depicts the defuzzification function of the fuzzy 
output matchf. The L, M, H intervals’ bounds were 



CONTROL ENGINEERING AND APPLIED INFORMATICS     29 
 

     

 

experimentally set. Raising the lower bounds of M and H 
intervals means a higher security level (or higher rejection 
rate). Employing genetic algorithms to determine these 
bounds was considered as future work. 

The crisp values of the output variable matchf are calculated 
by the centre of gravity for singleton method as in (12):    

,                                            (12) 

where si is the strength of the ith rule and t is the number of 
the activated rules for the same input set. 

4.3  Combining the matching results of multiple partial prints  

Provided that there are n partial prints of the same fingerprint, 
the proposed algorithm can calculate a combined matching 
score based on the fuzzy logic algorithm presented above. 

The crisp values of each partial fingerprint matching score 
are denoted by matchi (i=1..n). The ratio between the partial 
input fingerprint surface and the total surface of the template 
(in pixels) is denoted by relativeSi (i=1..n). 

Before the total matching score is calculated, the overlapping 
areas of the partial fingerprints must be taken into account.  

If two partial fingerprints overlap each other the print that has 
a lower matching score yields the overlapping area.  

The total matching score (denoted by matchT) is calculated 
with the next formula: 

                    (13) 

6. CONCLUSIONS 

A fuzzy logic based algorithm that involves the correlation of 
the regions enclosed by the thinned ridges of a partial 
fingerprint input with those from the template is proposed for 
matching partial fingerprints. This algorithm combines the 
temporal performances of the minutiae based algorithms with 
the reliability of the correlation based ones. 

The algorithm proposed for matching partial fingerprints can 
be used to restrict the access to low or medium security 
resources. The access to such resources might be granted 
based on the combined results of successive authentication 
attempts during which only partial fingerprints are captured, 
not necessarily requiring a good quality input image. 

Further improvements of the proposed system involve the use 
of genetic algorithms for tuning the defuzzification 
parameters and the establishment of a partial fingerprint 
database for performance comparisons. 

The system’s modules were implemented in Java 2 SE, but at 
the moment they are not fully integrated. The system will be 
tested on a large fingerprint database as soon as the modules’ 
integration is completed. The image processing modules were 
also implemented in Matlab 7.8 as a prototype. Table 4 
presents a temporal performance comparison between the 
execution times of the same modules under the two 
environments. 

Table 4.  Temporal performances 

 Segmentation 
[ms] 

Histogram 
Equalization 

[ms] 

Binarization 
[ms] 

Thinning 
[ms] 

Matlab 
7.8 

166 7 10 23 

Java 
SE 1.6 

1120 20 21 520 
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