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Abstract: In this paper a design procedure for an adaptive tracking controller for a mobile robot 
subject to kinematic constraints is presented. The dynamics of the mobile robot is assumed to be 
completely unknown, and is on-line identified using neural network based estimators. Both the 
form of the controller and the adaptation laws of neural network weights are derived from a 
Lyapunov analysis of stability. Under certain conditions, the tracking stability of the closed loop 
system, and the convergence of the neural network weight updating process are guaranteed. No 
preliminary learning stage of neural network weights is required. Computer simulations 
conducted in the case of a mobile robot with two independently actuated wheels are included to 
demonstrate the performances of this neural network controller. 
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1. INTRODUCTION 

In the recent years, the artificial neural 
networks, with their strong learning capability, 
have proven to be suitable tool for controlling 
complex non-linear dynamic systems [1], [6], 
[7], [8]. The basic idea behind the neural 
network (NN) based control is to use a neural 
network estimator to identify the unknown 
non-linear dynamics and compensate for it. 
Also, the neural network based approach can 
deal with the control of non-linear systems that 
may not be linearly parameterizable, as required 
in many adaptive approaches.  

With regard to neural networks it must be noted, 
they have been widely adopted in the modelling 
and control of robotic manipulators [5]. 

In this paper we present a design procedure for 
the motion control of a mobile robot subject to 
kinematic constraints. The dynamics of the 
mobile robot is assumed to be completely 
unknown, and is on-line identified using neural 
network based estimators. Both the form of the 
controller and the adaptation law of neural 
network weights are derived from a Lyapunov 
analysis of stability. Under certain conditions, 
the tracking stability of the closed loop system, 
and the convergence of the neural network 
weight updating process are guaranteed. No 
preliminary learning stage of neural network 
weights is required.  
Computer simulations conducted in the case of a 
mobile robot with two independently actuated 
wheels are included to demonstrate the 
performances of this neural network controller. 

The rest of this paper is organized as follows. 
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Section 2 is devoted to kinematics and dynamics 
modelling of a mobile robot. A design procedure 
of a neural network adaptive tracking controller 
for a mobile robot is proposed in Section 3. The 
performances of the proposed control algorithm 
are presented in Section 4 and, finally, Section 5 
concludes the paper. 

2. KINEMATICS AND DYNAMICS OF A 
MOBILE ROBOT 

The dynamics of a mobile robot subject to 
kinematic constrains has the form [2], [5]: 

δ+λ+++ )(),(),()( qAqqGqqqVqqM T&&&&& = 
   (1) τ= )(qB

where  are generalized coordinates, 
 is the torque input vector,  is the 

vector of constraint forces,  is a 
symmetric and positive definite inertia matrix, 

 is the centripetal and Coriolis 
matrix,  is the friction and 
gravitational vector,  is the matrix 
associated with constrains,  denotes 
bounded unknown disturbances including 
unstructured dynamics, and  is the 
input transformation matrix.  

nq ℜ∈
pℜ∈τ mℜ∈λ

nnqM ×ℜ∈)(

nnqqV ×ℜ∈),( &
nqqG ℜ∈),( &

nmqA ×ℜ∈)(
nℜ∈δ

pnqB ×ℜ∈)(

The  kinematic constrains are described by: m

0)( =qqA &  (2) 

Note that, in the following, the  case is 
considered. 

mnp −=

With respect to the dynamics of a mobile robot 
(1), the following properties hold [5]. 

Property 1:  is a bounded symmetric and 
positive definite matrix. 

)(qM

Property 2: The parameter matrix is bound, that 
is: 

nn IMqMIM maxmin )( ≤≤ , (3) 

qqVqqV b && )(),( ≤ , (4) 

where: 

-  are positive scalar constants 
depending on the mass properties and 
constraint matrix,  

maxmin , MM

-  is the  identity matrix,  nI nn×

-  is a positive definite function of q . )(qVb

Property 3: The matrix  is skew 
symmetric [2], [5], that is 

VM 2−&

( )TVMVM 22 −−=− &&  with  (5) TVVM +=&

or equivalently, 

( ) nT xxVMx ℜ∈∀=− ,02&  (6) 

Assume that the robot is fully actuated. Let 
 denote a full rank matrix formed 

by 

)()( mnnqS −×ℜ∈
)( mn −  columns that span the null space of 

 defined in (2), as: )(qA

0)()( =qAqS TT  (7) 

From (7), one cans find an auxiliary vector 
 so that for all t, mnt −ℜ∈ω )(

)()( tqSq ω=&  (8) 

This is called the steering system where  
can be regarded as a velocity input vector. 

)(tω

Equations (1) and (8) describe the dynamics 
equations of a mobile robot subject to kinematic 
constrains. Multiplying both sides of (1) by  
and using (7) to eliminate the constraint force 
we obtain 

TS

=δ+++ TTTT SqqGSqqqVSqqMS ),(),()( &&&&&  

τ= )(qBS T  (9) 

Substituting (8) and its derivative, that is 
 into (9) one obtains: ω+ω= )()( qSqSq &&&&

+ω+ω+ω SqqVSSqMSSqMS TTT ),()()( &&&  

τ=δ++ )(),( qBSSqqGS TTT &  (10) 

Equation (10) can by written in a compact form 
as: 

τ=δ++ω+ω )()(),()( qBqGqqVqM &&  (11) 

where:  

- MSSM T= ,  
- )( VSSMSV T += & , 
- GSG T= ,  
- δ=δ TS ,  
- BSB T= .  

Property 4: The matrix VM 2−&  in (11) is skew 
symmetric. 
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Proof: −+=− SMSSMSVM TT &&& 22  

SVMSVSSMS TT )2()(2 −=+− && . 

Since  is skew symmetric, therefore, VM 2−&

VM 2−&  is also skew symmetric. 

3. NEURAL NETWORK CONTROLLER 
DESIGN FOR MOBILE ROBOT  

3.1. Problem statement 

In an application, a mobile robot is required to 
perform some tasks defined in its task-space. In 
order to achieve this objective firstly, some 
reference trajectories  are derived. Torque 
commands  are then generated by the 
controller to make the mobile robot track the 
reference trajectories.  

)(tqd

τ

3.2. Neural network controller design 
procedure  

In this section, a neural network based control 
design procedure for a stable tracking of a 
reference trajectory for the mobile robot 
described by (8) and (11) is derived. The 
procedure steps are as follows:  

(i) the robot dynamics is redefined as an 
error dynamics based on a set of 
appropriate chosen Lyapunov functions;  

(ii) a NN-based estimator is constructed and a 
NN learning law is proposed;  

(iii) a new control law is derived and  

(iv) a proof on the tracking stability of the 
overall closed-loop system and the 
boundedness on NN weight estimation 
errors is derived. 

In this paper, it is assumed that the reference 
trajectories are available, i.e. they have already 
been derived based on the desired task-
trajectories. The main concern is to provide 
proper torque inputs that guarantee a stable 
tracking of reference trajectories in the presence 
of parameter uncertainty and unknown 
disturbances.  

From previous section it can be seen that for a 
mobile robot a tracking error may be defined as 

qqq d −=~  (12) 

where  is a desired trajectory.  dq

Assume that there exist a Lyapunov function 
, a positive continuous function 

 and a reference smooth feedback 
velocity 

),~(1 tqV
0)(1 >tW

)(tdω , such that [5]: 

)(~
~ 1

)(

11 tWq
q
V

t
V

dqSq

−≤
∂
∂

+
∂
∂

ω=&

&  when 0~ ≠q . (13) 

Now, the objective is to derive proper torque 
input τ  in (11), such that the angular velocity 
trajectory )(tω  defined in (8) tracks the 
reference velocity )(tdω . 

Define the robot velocity tracking error ω~  as 

dω−ω=ω~ . (14) 

Differentiating (14), multiplying both side by 
M  and substituting (7) into it yields 

+δ++ω+ω )(~),(~)( qGqqVqM &&  

τ=ω+ω+ )(),()( qBqqVqM dd &&  (15) 

Equation (15) represents the mobile robot 
dynamics in term of tracking errors. 

Let us choose a Lyapunov function  as 2V

ωω= ~~
2
1

2 MV T . (16) 

Differentiating (16) along the system trajectories 
and using (15) and Property 4 yields 

=ωω+ωω= ~~
2
1~~

2 MMV TT &&&

)(~
dd

T VMGB ω−ω−δ−−τω= & . (17) 

To design the robot torque input, we choose a 
Lyapunov function as 

2113 )~()~(
2
1 VVSMSVV T +=ωω+= . (18) 

Differentiating (18) yields 

)(~)(13 dd
T VMGBtWV ω−ω−δ−−τω+−≤ &&  

δω−ω−ω−−τω+−= T
dd

T VMGBtW ~)(~)(1 &  

δω−ψ−τω+−= TT BtW ~)(~)(1 , (19) 

with the unknown nonlinear term 

GVM dd +ω+ω=ψ & . (20) 

The nonlinear term ψ  in (20) will be identified 
on-line by using a radial basis function (RBF) 
NN estimator.  
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It is known that RBF networks have capacity to 
approximate any smooth function on a compact 
set  [6], [7], [8], [9]. If  
is a smooth function and 

n
xS ℜ⊂ n

xSf ℜ→⋅ :)(
)}({ xϕ  is a RBFs basis 

set, then for each continuous function )(⋅f , 
there exists a weight matrix W  such that  

ε+ϕ= )()( xWxf T , (21) 

where the approximation error is bounded by 

Nε<ε  with  . (22) 0>εN

Then, the unknown function  in (20) may by 
identified using a RBF neural network with 
sufficiently high number  of nodes such that 

ψ

nn

ε+=ψ )(xhW T , (23) 

where x  is the input pattern to the neural 
network defined as 

TTT
d

T
d

T
dqx ]~[ ωωω= & . (24) 

)34( mnnnW −×ℜ∈  in (23) is the ideal and 
unknown weight matrix, which is assumed to be 
constant and bounded by 

B
T

F WWWtrW ≤= )( , (25) 

with  a known positive constant and  
the Frobenius norm. The basis functions in 
vector can be chosen as Gaussian functions 
defined as 

BW FW ||||

)(xh

( ) niii nicxxh ,,2,1,exp)( 22
K=σ−−= , (26) 

where: 

-  are centers and  ic

-  are  widths, iσ

which are chosen a priori and kept fixed 
throughout for simplicity. Therefore, during the 
learning process, only the weight matrix W  
must to be adjusted. The estimates of  are 
given by 

ψ

)(ˆˆ xhW T=ψ . (27) 

In the development of the NN on-line 
estimators, radial basis function (RBF) network 
with fixed centers and widths is employed. 

Thus, the main objective is to design a proper 
control law and properly NN learning laws, such 
that the unknown robot dynamics (20) can be 
compensated for by the NN estimator (27), and 
the stability of the robot error dynamics (15) and 
the boundedness on the estimation weights can 
be guaranteed. In this way we formulate the 
following theorem. 

Theorem. If for the system (11) the control law 
is chosen as 

)ˆ~(1 ψ+ω−=τ − kB , (28) 

with ω~  given by (10), and the weight updating 
law for the neural network as 

)ˆ~(ˆ WhW T ωµ+ωβ−=&  (29) 

where: 
-  is the control gain, 0>k
- 0>β  is the learning rate and  
- 0>µ  is a design parameter. 

Then, by properly choosing of k  and µ , the 
tracking errors of error dynamics described by 
(8) and (15) and the NN estimation weights W  
are all guaranteed to be uniformly ultimately 
bounded (UUB).  

ˆ

Definition. Consider the dynamic system 
),( txfx =&  with . The equilibrium point 

 is said to be uniformly ultimately bounded 
(UBB) if there exist a compact set  so 
that for all  there exist a bound  and a 
time , such that 

nx ℜ∈

ex
n

xS ℜ⊂

xSx ∈0 B
),( 0xBT Bxtx e ≤−)( , for all 

, where  is the initial time and 
the initial condition. 

Ttt +≥ 0 0t
)( 00 txx =

Proof of the Theorem. Assume that the 
approximation (23) holds, for all x  in a compact 
set . Substituting (28) into (19) yields xS

( ) δω−ψ−ψ+ω−ω+−≤ − TT kBBtWV ~)ˆ~(~)( 1
13

&  

δω−εω−ω−ωω−−≤ TTTTT hWktW ~~~~~~)(1 , (30) 

where . Since , from (30) 
one obtains 

WWW ˆ~
−= 0)(1 >tW

)(~~~~~
3 δ+εω−ω−ωω−≤ TTTT hWkV& . (31) 

If denote by , based on the kk min* =
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boundedness  defined in (22), from (31) it 
follows that 

ε

)(~~~~ 2*
3 NN

TT hWkV δ+εω+ω−ω−≤& , (32) 

where δ=δN   with . 0>δN

Le us chose a Lyapunov function as 

}~~{
2
1

3 WWtrVV T

β
+= . (33) 

Differentiating (33) and substituting (32) into it 
yields 

+ω−ω−≤
β

+= )~(~~}~~{1 2*
3 hWkWWtrVV TTT &&&  

{ }≤
β

−δ+εω+ WWtr T
NN

&̂~1)(~  

−δ+εω+ω−≤ )(~~ 2*
NNk  

{ )~ˆ(~1 TT hWWtr ωβ+
β

− & }. (34) 

Substituting now (29) into (34) we obtain 

)(~~ 2
NNkV τ+εω+ω−≤&  

{ }TTTTT hWWWhWtr ωβ+ωµβ−ωβ−
β

− ~~ˆ~~~~1  

{ WWtrk T
NN

ˆ }~~)(~~ 2* ωµ+δ+εω+ω−= . (35) 

Using [5], 

{ } { }=−= )~(~ˆ~ WWWtrWWtr TT  

=
22 ~~~,~
FFFFF

WWWWWW −≤− , (36) 

relation (35) can be written as: 

−ωµ+ω−≤ FF
WWkV ~~~ 2*&  

)(~~~ 2
NNF

W δ+εω+ωµ−  

+ωµ−ωµ+ω−≤
22* ~~~~~
FBF

WWWk  

)(~
NN δ+εω+

⎭⎬
⎫

⎩⎨
⎧ δ+ε−µ+µ−ωω−= )(~~~~ 2*

NNFBF
WWWk

⎪⎩

⎪
⎨
⎧

−⎟
⎠

⎞
⎜
⎝

⎛ −µ+ωω−=
2

*

2
~~~ B

F

W
Wk   

⎪⎭

⎪
⎬
⎫
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
δ+ε+

µ
− NN

BW
4

2

 (37) 

It can be seen that if the parameters µ  and  
are chosen so that 

*k

.~4
)(42

*

ω
δ+ε+µ

> NNBW
k  (38) 

then .  0≤V&

According to Lyapunov theory and to LaSalle 
principle, this demonstrates the UUB [4] of the 
tracking error ω~  and the NN weight errors W  
and, subsequently, the weight estimates W . 
Therefore, the control torque (28) is also 
bounded. 

~

ˆ

4. CASE STUDY 

In this section, an adaptive NN-based tracking 
controller is designed for the kinematic and the 
dynamic model corresponding to a mobile robot 
with two actuated wheels, shown in Fig. 1.  

x

2b

2r

d

Y

X

PO

PC

Left wheel

Right wheel

y

O

φ

 

Fig. 1. A mobile robot with two actuated wheels. 

The performance of this controller is compared 
to the performance of a feedback controller 
designed for the kinematic model like in Fukao, 
et al., 2000 [2].  

4.1. Mathematical model  

Consider the mobile robot with two actuated 
wheels, shown in Fig. 1, where  is the width 
of the mobile robot and 

b2
r  is the radius of the 

wheel,  is the world coordinate system and 
 is the coordinate system fixed to the 

mobile robot.  is the middle between the right 
and the left driving wheels.  denotes the 
center of mass of the mobile robot, which is on 
the - axis, at the distance from the origin 

.  

Oxy
XYP0

0P

cP

X d
0P
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Let denote by  and  the mass of the robot 
body and a wheel with a motor respectively, and 

 and  the moment of inertia of the body 
about the vertical axis through , the wheel 
with a motor about the wheel axis, and the 
wheel with a motor about the wheel diameter, 
respectively. 

cm wm

wc II , mI

cP

The configuration of the mobile robot can be 
described by five generalized coordinates: 

T
lryxq ][ θθφ= , (39) 

where  are the coordinates of the origin 
,  is the heading angle of the mobile robot, 

and  and  are the angles of the rights and 
the left driving wheels.  

),( yx

0P φ

rθ lθ

Assuming the wheels roll and do not sleep, then, 
there exist three constraints: the velocity of  
must be in the direction of the axis of symmetry 
and the wheels must do not slip: 

0P

0sincos =− φφ xy && , 

rrbyx θφφφ &&&& =++ sincos , (40) 

lrbyx θφφφ &&&& =−+ sincos . 

The three kinematic constraints can be rewritten 
in the form (2), i.e. 

0)( =qqA & , (41) 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−φφ
φφ
φ−φ

=
r

r
b

bqA 0
0

0

0

sincos
sincos

0cossin
)( . (42) 

The kinematic model has the form (5), i.e.  

)()( tqSq ω=& , (43) 

with 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

φφ

φφ

=

10
01
22

sin
2

sin
2

cos
2

cos
2

)(

b
r

b
r

rr

rr

qS , , (44) ⎥
⎦

⎤
⎢
⎣

⎡
ω
ω

=ω
l

r

where  and  represent the angular 
velocities of right and left wheels. 

rω lω

If we denote by  and  the linear and 
angular velocities of the mobile robot at the 
point , the relationship between  and 

mrv mrω

0P mrv mrω  
and ,  is the following: rω lω

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=⎥

⎦

⎤
⎢
⎣

⎡
ωω

ω v

r
b

r

r
b

r
l

r

1

1

 (45) 

Then, the simplest kinematic form of a mobile 
robot with two actuated wheels is: 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

mr

mrv
y
x

dt
d

ω
φ
φ

φ 10
0sin
0cos

 (46) 

The dynamic model has the form (7), i.e. 

τδωω )()(),()( qBqGqqVqM =+++ &&  (47) 

where 0=dτ  and BVM ,,  are expressed as 
[5]: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−

−++
=

w

w

IImb
b
rImb

b
r

Imb
b
rIImb

b
r

M
)(

4
)(

4

)(
4

)(
4

2
2

2
2

2

2

2
2

2
2

2

2

, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

0
2

2
0

2

2

φ

φ

&

&

dm
b

r

dm
b

r

V
c

c
, 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

B , (48) 

with wc mmm 2+= , .  mcwc IIbmdmI 22 22 +++=

T
lr ],[ ττ=τ consists of motors’ torques rτ  and 

, which act on the right and left wheels, 
respectively. 

lτ

4.2. Reference trajectory 

Let the reference trajectory of the robot be 
prescribed as: 

⎥
⎦

⎤
⎢
⎣

⎡
ω

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
φ
φ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

φ ref

ref
ref

ref

ref

ref

ref v
y
x

dt
d

10
0sin
0cos

 (49) 

where  and refref yx , refφ  are the configure of 
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the reference robot, and  and refv refω  are its 
reference inputs.  

The tracking errors that is the difference of 
position and direction of the real robot from the 
reference robot denoted by  are defined 
as [2]: 

321 ,, eee

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

φ−φ
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
φφ−
φφ

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ref

ref

ref

yy
xx

e
e
e

100
0cossin
0sincos

3

2

1

. (50) 

It is easily to show that these errors satisfy the 
equation 

⎥
⎥
⎥
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⎢
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⎢
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⎢
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⎡−
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⎤
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⎢
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⎡
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r

r
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e
e
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e
e
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dt
d

3

3

1
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3
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1

sin
cos

10
0
1

. (51) 

The control inputs denoted by  and  which 
make  converge asymptotically to zero, 
are given by [2], [5]: 

cv cω

321 ,, eee

⎥
⎦

⎤
⎢
⎣

⎡
++ω
+

=⎥
⎦

⎤
⎢
⎣

⎡
ω 3322

113

sin
cos

ekekv
ekevv

refref

ref

c

c , (52) 

where the positive constants  are 
control gains. 

321 ,, kkk

The stability of this tracking system can be 
proven by choosing the following Lyapunov 
function [2]: 

2

32
2

2
10

cos1
)(

2
1

k
e

eeV
−

++= . (53) 

It is easily to show that the derivative of  
along the system trajectories is negative definite. 

0V

4.3. Simulation results 

The values of physical and design parameter are 
[2]: a = 2, b = 0.75, d = 0.3, r = 0.15, mc = 30, 
mw =1, Ic =15.625, Iw =0.005, Im = 0.0025, k1 = 
k2 = k3 = 5.  

The reference inputs are chosen as follow [2] 
and are represented in Fig. 2: 

)5,0[∈t : )),5/cos(1(25.0 tvref π−=  
0=ωref ;  

)20,5[∈t : ;  ,5.0=refv 0=ωref

)25,20[∈t : )),5/cos(1(25.0 tvref π+=  

0=ωref ; 
)30,25[∈t : )),5/2cos(1(15.0 tvref π−π=  

5.1/refref v−=ω ;  
)35,30[∈t : )),5/2cos(1(15.0 tvref π−π=  

5.1/refref v=ω ; 
)40,35[∈t : )),5/cos(1(25.0 tvref π+=  

0=ωref ; 
)50,40[∈t : ,5.0=refv 0=ωref . 
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0
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Time [s]

vref
+

ωref

Fig. 2. Reference inputs vref, . refω

For these reference inputs, the appropriate 
angular velocities rω  and  of the two robot 
wheels are represented in Fig. 3.  

lω

15

Fig. 3. Angular velocities  lr ωω ,

The torque commands  and  that realize the 
two angular velocities designed according the 
procedure presented in Section 3.2 are shown in  

rτ lτ

Fig. 4. 

Fig. 5 shows the tracking performance of the 
neural adaptive controller. It must be noted that 
this controller contains a RBF neural network, 
which identifies the completely unknown 
dynamics of the mobile robot included in the 
unknown nonlinear term ψ  from (20). 
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Fig. 4. Torque commands . lr ττ ,

 

 

 

 

 

 

 

 
Fig. 5. Mobile robot trajectory. 

The network weights were initialized with zero, 
and the widths  of Gaussian functions have 
all been chosen at the value 0.025. The values of 
design parameters used in simulations are: β = 
0.025, µ = 0.005, k = 0.02. No preliminary 
learning stage of neural network weights is 
required.  

iσ

From Fig. 5 one can observe a good behavior of 
the proposed neural adaptive control system. 
Although the initial position of the mobile robot 
is distanced from the reference trajectory, the 
NN adaptive controller makes the mobile robot 
quite quickly approach the reference trajectory 
and afterwards get very close to it and follow its 
shape. 

5. CONCLUSIONS 

In this paper a design procedure of a neural 
network adaptive tracking controller for a 
mobile robot subject to kinematic constraints 
was presented.  
The unknown dynamics of the mobile robot was 
on-line identified using NN-based estimators.  

The form of the controller and the adaptation 
laws of NN weights were derived from a 
Lyapunov analysis of stability.  

The simulation results conducted in the case of a 
mobile robot with two actuated wheels 
demonstrate a good behaviour of this NN 
adaptive controller. 
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	To design the robot torque input, we choose a Lyapunov funct
	. (18)

