
CEAI, Vol.12, No.4, pp. 18-23, 2010 Printed in Romania

Mobile Robots Path Planning With Heuristic Search

Radu Robotin*. Gheorghe Lazea.** Petru Dobra. **

*Technical University of Cluj-Napoca, Deprtment of Automation
Cluj-Napoca, Romania (Tel: 40 264 401267; e-mail: radu.robotin@ aut.utcluj.ro).

** Technical University of Cluj-Napoca, Deprtment of Automation
Cluj-Napoca, Romania (Tel: 40 264 401239; e-mail: {gheorghe.lazea, petru.dobra}@aut.utcluj.ro)

Abstract: Mobile robots often operate in domains that are incompletely known. This article adresses the
goal-directed navigation problem in unknown terrain where a mobile robot has to move from its current
configuration to given goal configuration. We will discuss a series of tests performed with various
implementations of graph search algorithms (A*, D*, focused D*) as path planners for a mobile robot,
focusing on the inherent strengths and pitfalls specific to each implementation.
Keywords: mobile robot, graph search, path planning, heuristic search, comparative tests

1. INTRODUCTION

The problem of determining the optimum path occurs in a
number of applications; ranging from finding the fastest path
in a network, to determining the safest path for a mobile
vehicle wandering on an outer-space surface. The present
research we will limit its areas of investigation to finding
paths in Euclidean two-dimensional space. This article
presents the goal-directed navigation problem in unknown
terrains where a mobile robot has to move from its current
configuration to a given goal configuration. The issue
benefits from a special attention in the field, robotics
researchers have proposed various navigation strategies,
including the well-known bug algorithms.

The idea behind the approach is that the robot always plans a
shortest path from its current coordinates to the goal
coordinates, operating under the assumption that the
unknown terrain is traversable. Moreover, the robot may
factor in the initial environmental information when
available. When following its path, the robot incorporates the
information on present obstacles inserting them into its map;
the procedure is repeated until it eventually reaches the goal
configuration or cannot find any traversable path.

This navigation strategy is an example of sensor-based
motion planning. According to Berg (2006), if the navigation
problem is modeled as a graph-traversal problem on an eight-
connected grid with edges that are either traversable or un-
traversable, it must terminate because the robot either follows
the planned path to the goal vertex or increases its knowledge
about the true edge costs, which can happen only once for
each edge. More specifically, the present research
investigates the case of finding the optimum path for a
mobile robot moving along a flat surface; the robot’s
configurations in the configuration space being the graph’s
nodes while the graph’s arcs represent the cost of moving
from one configuration to another.

In the recent years, the specialists in the field have tried to
come up with innovative navigation technologies. With the

development of path finding, several new classical routing
algorithms have been introduced to generate improved
routing solutions. For example, Eklund et al. (1996) use the
Dijkstra algorithm as a path planner, one of the most famous
routing algorithms, which evaluates the moving cost from
one node to any other node and sets the shortest moving cost
as the connecting cost of two nodes. Concurrently, Best-First-
search algorithm gains popularity in the field.

LaValle (2006) presents a slightly different path-planner
solution compared to Dijkstra’s algorithm; the Best-First-
search algorithm proposes a different approach estimating the
distance from current position to goal position, selecting the
node closer to the goal position. The emerging developments
associated with the new path finding situations imposed rapid
improvements of the old path finding algorithm due to the
newly introduced requirements.

In the late ‘70’s the artificial intelligence community
introduces the A* algorithm - a new path finding algorithm.
The A* algorithm tries to combine the advantages offered by
Dijkstra algorithm and Best-First-Search algorithm.

In the light of the above mentioned conceptual developments,
the present paper discusses a series of tests performed with
various implementations of graph search algorithms (A*, D*,
focused D*) as path planners for a mobile robot, focused on
the strengths and pitfalls inherent to every implementation.

2. GRAPH SEARCH AS PATH PLANNERS FOR MOBILE
ROBOTS

2.1 General graph search

The search process in a graph can be described as applying a
set of operators to the graph’s nodes until the goal node is
found. The process usually initiates in the goal node and then
moves to the successors of the node.
The procedure previously described doesn’t specify the order
in which the successors of a node should be selected for
further explorations. The way a node, n, is selected for
exploration, determines the overall behavior of the search

mailto:@aut.utcluj.ro)

CONTROL ENGINEERING AND APPLIED INFORMATICS 19

algorithm and the resulting path to the goal. For example, if
the nodes are selected for expanding in the order in which
they are generated, the search is performed in a “breadth-
first” fashion. On the other hand, if the most recent generated
successor is selected for expanding, then the algorithm
performs a “depth-first” search. These search types are not
influenced by the selection criteria of the successors of a
node or by the position of the goal node in the searched
graph, as they perform a blind search. In order to implement
the navigation strategy, the robot needs to replan the shortest
path from its current vertex to the goal vertex whenever
detects that its current path is untraversable. Brummitt and
Stentz (1998) suggested that the robot could use conventional
graph-search methods; in most of the cases this method
proves to be inefficient since most edge costs do not change
between replanning episodes.
An equally important issue from the planner’s perspective,
beside the search strategy, is the the representation of the
robot’s free space. Bonet and Geffner (2004) discuss a
number of methods for discretizing continuous terrain, all of
which attempt to balance the inherent trade-offs between two
conflicting criteria’s, namely the path planning runtime and
the length of the resulting path. Visibility graphs contain the
start vertex, the goal vertex and the corners of all blocked
cells. The shortest paths on visibility graphs are also the
shortest paths in the continuous terrain. The path planning is
slow on large visibility graphs since the number of edges can
be quadratic in the number of cells and the runtime
complexity of the search algorithm remains linear with the
number of cells. On the other hand, Koening and Likhachev
(2002) showed that path planning is faster on grids than
visibility graphs, since the number of edges is linear in the
number of cells. However, paths formed by grid edges can be
sub-optimal and unrealistic looking since the possible
headings are artificially constrained.

2.2 The A* Algorithm

The A* algorithm introduced by Nilson, consecutively
refined by Buckland, (2002) and Goldberg et. al. (2005) uses
a specific evaluation function that minimizes the number of
visited nodes during search. The algorithm returns the
minimum cost path between the start node and the goal node.
The evaluation function, f̂ , is defined in such a fashion so
that its value, ()f̂ n , for any node, n, is an estimate of the
minimum cost path passing through n. This estimate is
computed as a sum between an estimate of the minimum cost
path from the start node to node n, and the estimate of the
minimum cost path from node n to goal:

() () ()f n g n h n= +

(1)

It is necessary the evaluation function, f̂ , to be an estimate of
the function f, so that, let ĝ be an estimate of g and ĥ be an
estimate of h. The evaluation function is:

() () ()ˆ ˆˆf n g n h n= +

(2)

The value of ()ĝ n can be easily computed by adding the arc
costs on the path from the start node, s, to node n. Finding an

expression for ()ĥ n is not an easy task. Information
contained in the graph must be used along with the proper
choice of metric for measuring distances. If ()ĥ n is an

optimistic estimate of h(n), () ()()ĥ n h n≤ , then A* will find

the minimum cost path and the algorithm is admissible (it
always finds the minimum cost path from the start node to
the goal node).

Algorithm 1. A*

2.3 The D* Algorithm

If a planner is based on A*, the affected nodes and
corresponding arcs must be updated in the graph that is used
for storing the map, before the search and navigation process
continues. There are some inherent limitations of the
approach determined by the discrepancy between the
information in the map and the reality, the changing states
during the mobile robot navigation or when dealing with
incomplete information. Such approach is based on the
following scenario: every time a discrepancy between the
data in the map and the data provided by the sensors onboard
the mobile robot is found, the planner updates the map
followed by a new planning process. The inefficiency of the
approach becomes visible especially in the case when the
robot is close to the goal state or when large portions of the
map have to be recomputed.
Stentz (1995) has proposed an alternative approach by using
the D* algorithm. D* starts from the fundamental principles
of A* and it can be used to find an optimal path in a graph.
Graph nodes represent possible robot locations in the
configuration space (states) while the arcs represent the cost
of moving from one state to another. Considering a start node
and a goal node in the graph, let the robot current state be
denoted by r. Every node, y, in the graph has a backpointer to
its parent node, x, denoted by b(x)=y. Similar to A*
algorithm, when the search process is completed, the path is
returned using sequences of backpointers from goal to start.

use an OPEN list to store all the partial expanded paths
place the start node in OPEN list
repeat
 look at the first path in list
 if reaches_goal then
 SUCCESS
 else
 remove the first path in the list
 expand the last node in the path
 compute the cost of newly generated paths an place these paths
in OPEN list
 sort the OPEN list using estimated cost to target plus the path
cost
 if more than a path reaches a node then
 keep only the minimum cost path to that node
 end if
 end if
until goal_found or OPEN list is empty
if goal_found then
 return optimal path
else
 return FAILURE
end if

20 CONTROL ENGINEERING AND APPLIED INFORMATICS

The cost of moving the robot form one node, x, to another
node, y, is c(x,y), a positive number.
The D* algorithm uses an OPEN list to propagate arc cost
changes and to store sub-optimal paths in the graph. Each
node has also attached a tag: t(x)=NEW if the node has never
been in the OPEN list before, t(x)=CLOSED if the node was
removed from the OPEN list and t(x)=OPEN if the node is
currently in the OPEN list.
For each visited node x, the algorithm maintains an estimate
of the sum of the arc costs from x to goal given by the path
cost function h(x). Given the proper conditions, this estimate
is equivalent to the minimal cost from node x to goal node.
For each node x on the OPEN list (i.e., t(x)=OPEN), the key
function, k(x), is defined to be equal to the minimum of h(x)
before modification and all values assumed by h(x) since
node x was placed on the OPEN list. The key function
classifies a node x on the list into one of two types: a RAISE
node if k(x)<h(x), and a LOWER node if k(x)=h(x). The
algorithm uses RAISE nodes in the OPEN list to propagate
information about path cost increases and LOWER nodes in
the OPEN list to propagate information about path cost
reductions. Similar to A* algorithm, the propagation takes
place through repeated removal of nodes from the list. Each
time a node is removed from the OPEN list, it is expanded to
pass cost changes to its neighbours. These neighbours are in
turn placed on the OPEN list to continue the process.
Nodes in the OPEN list are sorted by the key function. An
important threshold in the functioning of the algorithm is the
kmin parameter. It is defined as:

() ()()min| , minx t x OPEN k k x∀ = =

(3)
 Paths with cost less or equal with kmin are optimal, paths with

costs greater that kmin, may not be optimal. The parameter kold
is the value of kmin before the last node was extracted from the
OPEN list.
The aim is to construct, for each node, a sequence of optimal
paths to goal. The algorithm consists of two functions:
Modify-Cost and Process-State. The Modify-Cost function
has the role of changing the arc costs as the robot sensorial
system discovers new information during the environment
exploration and places the affected nodes in the OPEN list.
Function Process-State computes optimal paths to the goal.
The robot starts following the sequence of backpointers to
goal until either reaches the goal configuration or its sensors
discover a discrepancy between the information in the map
(arc cost changes in the graph do not match sensor
measurements) and the environment. In the latter case, the
function Modify-Cost is automatically called to correct the
arc costs and place the affected nodes in the OPEN list.

2.4 Focussing the D* Algorithm

One of the major pitfalls associated with the D* algorithm the
way it propagates cost changes. These changes are
propagated to the affected states regardless of their
importance to the robot navigation. The aim is to focus the
search and the propagation of cost changes to those states that
are likely to generate optimal paths to the goal. Similar to A*
algorithm, D* can also use a heuristic function for decreasing
the number of expanded nodes and search focus.

Let g(x,r) be the estimated path cost from robot position, r, to
the node x. This function will be the focusing heuristic.
Furthermore, a new function, f, the estimated robot path cost
is defined as follows:

() () (), ,f x r h x g x r= +

(4)

All the LOWER nodes in the OPEN list will be sorted using
function f() as a sort key. Function f() is the estimated path
cost from node r to node goal, passing through node x.
Function f() will provide the optimum cost path from r to
goal, passing through x, if g() is satisfying the monotonic
restriction, due to the fact that h(x) is optimal when a
LOWER node is extracted from the OPEN list.
For RAISE nodes, the previous value of function h() defines
a lower bound on the h() value of all the LOWER nodes that
can be discovered. Thus, if the same focusing heuristic is
used, the previous value of f() for the RAISE nodes defines a
lower bound for the value of f() for all the LOWER nodes
that can be discovered. Thus, if the value of f() for the
LOWER nodes in the OPEN list is larger than the previous
value of f() for the RAISE nodes, it is useful to expand the
RAISE nodes in order to discover more advantageous
LOWER nodes.
Using this work hypothesis, the RAISE nodes in the OPEN
list should be sorted using the value of the function f(x,r) as a
sort key, and to avoid infinite loops in the backpointers, ties
in this key are to be sorted using the value of k().
The process terminates when the lowest value of f() function
for all the nodes in the OPEN list is grater or equal to the path
cost, since further expanding will not be able to produce a
LOWER node with a sufficiently small value of the cost
function and located close enough to the current node to
influence the search. According to Stentz, (1996), this
termination is more drastic and abrupt than in the previous
case (D* without the focusing heuristic).
The major problem in using a focusing heuristic is that once
an optimal path to the goal has been found, the robot starts
following backpointers to the goal state and moves to another
node and the problem is that the nodes in the OPEN list are
sorted based on the value of the path cost computed for the
old robot position and thus the nodes in the OPEN list have
incorrect values for the functions f() and g(). A possible
solution is to calculate these functions each time the robot
moves or a node is inserted in the OPEN list. Empirical
results of Berg (2006), Hansen and Zhou (2007) have shown
that this is a major slow-down in the algorithm and the speed-
up gained through focusing search is outrun by the slow-
down introduced by the recalculation of f() and g().
Stentz (1996) demonstrated that is an advantage that usually
the robot moves only a few nodes before a re-planning
operation is necessary. Thus, the values of f() and g()
functions are only slightly deviated. that a node x is placed in
the OPEN list at the time the robot is in the configuration
indicated by the node r0 and the value of f() is f(x,r0). If the
robot moves to another node, r1, f(x,r1) may be computed and
the position of node x in the OPEN list may be adjusted. On
the other hand, to avoid the computational cost, one may
compute a lower bound on the value of f(x,r1):

CONTROL ENGINEERING AND APPLIED INFORMATICS 21

() () ()1 0 1 0, , ,Lf x r f x r g r r ε= − −

(5)

Function fL represents a lower bound on f(x,r1), since it
asumes that the mobile robot has moved in the direction of
the node x, thus the cost of g(r1,r0) is subtracted. The
parameter ε is a positive constant.
States are sorted on the OPEN list by a biased f() value, given
by fB(x,ri), where x is the node in the OPEN list and ri is the
robot’s state at the time x was inserted or adjusted on the
OPEN list (Stentz, 1996). Let {r0, r1,…,rn} be the sequence of
nodes occupied by the robot when the nodes were inserted in
the OPEN list. The value of fB() is given by:

0(,) (,) (,)B i i if x r f x r d r r= +

(6)

where f() is the estimated robot path cost given by:

1(,) () (,)i i if x r h x g r r −= +

(7)

and d() is the accrued bias function given by:
0 1 0 2 1 1

0 0

(,) (,) (,) (,) , 0
(,) 0, 0

i i id r r g r r g r r g r r i
d r r i

ε−= + + + + >
 = =

K

(8)

The function g(x,y) is the focusing heuristic, representing the
estimated path cost from a node y to a node x. The nodes in
the OPEN list are sorted by increasing fB() value, with ties in
fB() ordered by increasing f(), and ties in f() ordered by
increasing k(). Ties in k() are ordered arbitrarily. Thus, a
vector of values 〈fB, f, k〉 is stored with each node in the list.

3. EXPERIMENTAL RESULTS

The present research is based on a number of experiments
implemented in both simulation and real life, using the
Pioneer2 mobile robot, to determine the advantages and
disadvantages of using A* and D*.
Fig. 1 presents a simulated environment having a
configuration space similar to the obstacles distribution in the
Robotic Research Lab at Technical University of Cluj-
Napoca. Each cell in Fig. 1 represents a square area of 15
cm2. The initial robot configuration is in the lower left corner
(green square) while the goal configuration is in the upper
right corner (red square). The path generated by the A*
algorithm is also presented in Fig. 1. The distances between
nodes were measured using the Manhattan metric, so that any
neighbouring node on a N, S, E or W direction is at a distance
of 1 from the current node, while nodes on NW, NE, SW and
SE direction are at a distance of 2 from the current node.

Fig. 1. Path returned by A* algorithm.

 Fig. 2 presents the path generated by the D* algorithm
without the focusing heuristic, for the same environment

configuration as in Fig. 1. Expanded nodes are presented in
both Fig. 1 and Fig. 2; nodes depicted with a green rectangle
are the nodes in the OPEN list (on the frontier of the area
representing the set of expanded nodes) while the nodes on
the optimal path are presented in dark blue. Fig.3 presents the
path generated by the D* algorithm with the focusing
heuristic, for the same environment configuration as in Fig. 1.

Fig. 2. Path generated by D* algorithm without focusing
heuristic.

Fig. 3. Path generated by focused D* algorithm.

When analyzing the information covered in Fig. 1 to Fig. 3,
there were a number of issues that needed to be addressed,
such as: why the resulting path in the three cases is not
identical? and more importantly what are the benefits of
using D* like algorithms, since, at a first glance, the A*
seems to provide optimal results?
 When analyzing the path length in the three situations (Fig. 1
to Fig. 3) we need to remember that both A* and focused D*
are using a focusing heuristic, while D* is not using it.
Moreover, the distances are determined using the Manhattan
metric, thus the results may appear different due to aliasing.
The path cost (the sum of all arcs) is minimal in the three
cases. In addition, focused D* uses three keys to sort the
nodes in the OPEN list, ties resulted by using the first sort
criterion (value of fB) are solved by using the value of f while
ties in this case are solved using the third sort key, that is the
value of k.
The second problem is that both A* and focused D*
algorithms expand the same number of nodes (Fig. 1 and Fig.
3), while D* expands a larger number of nodes. In the
following we will analyze the situation when the information
in the map is incomplete or the structure of the environment

22 CONTROL ENGINEERING AND APPLIED INFORMATICS

changes. We can assume the robot is equipped with sensors
capable of detecting the environment on a radius of 10 nodes
around the mobile robot. The robot is supposed to traverse a

corridor that has a door at the end. The robot has no
information on the existing door.

Fig. 4. Presents an example of A* path planning: subfigure a)
presents the environment as it is known by the planner, while
subfigure b) presents the real structure of the environment.
Subfigure c) presents the initial path plan (through the closed
door) while subfigure d) present the re-planned path, after the
robot discovers the closed door.

Fig.5. Shows an example of D* path planning: subfigure a)
presents the environment as it is known by the planner, while
subfigure b) presents the real structure of the environment.
Subfigure c) presents the initial path plan (through the closed
door) while subfigure d) present the re-planned path, after the
robot discovers the closed door; nodes in red represent
RAISE nodes, while nodes in yellow are LOWER nodes.

The experiments presented in Fig. 4 and in Fig. 5 indicate the
different way algorithm A* and focused D* operate when
facing the same problem. Both algorithms plan an initial path
through the closed door (subfigure c) in both Fig. 4. and Fig.
5.; based on the initial information, this is an unobstructed
path. The robot follows backpointers to the goal
configuration until the closed door enters the range of the
mobile robot sensorial system. At this point, the planner
based on A* updates the map and starts a new planning
process having the start node the robot current position, while
the goal node remains unchanged. On the other hand, the D*
algorithm initiates an attempt to repair the map (the affected
portion of the map containing the initial path through the
closed door). The number of expanded cells is smaller than in
the case of A* because the algorithm uses portions of the map
that has the nodes unaffected by the cost changes.

3.1 On-line Tests

Fig. 6 represents the navigation of the mobile robot Pioneer 2
in a real-life environment, having the same characteristics as
the environment used for simulations. Even if the information
stored in map is completely accurate (the algorithm is
completely informed), cost changes in arcs are due to a series
of external factors such as: localization errors, error in
specifying the initial robot position, data errors provided by
the sensorial system of the robot and errors of the robot’s
odometric system.

Several tests have been performed in order to determine the
average running time between breadth-first search, Fast A*
implementation, D* without focusing heuristic and focused
D*. The tests were performed off-line on random generated
maze-like maps, represented as eight-connected grid. The
maps contain 35% of blocked cells and have adjustable
dimensions of 100×100 cells, 1000×1000 cells and 10000×
10000 cells (except for the breadth-first search which was
inefficient and the memory requirement were too large for
such a high number of cells). Table 1 presents the run-time
results (in seconds) while Table 2 presents a comparison
between the number of expanded cells for each complete
planning-replanning process.

The Open List in A* and D* is implemented as a balanced
binary tree sorted on corresponding key values, with tie-
breaking mechanism. This tie-breaking mechanism results in
the goal state being found on average earlier in the last f()
value pass.

In addition to the standard Open/Closed Lists, marker arrays
are used for answering (in constant time) whether a node is in
the Open or Closed List. We use a “lazy-clearing” scheme to
avoid having to clear the marker arrays at the beginning of
each search. Each path finding search is assigned a unique
(increasing) id that is then used to label array entries relevant
for the current search. The above optimizations provide an
order of magnitude performance improvement over a
standard “textbook” A* implementation. All experiments
were run on a 2.1 GHz PC under MS Windows XP.

Table 2. Comparison between running time of the
breadth-first search, A*, D* and focused D* in planning

and re-planning paths

Dimension Breadth-
First Fast A* D* Focused

D*
Planning 104

cells 35.2s 5.7 s 8.0 s 6.2 s

Re-planning
104 cells 12.7s 3.0 s 2.1 s 1.3 s

Planning 106
cells 178.9s 37.3 s 55.8 s 50.7 s

Re-planning
106 cells 113.2s 28.2 s 10.1 s 7.6 s

Planning 108
cells - 136.4 s 335.0 s 298.7 s

Re-planning
108 cells - 126.8 s 87.4 s 54.3 s

a) b)

c) d)

Fig. 4. Example of A* path planning.

a) b)

c) d)

Fig. 5. Example of D* path planning.

CONTROL ENGINEERING AND APPLIED INFORMATICS 23

Table 2. Comparison between number of expanded cells.

Dimension Breadth-
First Fast A* D* Focused

D*

104 cells 625982 9658 15352 1672

106 cells 5569854 21566 36254 7625

108 cells - 153694 279125 16369

4. CONCLUSIONS

Although specific to artificial intelligence, the A* and D*
demonstrate their impact on any applications requiring graph
search, including mobile robotics. This is due to the fact that
both A* and D* are generic algorithms, applicable to any
optimum path problems.

The A* algorithm is capable of producing optimum paths
(lowest cost path) as long as the structure of the environment
is completely known (arc costs do not change during robot
traverse). In the case where discrepancies exist between the
map and the structure of the environment, the efficiency of
A* is limited, due to the necessary re-planning operation.
These operations are time consuming since the algorithm is
not capable of using information retrieved between searches
or the costs of partially expanded nodes, thus any re-planning
operation means another planning from with zero information
from the previous search. These deficiencies are eliminated
by D*. As opposed to A*, D* can cope with arc cost
changing during robot traverse. This because the algorithm is

capable of using the partially expanded nodes and subsequent
path costs leading to smaller wait time between re-planning
operations.
The approach is more efficient if the arc cost changes are
detected in the close vicinity of the current node (like in the
case of a mobile robot equipped with on-board sensorial
system). Consequentially, the efficiency of D* in terms of
expanded cells during the first stages of the planning process
resembles the efficiency of a brute-force planner. In
accordance with the results presented in Table 1, D* has the
largest wait time before the planning process is completed.
This because D* expands the largest number of nodes
amongst all three algorithms.
Like in the case of A*, D* can also use a heuristic to focus
the search and propagate the cost changes in graph.

ACKNOWLEDGMENT: This paper was supported by the
project Progress and development through post-doctoral
research and innovation in engineering and applied sciences –
PRiDE - Contract no. POSDRU/89/1.5/S/57083", project co-
funded from European Social Fund through Sectorial
Operational Program Human Resources 2007-2013.

REFERENCES

B. Brumitt and A. Stentz, “GRAMMPS: a generalized
mission planner for multiple mobile robots,” in
Proceedings of the International Conference on Robotics
and Automation, 1998.

Berg, J.V.D. (2006). Anytime path planning and replanning
in dynamic environments, Proceedings of the
International Conference on Robotics and Automation,
pp. 2366-2371.

Bonet, B. and Geffner, H. (2004). Planning as heuristic
search, Artificial Intelligence, Vol. 129, pp. 5-33.

Buckland, M. (2002). AI techniques for game programming,
Premier Press, Portland, OR, USA.

Eklund, P.W.; Kirkby, S. & Pollitt, S. (1996). A dynamic
multi-source Dijkstra' algorithm for vehicle routing. In
Proc. Of Conf. on Intelligent Information Systems,
Australia and New Zealand.

Goldberg, A.V. & Harrelson, C. (2005). Computing the
shortest path: A* search meets graph theory,
Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, pp. 156-165.

Hansen, E.A. and Zhou, R. (2007). Anytime heuristic search,
Journal of Artificial Intelligence Research (JAIR),Vol.
28, pp 267-297.

S. Koenig and M. Likhachev, Incremental A*, in Advances in
Neural Information Processing Systems 14,. MIT Press,
2002.

LaValle, S.M. (2006). Planning Algorithms, Cambridge
University Press, Cambridge, U.K.

Stentz, A. (1995). The focussed D* algorithm for real-time
replanning, International Journal of Robotics and
Automation.

Stentz, A. (1996). Optimal and efficient path planning for
partially-known environments, in Proceedings IEEE
International Conference on Robotics & Automation,
pp. 3310-3317.

Fig. 6. Intermediate steps in navigation of Pioneer 2 mobile
robot with Focused D*.

