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Abstract: The case of an adaptive controller based on output feedback is developed for a two link 
robot manipulator. A simple non-linear observer using the desired velocity and bounded position 
tracking error is proposed to estimate the joint velocities. The closed loop system compound by the 
adaptive controller, observer and the robot system is shown to be semi-global asymptotically 
stable. Numerous simulations conducted on a two-link robot manipulator model confirm the 
effectiveness of the proposed controller-observer structure. The performance of the proposed 
scheme is evident by comparing the simulation results with a well-known passivity based control 
algorithm. 
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1. INTRODUCTION 

The actual literature contains in great details 
adaptive control algorithms for robot arms based 
on complete state measurements. The feed-
forward and passivity based algorithms for robot 
arms have been extensively used. Most of these 
algorithms need complete state measurements. 
The major drawback of such schemes is that 
both joint position are required for feedback 
control. Sensors for measuring robot joint 
velocities are too expensive. Further, 
measurements from the sensors are often mixed 
with noise. Velocity estimated feedback control 
of robot arms can be instead and the requirement 
of robots to be equipped with velocity sensors 
can be eliminated. Most of the robot adaptive 
schemes use velocity errors or modified velocity 
errors to drive the parameter adaptation 

algorithms. When the actual velocities are not 
available, estimated velocities and position 
errors have to be used to drive the parameter 
adaptation algorithms. This implies more 
difficulties in proving the stability of these 
algorithms. 

Considerable research is done in the area of 
output feedback control of non-linear systems, 
especially on passivity based controller-observer 
design. A linear observer is designed to estimate 
the velocities that leads to a closed-loop system 
(formed by the controller-observer and the 
robot) that will be locally exponentially stable. 
The linear velocity observer is designed 
assuming complete knowledge of the structural 
parameters of the robot. Other research 
considered the controller with variable structure 
next to a non-linear observer, in the presence of 
the parameter uncertainties. A passivity based 
controller and a nonlinear sliding observer were 
also proposed to obtain local asymptotic 
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convergence of the position tracking errors and 
velocity estimation error. 

In this paper is proposed an adaptive feedback 
controller for robot arms using the partial 
feedback approach, meaning that only joint 
position measurements are needed to design the 
adaptive controller. Near this, a simple 
non-linear observer is designed to estimate the 
robot joint velocities. The closed-loop system 
formed by the adaptive controller, observer and 
the robot system is shown to be semi-global 
asymptotically stable so that the region of 
attraction can be increased arbitrarily by 
increasing the controller and the observer gains. 

The estimated parameters convergence to the 
true parameters depends on weather the 
regression matrix satisfies the persistence of 
excitation condition. In the proposed adaptive 
controller the regression matrix entirely depends 
on the desired trajectory. The simulation made 
using the two-link planar arm model 
successfully show the validity of the proposed 
controller and observer. Further on, the 
proposed scheme is compared with a well 
known passivity based controller that assume all 
parameters exactly known and use a first-order 
numerical differentiation of joint position 
measurements to estimate velocities. 

2. THE DYNAMICS OF THE ROBOT 
ARM MODEL 

It is considered the dynamics of an n degree of 
freedom robot arm, as it follows: 
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where are the generalized 
position and velocity, respectively, 

is the inertia matrix, 
is the matrix composed of 

Coriolis and centrifugal terms, is 
the gravity vector, and  is the vector 
composed of joint torques. The structure of the 
robot dynamics satisfies the following 
properties: 

nn xx ℜ∈ℜ∈ 21 ,
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The inertia matrix  is positive defined 
and is bounded from above and below by 
positive constants 

( )1xM

Mσ  and mσ , that is: 

( ) Mm xM σσ ≤≤ 1  (2) 

The matrix ( )21 , xxC  is bounded and satisfies 
the relation: 
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The matrix ( ) ( )211 ,2 xxCxM −&  is skew-
symmetric. 

The dynamics is linear in the unknown 
parameters and can be expressed as: 
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where is the unknown parameter 

vector and 

p
up ℜ∈

( ) pnxxxY ×ℜ∈221 ,, & is the known 
regression matrix. 

For a desired trajectory of the robot, the main 
objective is to design a stable-tracking controller 
that only requires joint position measurements 
for feedback. To accomplish this purpose, it is 
proposed an adaptive controller together with a 
simple non-linear observer to estimate the joint 
velocities. 

In these conditions, let ( )txd
1  and  be the 

desired position and velocity, respectively. It 
must be assumed that the desired state trajectory 
is twice continuously differentiable, otherwise 
could appear some difficulties for the estimation 
process.. Let 

( )txd
2

( )tx1ˆ  and  denote the 
estimated position and estimated velocity, 
respectively. Let  denote the actual 
parameter vector given in accordance to model 
dynamics presented above; and let  denote 
the estimate of 

( )tx2ˆ

pℜ∈θ

( )tθ̂
θ . In these conditions, the 

tracking error and the estimation error can be 
defined by: 
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where ( )te1  and ( )te2  are the position and the 
velocity tracking errors, ( )te1̂  and  are the 
estimated position and estimated velocity errors, 

( )te2ˆ

( )tev  is the reference velocity error, ( )tθ~  is the 

  



CONTROL ENGINEERING AND APPLIED INFORMATICS 15 

 

parameter estimation error,  is an auxiliary 
bounded position tracking error, and 

( )tec

( )( )te1Λ  is 
a positive defined diagonal matrix given by: 
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where  are the components of the 
position error vector  and 

( ) ( )tete n111 ,...,
( )te1 cλ  is a positive 

gain. The choice of ( )1eΛ  renders ( )tec  to be 
bounded by $\lambda _{c}$. In the next section, 
the adaptive controller, observer and the close-
loop error dynamics are presented. 

3. ADAPTIVE CONTROLLER AND 
OBSERVER 

The control design proposed is as follows: 

( ) ( ) ,ˆˆ,, 12221 eKeeKxxxYv pvd
ddd

dt −+−= θ& (6) 

where  are positive definite gain 

matrices and  is the estimated parameter 
vector of the robot. It must be observed that the 
second term in the control law is a function of 
estimated velocity, desired velocity, and actual 
position error, that is  

The desired regression matrix, 
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where:  and ( ) ( ),,ˆ,ˆ
211
ddd xxCxM ( )dxg 1ˆ are the 

estimated of ( )dxM 1 , ( ),, 21
dd xxC  and 

( )dxg 1 respectively. The desired regression 
matrix depends only on the desired trajectory 
and can be precomputed. The parameter 
adaptation law is chosen as below: 
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where  denotes the initial estimate of 
unknown parameter vector,  is a positive 
definite gain matrix, and  is given by: 
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The next structure of observer is proposed to 
estimate the states: 

,ˆˆˆ 2111 xex +−= η  (11) 

.ˆˆ 1122 c
d eexx +−= η  (12) 

where 1η  and 2η  are positive gains. Thus, by 
rearranging terms, the observer error dynamics 
is given by: 
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4. THE EXPRESSION OF ERROR 
DYNAMICS 

After the notation  and cv eee &&& += 2

02 =++− cv eee  are made,  can be 
expressed as: 
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From relation (1) and (14) it results that: 
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Using the control law and assigning that 
, where  the error 

equation becomes: 
2

' eEe cc =& 21' Λ= −
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where W∆  is given by the: 
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Using the equation (13), the observer error 
equation can be derived as follows: 

 



16 CONTROL ENGINEERING AND APPLIED INFORMATICS 

 

( ) ( ) ( )
( ) ( )
( ) ( ) ( ){
( ) ( )( )
( ) ( ) .ˆ2...

...,ˆ
,ˆ,

2
ˆˆˆ

11211

221212

211221

11

112121221

exMexM
eexxCexM

exxCexMexxC
exMexM

exMexMexM

c

v

vv

vc

ηη
η

ηηη

++
+++−

−+−−=
=−

++−=

&

&

&

&&

&

}  (18) 

On substitution of the robot error dynamics (16) 
and using the fact that , the 
error dynamics, finally, remains: 
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5. SIMULATION RESULTS 

5.1. The adopted model 

The simulations are made using a two-link direct 
planar manipulator model shown in the Fig. 1. 
Each axes is driven by a direct servo-motor 
which is capable of up to 3 revolutions per 
second maximum velocity and position feedback 
resolution of up to 156400 counts per 
revolution. The simulation model output torque 
is suppose to be rated up to 245 Nm and the 
elbow motor rated up to 40Nm. This 

considerations turn the system into a stand-alone 
one that contains all the element needed for 
assure closed-loop servo motor control. 

Theoretically, the motor can contain a high 
torque direct drive brush-less actuator, a high-
resolution brush-less resolver, and a high 
precision bearing. The supposed direct drive 
actuator could eliminate the need for gear 
reduction, so repeatability is limited only by the 
resolution of the position feedback. 

The inertia matrix  and the matrix 
composed of Coriolis and centrifugal terms, 

)( 1xM

( )21, xxC  for the two given manipulator are 
given by: 
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where ( )ii xc 1cos= , ( )ii xs 1sin=  and  and 
denote the components of the vectors x

ix1

ix2 1 and 
x2, respectively and p1, p2 and p3 are coupled 
inertia parameters, which are treated as 
unknowns and estimated by the adaptive 
controller. The gravity term for this model robot 
simulation is considered zero, .  The 
desired regression for the two-link manipulator 
is: 
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Fig. 1.Two-link robot manipulator. 
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The desired position, velocity, acceleration, and 
jerk (derivative of acceleration) trajectories for 
the two joint angles used in simulations are 
given in Fig. 2. These represent desired joint 
angles for 14 cycles of circle trajectory in the 
Cartesian space. The middle cycles are 
considered of 1 s duration, the first and the last 
of duration 2 s. 

The proposed controller-observer is compared 
with the passivity based control algorithm. Exact 
knowledge of the parameters is assumed for the 
passivity based control scheme and a first order 
(one-step) numerical differentiation of the joint 
position measurements has been used to obtain 
joint velocities. The following passivity based 
control algorithm is chosen: 

( ) ( ) ( )2222121 , xxFxxxCxxMv rvrrt −++= &  

where ( ) ( )d
p

d
d

d
r xxKxxKxx 112222 −−−−= && , and 

Fv, Kd, Kp are positive definite gain matrices. 

5.2. Graphic results 

Using the adaptive controller-observer with a 
sampling period of 4ms, the obtained position 
tracking errors are presented in Fig. 2 and Fig. 3. 

6. CONCLUSIONS 

Comparison with passivity based control 
algorithm, implemented with exact knowledge 
of the true parameters, shows that the proposed 
algorithm gives similar results even under large 
uncertainties in the robot parameters.

 

 

Fig. 2. Position tracking errors (proposed adaptive controller with observer). 
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Fig. 3. Position tracking errors (passivity based scheme). 
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