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Abstract: The main result of the paper is a sufficient condition for existence of controllers
that stabilize the zero solution for some switched nonlinear control systems in the critical case
of a zero eigenvalue in the spectrum of the Jacobian matrix calculated in zero. The control
synthesis is based on a condition on the relative degree in the equilibrium point and subsequent
coordinates transformations. An application to a pump controlled electrohydraulic servoactuator

is given.
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1. INTRODUCTION

The paper continues the study that started in [7], of
switched systems in a critical case for stability theory,
when a zero eigenvalue is present in the spectrum of the
Jacobian matrix of each component of the switched system
calculated in a common equilibrium point.

Let a set of switched systems of differential equations,
indexed by a parameter p € ), have the form (Malkin
canonical form, see [13])

7 =Yy,
§=DO(e+ FO(y,6)
€= (&,...,&)” € R,y € R, DV : O - M,(R)

continuous, [ = 1,2, Q € RP, Yu(l) and Egl), Il =1,2,
contain only powers of y and &, ¢ = 1,...,n, of order

1=1,2 (1.1)

greater or equal to two for every pu € Q and F,Sl)(y,O) =
O,Yél)(y,O) =0, Yy, I = 1,2 (7 means transpose). ()
is a set of parameters and a specific switched system is
obtained when such a parameter is fixed . In the above
it is not supposed that the functions are defined on the
whole R"*1. The following result is proved in [7].
Theorem 1.1. Suppose there exists P = P™ > 0 such that

DY) P+PDW () < —el <0, VueQ, 1=1,2. (1.2)
Then the zero solution for any switched system

7 =Y (y,¢)

, o ,k=1,...,N,1=1,2 (1.3)
€ =DV ()€ + F (y,€)

(p1y - pun € Q) is uniformly stable by Lyapunov. More-
over, there exists § > 0 such that, if ||(y(0),£(0))|| < 0 then
tlim &(t) =0, Vi =1,...,n whenever (y,§) is a solution
—00

of (1.3).

For stability in the case of switched systems, see [11], [12],
14), [22].

The proof relies on the existence, due to (1.2), of a Com-
mon Lyapunov Function (CLF) for the switched system.
Actually, most results on stability for switched systems
are based on existence of various types of CLF (see [3], [5],
[15), [16], [20], [21]).

The problem to be approached in this paper is feedback
control synthesis for stabilization of switched control sys-
tems of type (1.1). Namely

¢= D) +9(Qu, 1=1,2 (1.4)
with ¢ = (1.6), 9(Q) = (0,0,...,0,1)" € R™' and
the controllers w1, us are scalar. There is also a hidden
parameter p that was not written in order to keep the
notations less complicated, so

Diy,6) =Y (y,¢),
(f2r- s Far 1)y, €) = DO ()€ + FD(y, €)

and kal), FL(LZ) satisfy the previous assumptions. The main
result is that if (1.4) has relative degree n in zero (see [10])
then there exist feedback controllers u; and us such that
the zero solution is simple stable for the switched system
(1.4) asymptotically with respect to variables &1, ..., &,. In
order to achieve this two coordinate transformations are
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used. After specifically defining the controllers u; and us
the system (1.4) is turned into

g=q"(y,2)

, . 1=1,2 (1.5)
i=Dz

where 2 = (29, ..., 2n41)7, D is Hurwitz, ¢!) contain only
powers of y, 2o, ..., 2,41 in its Taylor development around
zero and ¢ (y,0) =0, Vy, [ = 1,2.

To system (1.5) one can apply Theorem 1.1 with P the
unique solution of the Lyapunov equation D™ P+PD = —1

(see, e.g. [4]).

This situation of a relative degree one unit less then the
order of the system is encountered in the case of valve
actuated electrohydraulic servomechanisms (see [1]). Even
when the relative degree is smaller it might still be possible
to find coordinate transformations and controllers u; and
ug that bring the switched system (1.4) to the form (1.5)
making thus applicable the Malkin theorem for switched
systems (see [2]).

The paper is organised as follows. In section 2 the main re-
sult on stabilizability is proved. In section 3 the mathemat-
ical model of a hydrostatic electrohydraulic servoactuator
is investigated. We end with some concluding remarks.

2. RELATIVE DEGREE, COORDINATE
TRANSFORMATIONS AND STABILIZATION

Consider a switched control system of type (1.4) with f(),
I = 1,2, as in (1.1). Leaving apart the parameter p the
system is

g =YV (y,€)
E=DWe+ FD(y,&) +(0,...,0,1)y

1=1,2, YO FO contain only powers of y and &, ...,&,
of order greater of equal to two in their Taylor develop-
ment around zero and Y (y,0) = F®(y,0) = 0, Vy,
D® € M, (R). Looking at the application in Section 3
we suppose that switching takes place when one specific
component of £ changes sign so condition u;(0) = uz(0) is
to be imposed.

(2.1)

Recall from [10] the definition of the relative degree

Definition. A simple-input single-output nonlinear sys-
tem
&= f(z)+g(x)u

(2.2)
y = h(x)
has relative degree 7 at a point z if
(LgL’}h)(m) =0, Va in a neighbourhood of 0, (2.3)
fork=0,1,...,r—2
(L L5 h)(a) # 0 (2.4)
Lsh is the Lie derivative of h along f = (fi,..., fn),

Lih = z": g—fﬁ Recall also from [10] that (ad;g)(x) =
i=1 "
g'(@)f(x) = f'(2)g(x).

The following theorem is an adaptation of the results in
[10] ch. 4, in particular of Theorem 2.6 and Remark 2.9.

Theorem 2.1. Suppose a system of order n, & = f(x) +
g(2)u, is given in D C R™. There exists an output function
y = h(z) for which the system has relative degree (n—1) at
20 € D if and only if the following conditions are satisfied:

Ei) The matriz [g(x°)(adsg)(x®) ... (ad?_zg)(zo)] has rank
n—1)

(ii) For the distribution D = Span{g,adysg, .. .,ad?iBg}
there exists a closed form among the generators of the

orthogonal codistribution D+ near z°.

Proof. Suppose h satisfies the two conditions (2.3) and
(2.4) for (n — 1) in 2°. By Lemma 1.3 in [10], ch. 4 the
system (2.3) is equivalent to the following system of first
order partial differential equations

(Lgh)(@) = 0, (Laaygh)(@) = 0, (Lygn-s,h)(x) = 0 (2.5)

for x in a neighbourhood of z° and the nontriviality
condition (2.4) is equivalent to

(L) (2°) £0. (2.6)

Condition (i) is proved in [10], Lemma 1.2 in Ch. 4 . Thus
the distribution D is nonsingular and (n — 2) dimensional
in a neighbourhood of °. Equations (2.5) can be rewritten

as

dh(x)[g(z)(adysg)(x). .. (ad} " g)(x)] = 0
and this implies dh is among the generators of the two-
dimensional codistribution D+ around 2° and since dh is
a closed form, (ii) results.

Conversely, suppose (i) and (ii) hold. Then the distribution
D is nonsingular and (n — 2)-dimensional in a neigh-
bourhood of z°. Let w(z), a closed form defined in U,
a neighbourhood of z°, be one of the generators of D+ .
Then w(z) = dh(x) since it is closed and

dh(z)[g(z)(adrg)(z) ... (ad?_gg)(x)] = 0 since w € D*.

It follows that h satisfies (2.5) that is equivalent to (2.3).
h can be choosed to satisfy also (2.6) since otherwise the
distribution would not be (n — 2)-dimensional in x°.

O

Suppose that the systems in (2.1), of order n + 1, have
relative degree n in (y,£) = (0,0) and let hy, hy satisfy

(2.3), (24) for r = n and g = (0,0,...,0,1)" € R**%.
One can always choose hi and ho such that
h1(0) = h2(0) =0 (2.7)

(see also [10], pag. 169). Define

1 ~

U = ———— 7Ln(l)hl + CiLz (z)hl> (28)

LgLfa)lhl ( ! ; g

From (2.7) we infer that u;(0) = u2(0) = 0. Remark that
Oh

Lgh; = 0 implies fl = 0, [ = 1,2. Define the following

coordinate transformations. For ¢= (9,6

z=20((), ¢=00() (2.9)
is given by
21 =Y, 22 = hl(C),

73 = (Lﬁf)hz)(C), coos 2 = (L5 )(C).
Condition (i) in Theorem 2.1 and Lemma 1.3 in [10], Ch. 4
show that ®() defined in (2.9) are locally invertible around
¢ =0. By (2.7), ®1(0) = 0.

(2.10)
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Recall now that, from Lemma 1.3 in [10], ch. 4, h; is
a solution of (2.5) with n replaced by n + 1. Denote
gi = acllj}g7 f=f®1=1,2.(2.5) becomes

oh oh Lo oh 4. 49 oh 0. i1 5
— =0,—g; =0,1=1,...,n—2.
85” 7ayg7,1 8§ gi2 85” 1 ) ) )
oh
We choose h with 90 = 0 and show that there exists a
Yy
nonzero solution of
Ot O 0 i1, m—2 (211)
aglgl2 e 8&-”719171 b AR | - N
Since f(0) = 0 and there are no linear terms in f;
(I =1,2), it follows that g;; =0, Vi =1,...,n — 2. Then,

by condition (i) in Theorem 2.1 and by Lemma 1.3 in [10],

ch. 4 applied to g = (0,...,0,1)7 it follows that

[0 g1 In-1)1 |
0 g2 J(n—1)2

rank

0 gin 9(n—1)n

L1 Gitnt1) - Gn—1)(n+1) ]

SO
912 --- 9(n—-2)2

rank
Jin -+ 9(n—2)n
gi2 .- Jin

= rank

9n—2)2 --- 9(n—2)n
in a neighbourhood of zero and this implies that indeed
(2.11) has a nonzero solution.

In the new coordinates defined by (2.10) the system (2.1)
becomes

2:“1 = y = ql(z), 22 = Z3,.- '7Z71+1
c1z21+ ...+ cpzn, 1=1,2 (2.12)
with
a(z) =y, 22, ..., z001) = YO[@O(2)].
Theorem 2.2. If c¢i1,...,¢c, are choosed such that the
matriz ~ _
010...0
001...0
D:
000O0...1
LC1 C2 C3 ... Cp |

is Hurwitz, then the zero solution of the switched system
(2.12) is simple stable by Lyapunov and is asymptotically
stable with respect to state variables za, ..., 2p41.

Proof. With z =
(2.12) becomes

(22,...,2n+1), the switched system

2 =qz1,2)

= D3,
From the condition that D is Hurwitz it follows that the
Lyapunov equation D™ P+ PD = —1I has a unique solution

1=1,2. (2.13)

P > 0. To apply Theorem 1.1 one has to verify that
q1(z1,0) =0, Vz1,1=1,2

q(z1,0) = YOO (2 0)].

We show that W(®)(z;,0) = (y,0). This is equivalent to
dW(y,0) = (21,0). If we take & = 0 in (2.10) then
zo = hi(y,0) = hy(0) = 0 since h; do not depend on y,
I=1,2.
z3 = (L (l)hl Z ahl 1(21 =0

by (2.1) and the hypotheses on F(l). The same holds for
24y ..., 2n41 (recall by do not depend on &,, I = 1,2). Tt
follows that ql(zl,O) Y (y,0) = 0 so, by Theorem 1.1,
the zero solution is stable for the sw1tched system (2. 13)
and tlgglo z;(t) =0,i=2,...,n+1. Then the zero solution

is stable for the switched system (2.1) and since L];(”hl,
0<k<n-1,1=1,2,donot depend on y, it follows that
22, ...,2n+1 depend only on &4, ..., &, s0 &, ..., &, depend
only on 2y, ..., 2,41 through ¥®) and since ¥)(0) = 0 and
U are local diffeomorphisms we infer that tli)rgo &(t) =0,
1=1

RN

3. THE MODEL OF A HYDROSTATIC
ELECTROHYDRAULIC SERVOACTUATOR

Hydrostatic electrohydraulic servoactuators (EHSA) have
the specificity that are pump controlled (see [6], [18],[19],
[23]). The physical and the mathematical models of such
an EHSA are described in [18] and in [8]. In [8] the stability
of equilibria is investigated. We refer to the papers [18] and
[8] for all details.

Denote the load displacement by x1, the load velocity by
T2, an internal friction state variable by 3, the pressures in
the cylinder chambers p; = 24, p2 = 25 and introduce two
more state variables zg = £, x7 = £ related to dynamics of
an electric motor that drives the pump. Then the switched
system of control differential equations that describes the
dynamics of the hydrostatic EHSA is

i’l = X2
. 1
To = E[-kl‘l - (f?" + fy + O’l)ZEQ — 00T3 + S(I4 - x5)+
‘$2|LIJ3
+ o =
"Fo+ (Fy — Fo)e (27
i’g = X9 — |$2|$3
F.+ (Fy — F,)e (37
; (3.1)

Ty = m[proxﬁ + pr1$7 — (Cip + Cep + C(ec)x4'i_

+ Cip.’Eg, + C@ppr — SSL'Q]
. B
Is = m[—proxﬁ — Dpbix7 + (Cip - Cep)xél_

- (Cip + Cec)xS + Ceppr + 5-132]
g = x7, 7= —aoTe— ar1x7 +u(r1,...,27)

One has always Fy > F..
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The system (3.1) corresponding to z2 > 0 will be denoted
by & and the one for 3 < 0 by S2. Both & and S; can
be considered as defined in the whole domain described by

\% \%
ol ﬂ, (9, 23,...,77) € RS. When u is set

—? < r <
to zero, (3.1) has the family of equilibria parametrized by

k
Br=w, =0, 3 = ——,
70 (3.2)
b=y = PP =0
Cep + C3C

Suppose u(Z)
Yi = T — Ty, 1
becomes

0 and translate (3.2) to zero through
1,...,7, a(y) = u(y + &). System (3.1)

U1 = Y2

. 1
Y2 = E[—kyl — (fr+ fu +01)y2 — ooys+

ly2|(ys + @3)
Fok (B = Fye 2R TS )l
. ly2|(ys + @3)
Ys = Y2 — T32
F.+ (Fs — F.)e (G
. (3.3)
Ya = [Dpboys + Dpbryr—

Vo1 + Sy1 + Sz
- (Czp + Cep + Cec)y4 + CipyE) - Sy2]

B
g = —— [~ D.b —D,b
Ys Voo — Sun — Sx[ Y6 pO1Y7+
= (Cip — Cep)y4 - (Cip + Cec)ys + Sy2]
Y6 = Y7, Y7 = —aoYe — a1y7 + U(y)

The two components of (3.3) will be denoted by ¥;,1 = 1,2
and will be considered for y» € R.

If AM and A® are the Jacobian matrices for (3.3)
calculated in zero then their characteristic polynomials are

QU = )\le)()\). The controllers u; and us are to be
designed such that for € (—R, R)

(3.4)
and

Q(0) # 0.
It follows that the systems X; are in a critical case for

stability theory covered by Malkin Theorem (see [13]).
Introduce new state variables through

(3.5)

l
y O = —afy +ys (3.6)
(1) (2)
) _9fy kx (2 _ 9fs ka
= 0)=1 = 0) =1———.
32 Y2 ©) +00Fs’ 32 0yo (©) ooFs

The new switched systems with components ¥j, [ = 1,2
will have no linear terms in the equation for .

y = Y(l)(yaylayQay4ay57y6ay7)
Y1 = Yo

. !

G2 = Yo" (4, 91, Y2, Ya, U5, Y6, U7)
y4 = f4(y25y47y5ay67y7)

Us = f5(Y2, Y4, Y5, Y6, Yr)

Yo = Y7

(3.7)

) !
yr = Y7( )(y, Y1, Y2, Y4, Ys, Ye» Y1)

To eliminate y from the linear part of the last six equations
in (3.7) one applies the Implicit Function Theorem (IFT)
to the algebraic systems

y2:o7 Y(l):07 f4:0a f5:0a

3.8
yr=0, vV =0, 1=1,2 (38)

The condition imposed to le) assures that the conditions

in IFT are satisfied so, in a neighbourhood of y = 0

there exist C'!'-functions gogl), @él), 90:(31) and apff% =12,

eP(0) =0,i=1,2,3,4;1=1,2 and y1 = 0\"(y), y2 = 0,
! ! !

Ya = @é)(y)> Ys = @é)(y), Y6 = @i)(y)a Yyr = Oa l = 152a

solve (3.8).

The new change of variables

!
SG=y—v1(y), &a=1v2, &3 =ys — 90(2)(3/)7

(0 @ (3.9)
Sa=ys—03 (W), &=y — s (Y), &6 = yr
turn X7, [ = 1,2, into
y = Yf(l) y7§
v:8) (3.10)

{=DV(x)¢+FV(y,€), 1=1,2.

The system (3.10) has the same form as (2.1). If the
relative degre of (3.10) in zero is 6 one can apply the
constructions in section 2 and synthesize controllers
and ug by (2.7) and it results directly from this definition
and the special choose of hi,ho that u; and us satisfy
(3.4) and (3.5). Remark that the conditions for h; and hq
to exist are independent of w1, us so we eventually can find
h1 and hs using the terms that do not depend on control,
construct then u; and ug by (2.8) and impose then to
satisfy the condition that D is Hurwitz. The invariance
of the spectrum of a matrix to similarities (see, e.g. [9])
implies (3.5) is satisfied.

The relative degree is preserved by coordinate transforma-
tions ([10], Ch. 4, Lemma 2.4) thus one can compute it for
systems (3.3) in zero and apply the theory in Section 2
to show eventually that the zero solution of the switched
system is stabilizable through coordinate transformations.
As for the construction of the controllers, it depends on
solving the systems (2.11).

A numerical calculation was performed with the following
values for the constants in (3.1): m = 60[Kg|; fr =
10*[Ns/m]; k = 10°[N/m]; S = 2-10~4[m?; D, = 1.7 -
10~ "[m?/rad); Vo1 = Voo = 6 - 107[m3]; B = 6 - 103[Pal;
Cee = 1.7-1073[m3/(Pa - 5)]; Cip = 2- 10713 [m3/(Pa -
s); Cep = 2-1078[m3/Pa - s|; o9 = 2 - 10*[N/ml;
o1 = 306[Ns/m]; f, = 60[Ns/m]; vs = 0.1[m/s]; Fs =6 -
1073[m]; F. = 5-1073[m]; ag = 17300.14[s72]; a; =
8600[s~1]; by = 230000[rad/(V - s3)]; by = 1600[rad/(V -
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1
2 . 1 h = — = — = 1
s%)].-With w 10 [m],w 1000 [m] and w 0[m],it

revealed that the rank of the matrix
[9(2)(adsg)(2) ... (ad}g)(2)] is 6.

As concerns the numerical calculations, one remarks that
although there are some large differences between the or-
der of the constants involved, that might induce the ideea
of an ill conditioned system, the agregated coefficients
prove to be in a tractable magnitude interval.

4. CONCLUDING REMARKS

Based on the results in [7] a specific control synthezis is
proposed for stabilization of the zero solution for switched
control systems in Malkin canonical form

i (4.1)
g:Dl§+Fl(y’§)+(Oa"'a071)‘ru’a l:152
E=(&,...,&), y € R, Y, and F; contain only powers of

y and &1,...,&, of order greater or equal to two in their
Taylor development around zero and

This control synthesis relies on the condition that the

matrix
[9(0)(ad,9)(0) .. . (ad’}g)(0)]

has the rank equal to n — 1 (g(y,&) = (0,0,...,
]_:{n+17

0,1 €

fl(yag) = (}/l(yaé)leg + E(y7£))7)

This condition ensures that the relative degree of (4.1) in
zero is (n — 1). An application is given to a model of a
pump controlled EHSA.

It must be mentioned that stabilization can eventually be
obtained using the same results from [7] even if the relative
degree is r < n—1 if one can calculate hy, ho and then find
a completion to local diffeomorphisms of ®; = z; = hy,
Qy = 20 = Lyhyy ..., @p = 2, = L};)lhl such that, for
the new systems

21 = Y(l) (Zla g)

=DWz 4+ FWO(z,3),
still in the critical case covered by Malkin Theorem, a
Common Lyapunov Function exists. For this it is enough
to have D = D, | = 1,2, with D a Hurwitz matrix. A
situation when this happens is presented in [2].

2 = (22, .. .7Zn+1),
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