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Abstract: Mobile robots often operate in domains that are incompletely known. This article adresses the 
goal-directed navigation problem in unknown terrain where a mobile robot has to move from its current 
configuration to given goal configuration. We will discuss a series of tests performed with various 
implementations of graph search algorithms (A*, D*, focused D*) as path planners for a mobile robot, 
focusing on the inherent strengths and pitfalls specific to each implementation. 
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1. INTRODUCTION 

The problem of determining the optimum path occurs in a 
number of applications; ranging from finding the fastest path 
in a network, to determining the safest path for a mobile 
vehicle wandering on an outer-space surface. The present 
research we will limit its areas of investigation to finding 
paths in Euclidean two-dimensional space. This article 
presents the goal-directed navigation problem in unknown 
terrains where a mobile robot has to move from its current 
configuration to a given goal configuration. The issue 
benefits from a special attention in the field, robotics 
researchers have proposed various navigation strategies, 
including the well-known bug algorithms.  

The idea behind the approach is that the robot always plans a 
shortest path from its current coordinates to the goal 
coordinates, operating under the assumption that the 
unknown terrain is traversable. Moreover, the robot may 
factor in the initial environmental information when 
available. When following its path, the robot incorporates the 
information on present obstacles inserting them into its map; 
the procedure is repeated until it eventually reaches the goal 
configuration or cannot find any traversable path. 

This navigation strategy is an example of sensor-based 
motion planning. According to Berg (2006), if the navigation 
problem is modeled as a graph-traversal problem on an eight-
connected grid with edges that are either traversable or un-
traversable, it must terminate because the robot either follows 
the planned path to the goal vertex or increases its knowledge 
about the true edge costs, which can happen only once for 
each edge. More specifically, the present research 
investigates the case of finding the optimum path for a 
mobile robot moving along a flat surface; the robot’s 
configurations in the configuration space being the graph’s 
nodes while the graph’s arcs represent the cost of moving 
from one configuration to another.  

In the recent years, the specialists in the field have tried to 
come up with innovative navigation technologies. With the 

development of path finding, several new classical routing 
algorithms have been introduced to generate improved  
routing solutions. For example, Eklund et al. (1996) use the 
Dijkstra algorithm as a path planner, one of the most famous 
routing algorithms, which evaluates the moving cost from 
one node to any other node and sets the shortest moving cost 
as the connecting cost of two nodes. Concurrently, Best-First-
search algorithm gains popularity in the field.  

LaValle (2006) presents a slightly different path-planner 
solution compared to Dijkstra’s algorithm; the Best-First-
search algorithm proposes a different approach estimating the 
distance from current position to goal position, selecting the 
node closer to the goal position. The emerging developments 
associated with the new path finding situations imposed rapid 
improvements of the old path finding algorithm due to the 
newly introduced requirements.  

In the late ‘70’s the artificial intelligence community 
introduces the A* algorithm - a new path finding algorithm. 
The A* algorithm tries to combine the advantages offered by 
Dijkstra algorithm and Best-First-Search algorithm. 

In the light of the above mentioned conceptual developments, 
the present paper discusses a series of tests performed with 
various implementations of graph search algorithms (A*, D*, 
focused D*) as path planners for a mobile robot, focused on 
the strengths and pitfalls inherent to every implementation. 

2. GRAPH SEARCH AS PATH PLANNERS FOR MOBILE 
ROBOTS 

2.1  General graph search 

The search process in a graph can be described as applying a 
set of operators to the graph’s nodes until the goal node is 
found.  The process usually initiates in the goal node and then 
moves to the successors of the node.  
The procedure previously described doesn’t specify the order 
in which the successors of a node should be selected for 
further explorations. The way a node, n, is selected for 
exploration, determines the overall behavior of the search 
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algorithm and the resulting path to the goal. For example, if 
the nodes are selected for expanding in the order in which 
they are generated, the search is performed in a “breadth-
first” fashion. On the other hand, if the most recent generated 
successor is selected for expanding, then the algorithm 
performs a “depth-first” search. These search types are not   
influenced by the selection criteria of the successors of a 
node or by the position of the goal node in the searched 
graph, as they perform a blind search. In order to implement 
the navigation strategy, the robot needs to replan the  shortest 
path from its current vertex to the goal vertex whenever 
detects that its current path is untraversable. Brummitt and 
Stentz (1998) suggested that the robot could use conventional 
graph-search methods; in most of the cases this method 
proves to be inefficient since most edge costs do not change 
between replanning episodes. 
An equally important issue from the planner’s perspective, 
beside the search strategy, is the the representation of the 
robot’s free space. Bonet and Geffner (2004) discuss a 
number of methods for discretizing continuous terrain, all of 
which attempt to balance the inherent trade-offs between two 
conflicting criteria’s, namely the path planning runtime and 
the length of the resulting path. Visibility graphs contain the 
start vertex, the goal vertex and the corners of all blocked 
cells. The shortest paths on visibility graphs are also the 
shortest paths in the continuous terrain. The path planning is 
slow on large visibility graphs since the number of edges can 
be quadratic in the number of cells and the runtime 
complexity of the search algorithm remains linear with the 
number of cells. On the other hand, Koening and Likhachev 
(2002) showed that path planning is faster on grids than 
visibility graphs, since the number of edges is linear in the 
number of cells. However, paths formed by grid edges can be 
sub-optimal and unrealistic looking since the possible 
headings are artificially constrained. 

2.2  The A* Algorithm 

The A* algorithm introduced by Nilson, consecutively 
refined by Buckland, (2002) and Goldberg et. al. (2005) uses 
a specific evaluation function that minimizes the number of 
visited nodes during search. The algorithm returns the 
minimum cost path between the start node and the goal node. 
The evaluation function, f̂ , is defined in such a fashion so 
that its value, ( )f̂ n  , for any node, n, is an estimate of the 
minimum cost path passing through n. This estimate is 
computed as a sum between an estimate of the minimum cost 
path from the start node to node n, and the estimate of the 
minimum cost path from node n to goal: 

( ) ( ) ( )f n g n h n= +
 

(1)
 

It is necessary the evaluation function, f̂ , to be an estimate of 
the function f, so that, let ĝ be an estimate of g and ĥ be an 
estimate of h. The evaluation function is: 

( ) ( ) ( )ˆ ˆˆf n g n h n= +
 

(2)
 

The value of ( )ĝ n  can be easily computed by adding the arc 
costs on the path from the start node, s, to node n. Finding an 

expression for ( )ĥ n  is not an easy task. Information 
contained in the graph must be used along with the proper 
choice of metric for measuring distances. If ( )ĥ n  is an 

optimistic estimate of h(n), ( ) ( )( )ĥ n h n≤ , then A* will find 

the minimum cost path and the algorithm is admissible (it 
always finds the minimum cost path from the start node to 
the goal node). 

Algorithm 1.  A* 

 

2.3  The D* Algorithm  

If a planner is based on A*, the affected nodes and 
corresponding arcs must be updated in the graph that is used 
for storing the map, before the search and navigation process 
continues. There are some inherent limitations of the 
approach determined by the discrepancy between the 
information in the map and the reality, the changing states 
during the mobile robot navigation or when dealing with 
incomplete information. Such approach is based on the 
following scenario: every time a discrepancy between the 
data in the map and the data provided by the sensors onboard 
the mobile robot is found, the planner updates the map 
followed by a new planning process. The inefficiency of the 
approach becomes visible especially in the case when the 
robot is close to the goal state or when large portions of the 
map have to be recomputed. 
Stentz (1995) has proposed an alternative approach by using 
the D* algorithm. D* starts from the fundamental principles 
of A* and it can be used to find an optimal path in a graph. 
Graph nodes represent possible robot locations in the 
configuration space (states) while the arcs represent the cost 
of moving from one state to another. Considering a start node 
and a goal node in the graph, let the robot current state be 
denoted by r. Every node, y, in the graph has a backpointer to 
its parent node, x, denoted by b(x)=y. Similar to A* 
algorithm, when the search process is completed, the path is 
returned using sequences of backpointers from goal to start. 

use an OPEN list to store all the partial expanded paths 
place the start node in OPEN list 
repeat 
 look at the first path in list 
  if reaches_goal then 
   SUCCESS 
  else 
  remove the first path in the list 
  expand the last node in the path 
  compute the cost of newly generated paths an place these paths 
in OPEN list 
  sort the OPEN list using estimated cost to target plus the path 
cost 
   if more than a path reaches a node then 
   keep only the minimum cost path to that node 
  end if 
 end if 
until goal_found or OPEN list is empty 
if goal_found then 
 return optimal path 
else 
 return FAILURE 
end if 
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The cost of moving the robot form one node, x, to another 
node, y, is c(x,y), a positive number.  
The D* algorithm uses an OPEN list to propagate arc cost 
changes and to store sub-optimal paths in the graph. Each 
node has also attached a tag: t(x)=NEW if the node has never 
been in the OPEN list before, t(x)=CLOSED if the node was 
removed from the OPEN list and t(x)=OPEN if the node is 
currently in the OPEN list. 
For each visited node x, the algorithm maintains an estimate 
of the sum of the arc costs from x to goal given by the path 
cost function h(x). Given the proper conditions, this estimate 
is equivalent to the minimal cost from node x to goal node.  
For each node x on the OPEN list (i.e., t(x)=OPEN), the key 
function, k(x), is defined to be equal to the minimum of h(x) 
before modification and all values assumed by h(x) since 
node x was placed on the OPEN list. The key function 
classifies a node x on the list into one of two types: a RAISE 
node if k(x)<h(x), and a LOWER node if k(x)=h(x). The 
algorithm uses RAISE nodes in the OPEN list to propagate 
information about path cost increases and LOWER nodes in 
the OPEN list to propagate information about path cost 
reductions. Similar to A* algorithm, the propagation takes 
place through repeated removal of nodes from the list. Each 
time a node is removed from the OPEN list, it is expanded to 
pass cost changes to its neighbours. These neighbours are in 
turn placed on the OPEN list to continue the process. 
Nodes in the OPEN list are sorted by the key function. An 
important threshold in the functioning of the algorithm is the 
kmin parameter. It is defined as: 

( ) ( )( )min| , minx t x OPEN k k x∀ = =
 

(3)
 Paths with cost less or equal with kmin are optimal, paths with 

costs greater that kmin, may not be optimal. The parameter kold 
is the value of kmin before the last node was extracted from the 
OPEN list.  
The aim is to construct, for each node, a sequence of optimal 
paths to goal. The algorithm consists of two functions: 
Modify-Cost and Process-State. The Modify-Cost function 
has the role of changing the arc costs as the robot sensorial 
system discovers new information during the environment 
exploration and places the affected nodes in the OPEN list. 
Function Process-State computes optimal paths to the goal.  
The robot starts following the sequence of backpointers to 
goal until either reaches the goal configuration or its sensors 
discover a discrepancy between the information in the map 
(arc cost changes in the graph do not match sensor 
measurements) and the environment. In the latter case, the 
function Modify-Cost is automatically called to correct the 
arc costs and place the affected nodes in the OPEN list.  

2.4  Focussing the D* Algorithm  

One of the major pitfalls associated with the D* algorithm the 
way it propagates cost changes. These changes are 
propagated to the affected states regardless of their 
importance to the robot navigation. The aim is to focus the 
search and the propagation of cost changes to those states that 
are likely to generate optimal paths to the goal. Similar to A* 
algorithm, D* can also use a heuristic function for decreasing 
the number of expanded nodes and search focus. 

Let g(x,r) be the estimated path cost from robot position, r, to 
the node x. This function will be the focusing heuristic. 
Furthermore, a new function, f, the estimated robot path cost 
is defined as follows: 

( ) ( ) ( ), ,f x r h x g x r= +
 

(4)
 

All the LOWER nodes in the OPEN list will be sorted using 
function f() as a sort key.  Function f() is the estimated path 
cost from node r to node goal, passing through node x. 
Function f() will provide the optimum cost path from r to 
goal, passing through x, if g() is satisfying the monotonic 
restriction, due to the fact that h(x) is optimal when a 
LOWER node is extracted from the OPEN list. 
For RAISE nodes, the previous value of function h() defines 
a lower bound on the h() value of all the LOWER nodes that 
can be discovered. Thus, if the same focusing heuristic is 
used, the previous value of f() for the RAISE nodes defines a 
lower bound for the value of f() for all the LOWER nodes 
that can be discovered. Thus, if the value of f() for the 
LOWER nodes in the OPEN list is larger than the previous 
value of f() for the RAISE nodes, it is useful to expand the 
RAISE nodes in order to discover more advantageous 
LOWER nodes.  
Using this work hypothesis, the RAISE nodes in the OPEN 
list should be sorted using the value of the function f(x,r) as a 
sort key, and to avoid infinite loops in the backpointers, ties 
in this key are to be sorted using the value of k().  
The process terminates when the lowest value of f() function 
for all the nodes in the OPEN list is grater or equal to the path 
cost, since further expanding will not be able to produce a 
LOWER node with a sufficiently small value of the cost 
function and located close enough to the current node to 
influence the search.  According to Stentz, (1996), this 
termination is more drastic and abrupt than in the previous 
case (D* without the focusing heuristic). 
The major problem in using a focusing heuristic is that once 
an optimal path to the goal has been found, the robot starts 
following backpointers to the goal state and moves to another 
node and the problem is that the nodes in the OPEN list are 
sorted based on the value of the path cost computed for the 
old robot position and thus the nodes in the OPEN list have 
incorrect values for the functions f() and g(). A possible 
solution is to calculate these functions each time the robot 
moves or a node is inserted in the OPEN list. Empirical 
results of Berg (2006), Hansen and Zhou (2007) have shown 
that this is a major slow-down in the algorithm and the speed-
up gained through focusing search is outrun by the slow-
down introduced by the recalculation of f() and g(). 
Stentz (1996) demonstrated that is an advantage that usually 
the robot moves only a few nodes before a re-planning 
operation is necessary. Thus, the values of f() and g() 
functions are only slightly deviated. that a node x is placed in 
the OPEN list at the time the robot is in the configuration 
indicated by the node r0 and the value of f() is f(x,r0). If the 
robot moves to another node, r1, f(x,r1) may be computed and 
the position of node x in the OPEN list may be adjusted. On 
the other hand, to avoid the computational cost, one may 
compute a lower bound on the value of f(x,r1): 
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( ) ( ) ( )1 0 1 0, , ,Lf x r f x r g r r ε= − −
 

(5)
 

Function fL represents a lower bound on f(x,r1), since it 
asumes that the mobile robot has moved in the direction of 
the node x, thus the cost of g(r1,r0) is subtracted. The 
parameter ε is a positive constant.  
States are sorted on the OPEN list by a biased f() value, given 
by fB(x,ri), where x is the node in the OPEN list and ri is the 
robot’s state at the time x was inserted or adjusted on the 
OPEN list (Stentz, 1996). Let {r0, r1,…,rn} be the sequence of 
nodes occupied by the robot when the nodes were inserted in 
the OPEN list. The value of fB() is given by: 

0( , ) ( , ) ( , )B i i if x r f x r d r r= +
 

(6)
 

where f() is the estimated robot path cost given by: 

1( , ) ( ) ( , )i i if x r h x g r r −= +
 

(7)
 

and d() is the accrued bias function given by: 
0 1 0 2 1 1

0 0

( , ) ( , ) ( , ) ( , ) , 0
( , ) 0, 0

i i id r r g r r g r r g r r i
d r r i

ε−= + + + + >
 = =

K

 
(8)

 
The function g(x,y) is the focusing heuristic, representing the 
estimated path cost from a node y to a node x. The nodes in 
the OPEN list are sorted by increasing fB() value, with ties in 
fB() ordered by increasing f(), and ties in f() ordered by 
increasing k(). Ties in k() are ordered arbitrarily. Thus, a 
vector of values 〈fB, f, k〉 is stored with each node in the list. 

3.  EXPERIMENTAL RESULTS 

The present research is based on a number of experiments 
implemented in both simulation and real life, using the 
Pioneer2 mobile robot, to determine the advantages and 
disadvantages of using A* and D*.   
Fig. 1 presents a simulated environment having a 
configuration space similar to the obstacles distribution in the 
Robotic Research Lab at Technical University of Cluj-
Napoca. Each cell in Fig. 1 represents a square area of 15 
cm2. The initial robot configuration is in the lower left corner 
(green square) while the goal configuration is in the upper 
right corner (red square).  The path generated by the A* 
algorithm is also presented in Fig. 1. The distances between 
nodes were measured using the Manhattan metric, so that any 
neighbouring node on a N, S, E or W direction is at a distance 
of 1 from the current node, while nodes on NW, NE, SW and 
SE direction are at a distance of 2 from the current node. 

Fig. 1. Path returned by A* algorithm. 

 Fig. 2 presents the path generated by the D* algorithm 
without the focusing heuristic, for the same environment 

configuration as in Fig. 1. Expanded nodes are presented in 
both Fig. 1 and Fig. 2; nodes depicted with a green rectangle 
are the nodes in the OPEN list (on the frontier of the area 
representing the set of expanded nodes) while the nodes on 
the optimal path are presented in dark blue. Fig.3 presents the 
path generated by the D* algorithm with the focusing 
heuristic, for the same environment configuration as in Fig. 1. 

Fig. 2. Path generated by D* algorithm without focusing 
heuristic. 

Fig. 3. Path generated by focused D* algorithm. 

When analyzing the information covered in Fig. 1 to Fig. 3, 
there were a number of issues that needed to be addressed, 
such as: why the resulting path in the three cases is not 
identical? and more importantly what are the benefits of 
using D* like algorithms, since, at a first glance, the A* 
seems to provide optimal results? 
 When analyzing the path length in the three situations (Fig. 1 
to Fig. 3) we need to remember that both A* and focused D* 
are using a focusing heuristic, while D* is not using it. 
Moreover, the distances are determined using the Manhattan 
metric, thus the results may appear different due to aliasing. 
The path cost (the sum of all arcs) is minimal in the three 
cases.  In addition, focused D* uses three keys to sort the 
nodes in the OPEN list, ties resulted by using the first sort 
criterion (value of fB) are solved by using the value of f while 
ties in this case are solved using the third sort key, that is the 
value of k.  
The second problem is that both A* and focused D* 
algorithms expand the same number of nodes (Fig. 1 and Fig. 
3), while D* expands a larger number of nodes. In the 
following we will analyze the situation when the information 
in the map is incomplete or the structure of the environment 



22                                      CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

changes. We can assume the robot is equipped with sensors 
capable of detecting the environment on a radius of 10 nodes 
around the mobile robot. The robot is supposed to traverse a 

corridor that has a door at the end. The robot has no 
information on the existing door.  
 
Fig. 4. Presents an example of A* path planning: subfigure a) 
presents the environment as it is known by the planner, while 
subfigure b) presents the real structure of the environment. 
Subfigure c) presents the initial path plan (through the closed 
door) while subfigure d) present the re-planned path, after the 
robot discovers the closed door. 

Fig.5.  Shows an example of D* path planning: subfigure a) 
presents the environment as it is known by the planner, while 
subfigure b) presents the real structure of the environment. 
Subfigure c) presents the initial path plan (through the closed 
door) while subfigure d) present the re-planned path, after the 
robot discovers the closed door; nodes in red represent 
RAISE nodes, while nodes in yellow are LOWER nodes. 

The experiments presented in Fig. 4 and in Fig. 5 indicate the 
different way algorithm A* and focused D* operate when 
facing the same problem. Both algorithms plan an initial path 
through the closed door (subfigure c) in both Fig. 4. and Fig. 
5.; based on the initial information, this is an unobstructed 
path. The robot follows backpointers to the goal 
configuration until the closed door enters the range of the 
mobile robot sensorial system. At this point, the planner 
based on A* updates the map and starts a new planning 
process having the start node the robot current position, while 
the goal node remains unchanged. On the other hand, the D* 
algorithm initiates an attempt to repair the map (the affected 
portion of the map containing the initial path through the 
closed door). The number of expanded cells is smaller than in 
the case of A* because the algorithm uses portions of the map 
that has the nodes unaffected by the cost changes. 

3.1  On-line Tests 

Fig. 6 represents the navigation of the mobile robot Pioneer 2 
in a real-life environment, having the same characteristics as 
the environment used for simulations. Even if the information 
stored in map is completely accurate (the algorithm is 
completely informed), cost changes in arcs are due to a series 
of external factors such as: localization errors, error in 
specifying the initial robot position, data errors provided by 
the sensorial system of the robot and errors of the robot’s 
odometric system. 

Several tests have been performed in order to determine the 
average running time between breadth-first search, Fast A* 
implementation, D* without focusing heuristic and focused 
D*. The tests were performed off-line on random generated 
maze-like maps, represented as eight-connected grid. The 
maps contain 35% of blocked cells and have adjustable 
dimensions of 100×100 cells, 1000×1000 cells and 10000× 
10000 cells (except for the breadth-first search which was 
inefficient and the memory requirement were too large for 
such a high number of cells). Table 1 presents the run-time 
results (in seconds) while Table 2 presents a comparison 
between the number of expanded cells for each complete 
planning-replanning process.  

The Open List in A* and D* is implemented as a balanced 
binary tree sorted on corresponding key values, with tie-
breaking mechanism. This tie-breaking mechanism results in 
the goal state being found on average earlier in the last f() 
value pass.  

In addition to the standard Open/Closed Lists, marker arrays 
are used for answering (in constant time) whether a node is in 
the Open or Closed List. We use a “lazy-clearing” scheme to 
avoid having to clear the marker arrays at the beginning of 
each search. Each path finding search is assigned a unique 
(increasing) id that is then used to label array entries relevant 
for the current search. The above optimizations provide an 
order of magnitude performance improvement over a 
standard “textbook” A* implementation. All experiments 
were run on a 2.1 GHz PC under MS Windows XP. 

Table 2.  Comparison between running time of the 
breadth-first search, A*, D* and focused D* in planning 

and re-planning paths 

Dimension Breadth-
First Fast A* D* Focused 

D* 
Planning 104 

cells 35.2s 5.7 s 8.0 s 6.2 s 

Re-planning 
104 cells 12.7s 3.0 s 2.1 s 1.3 s 

Planning 106 
cells 178.9s 37.3 s 55.8 s 50.7 s 

Re-planning 
106 cells 113.2s 28.2 s 10.1 s 7.6 s 

Planning 108 
cells - 136.4 s 335.0 s 298.7 s 

Re-planning 
108 cells - 126.8 s 87.4 s 54.3 s 

 

 
a)    b) 

 
c)    d) 

Fig. 4. Example of A* path planning. 

 
a)    b) 

 
c)    d) 

Fig. 5. Example of D* path planning. 
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Table 2.  Comparison between number of expanded cells.   

Dimension Breadth-
First Fast A* D* Focused 

D* 

104 cells 625982 9658 15352 1672 

106 cells 5569854 21566 36254 7625 

108 cells - 153694 279125 16369 

 
4. CONCLUSIONS 

 
Although specific to artificial intelligence, the A* and D* 
demonstrate their impact on any applications requiring graph 
search, including mobile robotics. This is due to the fact that 
both A* and D* are generic algorithms, applicable to any 
optimum path problems.  

The A* algorithm is capable of producing optimum paths 
(lowest cost path) as long as the structure of the environment 
is completely known (arc costs do not change during robot 
traverse). In the case where discrepancies exist between the 
map and the structure of the environment, the efficiency of 
A* is limited, due to the necessary re-planning operation.  
These operations are time consuming since the algorithm is 
not capable of using information retrieved between searches 
or the costs of partially expanded nodes, thus any re-planning 
operation means another planning from with zero information 
from the previous search.  These deficiencies are eliminated 
by D*. As opposed to A*, D* can cope with arc cost 
changing during robot traverse. This because the algorithm is 

capable of using the partially expanded nodes and subsequent 
path costs leading to smaller wait time between re-planning 
operations.  
The approach is more efficient if the arc cost changes are 
detected in the close vicinity of the current node (like in the 
case of a mobile robot equipped with on-board sensorial 
system). Consequentially, the efficiency of D* in terms of 
expanded cells during the first stages of the planning process 
resembles the efficiency of a brute-force planner. In 
accordance with the results presented in Table 1, D* has the 
largest wait time before the planning process is completed. 
This because D* expands the largest number of nodes 
amongst all three algorithms. 
Like in the case of A*, D* can also use a heuristic to focus 
the search and propagate the cost changes in graph.  
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