
CEAI, Vol.12, No.3, pp. 23-33, 2010 Printed in Romania

Improving Classification with Support Vector Machines

Maria Muntean*, Honoriu Valean**, Ioan Ileana*, Corina Rotar*

*1 Decembrie 1918 University of Alba Iulia, Romania
 (e-mail: mmuntean@ uab.ro, iileana@uab.ro, crotar@uab.ro)

**2Technical University of Cluj Napoca, Romania
(e-mail: Honoriu.Valean@aut.utcluj.ro)

Abstract: A problem arises in data mining, when classifying unbalanced datasets using Support Vector
Machines. Because of the uneven distribution and the soft margin of the classifier, the algorithm tries to
improve the general accuracy of classifying a dataset, and in this process it might misclassify a lot of
weakly represented classes, confusing their class instances as overshoot values that appear in the dataset,
and thus ignoring them.
This paper introduces the Enhancer, a new algorithm that improves the Cost-sensitive classification for
Support Vector Machines, by multiplying in the training step the instances of the underrepresented
classes. We have discovered that by oversampling the instances of the class of interest, we are helping the
Support Vector Machine algorithm to overcome the soft margin. As an effect, it classifies better future
instances of this class of interest.

Keywords: Learning Algorithms, Classification, Accuracy, Improvement, Unbalanced Datasets

1. INTRODUCTION

Most of the real-world data are unbalanced in terms of pro-
portion of samples available for each class, which can cause
problems such as over fit or little relevance. The Support
Vector Machine (SVM), a classification technique based on
statistical learning theory, was applied with great success in
many challenging non-linear classification problems and was
successfully applied to unbalanced data sets.

Proposed by Vapnik and his colleagues in 1990’s [Vapnik,
2000], SVM is a new machine learning method based on
Statistical Learning Theory and it is widely used in the area
of regressive, pattern recognition and probability density
estimation due to its simple structure and excellent learning
performance. Joachims validated its outstanding performance
in the area of text categorization in 1998 [Joachims, 1998].
SVM can also overcome the over fitting and under fitting
problems [Hong et al., 2009], [Duan et al., 2009], and it has
been used for unbalanced data classification [Li et al., 2009],
[Xinfeng et al., 2009].

The SVM technique is based on two class classification.
There are some methods used for classification in more than
two classes. Looking at the two dimensional problem we
actually want to find a line that “best” separates points in the
positive class from the points in the negative class. The
hyper plane is characterized by the decision function

))(,sgn()(bxwxf += φ , where w is the weight vector,
orthogonal to the hyper plane, b is a scalar that represents the
margin of the hyper plane, x is the current sample tested,

)(xφ is a function that transforms the input data into a higher
dimensional feature space and “,” representing the dot
product. Sgn is the signum function. If w has unit length, then

><)(, xw φ is the length of)(xφ along the direction of w.

To construct the SVM classifier one has to minimize the
norm of the weight vector w (where |||| w represents the
Euclidian norm) under the constraint that the training patterns
of each class reside on opposite sides of the separating
surface. The training part of the algorithm needs to find the
normal vector w that leads to the largest b of the hyper plane.
Since the input vectors enter the dual only in form of dot
products, the algorithm can be generalized to non-linear
classification by mapping the input data into a higher-
dimensional feature space via an a priori chosen non-linear
mapping function φ and construct a separating hyper plane
with the maximum margin.

In solving the quadratic optimization problem of the linear
SVM (i.e. when searching for a linear SVM in the new higher
dimensional space), the training tuples appear only in the
form of dot products, ><)(),(ji xx φφ , where)(xφ is simply

the nonlinear mapping function applied to transform the
training tuples. Expensive calculation of dot products

><)(),(ji xx φφ in a high-dimensional space can be avoided

by introducing a kernel function K:

)()(),(jiji xxxxK φφ ⋅= (1)

 The kernel trick can be applied since all feature vectors only
occur in dot products. The weight vectors than become an
expression in the feature space, and therefore φ will be the

mailto:iileana@uab.ro
mailto:crotar@uab.ro)
mailto:Honoriu.Valean@aut.utcluj.ro)

24 CONTROL ENGINEERING AND APPLIED INFORMATICS

function through which we represent the input vector in the
new space. Thus it is obtained the decision function having
the following form:

)),(sgn()(∑
ℜ∈

+=
i

iii bxxkyxf α

(2)

where iα represent the Lagrange multipliers and the samples

ix for which 0>iα are called Support Vectors [Han &
Kamber, 2006].

Because of the uneven distribution and the soft margin of the
SVM, the algorithm tries to improve the general accuracy of
classifying a dataset, and in this process it might misclassify
a lot of weakly represented classes.

This paper introduces an algorithm named Enhancer aimed
for increasing the TP of underrepresented classes of datasets,
using Cost-sensitive classification and SVM.

2. COST-SENSITIVE APPROACH

In actual applications, it exist the problems that wrong
classify result in different harm degree of different sort
sample. The solution proposed in literature is the Cost-
sensitive SVM approach [He & Garcia, 2009], [Dai et al.,
2009], [Santos-Rodriguez et al., 2009], a new method for
unbalanced classification.

Fundamental to the Cost-sensitive learning methodology is
the concept of the cost matrix. This approach takes the
classify cost into account, and it aims to reduce the classify
cost to the least. Instead of creating balanced data
distributions through different sampling strategies, Cost-
sensitive learning targets the unbalanced learning problem by
using different cost matrices that describe the costs for
misclassifying any particular dataset. A very useful tool, the
Confusion Matrix for two classes is shown in Table 1.

Table 1. Confusion Matrix for a two-class problem

Predicted Class

Cls= 1 Cls= 0

Cls= 1 TP FN Actual
Class Cls= 0 FP TF

The true positives (TP) and true negatives (TN) are correct
classifications. A false positive (FP) occurs when the
outcome is incorrectly predicted as 1 (or positive) when it is
actually 0 (negative). A false negative (FN) occurs when the
outcome is incorrectly predicted as negative when it is
actually positive.

In addition, the accuracy measure may be defined. It
represents the ratio between correctly classified instances and
the sum of all instances classified, both correct and incorrect
ones. The above measure was defined as:

FNFPTNTP
TNTPAcc

+++
+

= (3)

More precisely, the classification gives equal importance to
all the misclassified data (false negatives and false positives
are equally significant). The Cost-sensitive classifications
strive to minimize the total cost of the errors made by a
misclassification, rather than the total amount of
misclassified data.

Using the measures defined above, we calculated the
accuracy mean, the true positives mean, and also the accuracy
deviation and the true positives deviation:

TIMESNAccAccMean
TIMESN

i
i _/)(

_

0
∑

=

= (4)

TIMESNTPTPMean
TIMESN

i
i _/)(

_

0
∑

=

= (5)

TIMESNAccAccMeanonAccDeviati i

TIMESN

i
_/)(2

_

0
−= ∑

=

 (6)

TIMESNTPTPMeannTPDeviatio i

TIMESN

i
_/)(2

_

0
−= ∑

=

 (7)

3. DESCRIPTION OF THE ENHANCER

Experimentally we have found out that the features that help
in raising the TP of a class are the cost matrix and the amount
of instances that the class has. The last one can be modified
by multiplying the number of instances of that class that the
dataset initially has.

The algorithm proposed for increasing the TP of weakly
represented classes, the Enhancer is detailed in the following
pseudo code:

1. Read and validate input;
2. For all the classes that are not well represented:
 BEGIN
 Evaluate class with no attribute added
 Evaluate class at Max multiplication rate
 Evaluate the class at Half multiplication

REPEAT
 Flag = False

Evaluate the intervals (beginning, middle),
 (middle, end)

If the end condition is met
(i.e. If the difference between the beginning and the
end of an interval is very small, under a set epsilon
AND

 If µ≥∆+∆ || AccTPi ,

 where)(inTPDeviatioonAccDeviati +=µ)
 Flag = True

If the first interval has better results we should use
this, otherwise the other

CONTROL ENGINEERING AND APPLIED INFORMATICS 25

Find the class evaluation after multiplying class
instances middle times
UNTIL Flag = False
END

3. Multiply all the classes with the best factor obtained;
4. Evaluate dataset.
While reading and validating the input we collected from the
command line the parameters that were used by this
classifier, together with the classifier parameters that were
usually transmitted to the program. The input parameters
needed were the number of the class that needs to have its TP
improved and the ε that is the maximum allowed difference
between the evaluation of the two intervals (beginning,
middle) and (middle, end).

Our classifier had also as input parameters the multiplicands
that the optimization algorithm had used. There are available
two kinds of evaluations that also accept class multiplication:

• Evaluating a dataset with only the instances of one class
being multiplied, and keeping the other still to their initial
value. This kind of operation was especially useful when we
tried to find out what was the best multiplicand for a certain
class.

• Evaluation of a dataset where the instances of all classes
could undergo a multiplication process. The multiplication of
the classes could be any real number greater or equal to 1. If
the multiplicand was 1, then the class remained with the
initial number of instance.

One of the most important parts in this pseudo code is
knowing what, when, and how to evaluate data set, in order
to maximize efficiency of the algorithm. This problem only
appears when the search for the perfect number to be used as
a multiplier for a certain class is not assisted by the human
component.

It is also important to avoid performing the evaluation on
data that the algorithm used to train the model on, because
otherwise the algorithm is going to over fit on this particular
dataset, and when new data is going to be introduced to be
tested, the results are going to be disastrous. This way of
evaluation is the 10 fold cross validation. Like this the dataset
is being randomized, and stratified using an integer seed that
takes values in the range 1-10. The algorithm performs 10
times the evaluation of the data set, and all the time has a
different test set (Fig. 1).

Fig. 1. 10 fold cross validation

So, after performing the stratification, each time the data set
was split into the training and test set, the Enhancer took the
training set and applied classMultiply() on it. Like this the in-
stances that were going to be multiplied were not going to be
among that data that was going to test the result of the SMO
model, the Weka implementation of SVM. The performance
of the algorithm is only due to the multiplied data, and there
is no over fitting to this specific data set. The data was trained
in order to be evaluated as accurately as possible by a general
test set, and not only by the one for testing.

The instances were multiplied using the properties of the In-
stances object in which they were stored following this
pseudo code:

1 aux← all instances of class x from dataset
2 for i=0 to max do
3 add (instance from aux to dataset)
4 Randomize dataset

By performing this series of operations the number of in-
stances of the desired class was multiplied by the desired
amount and in the same time we had a good distribution of
instances inside the dataset in order not to harm or benefit
any of the classes in the new dataset.

In order to see what the best improvement is, we need to
calculate an ending property of the logarithm. After some
experiments the conclusion was that we must optimize the TP
and in the same time keep the accuracy as high as possible.
This can be translated as follows:

max=∆+∆= CCi ATPϕ (8)

This means that we are trying all the time to maximize the TP
of classes and also the Accuracy. The only flaw in this
equation is the Accuracy is medium (50%) and the TP of that
certain class is really close to 0. If realize to get the TP of the
class as high as 80-90%, the loss in the accuracy, that is
going to appear inevitably, is going to pass unnoticed by this
function. That is why we needed to introduce the following

constraint: θ>∆ CCA , where θ is the minimum allowed drop
in the accuracy.

The Enhancer algorithm described in the pseudo code used a
Divide et Impera technique, that searched in the space (0
multiplication – max multiplication) for the optimal
multiplier for the class. The algorithm is going to stop its
search under two circumstances:

• The granulation is getting to thin, i.e., the difference
between the beginning and end of an interval is very small
(under a set epsilon). This constraint is set, in order not to let
the algorithm wonder around searching for solutions that vary
one from another by a very small number (<10-2).

• The modulus of the difference between the CCi ATP ∆+∆
from the first and the second interval should be bigger that a
known value. This value is the considered to be the deviation
of the Accuracy added to the deviation of the TP of that class:

26 CONTROL ENGINEERING AND APPLIED INFORMATICS

TPACC σσµ += (9)

After finding the best multiplicand for the class that we are
trying to optimize, we constructed a training set that
contained each class instances multiplied by the optimal
multiplicand found at the previous step. A fine tuning was
performed on the multiplicands of each of the other weakly
represented classes, in order to raise the accuracy and the TP
of the other classes while keeping the TP of the interested
class at least at the same value that the algorithm retrieved.

4. EXPERIMENTAL RESULTS

The classification is unbalanced when data presents many
examples from one class and few from the other class, and
the less representative class is the one which has more
interest [Garcia et al., 2009].

For the evaluation, we used three unbalanced data sets, the
Cleveland, the Dermatology, and the Blood Transfusion data-
sets obtained from the online UCI Machine Learning
Repository. A brief description of these datasets is presented
in Table 2. The datasets have accuracy levels which are not
very high, so improvement is possible.

Table 2. The datasets used in the experiments

Dataset No. of
attributes

No. of
instances

Attributes
types

Cleveland 13+1 303 Num, Nom

Dermatology 34+1 358 Num, Nom

Blood
Transfusion

4+1 748 Num, Nom

The class distribution for the datasets is illustrated below
(Fig. 2, Fig. 3, and Fig. 4):

Cleveland dataset class distribution

164

55

36

35 13
Class 0

Class 1

Class 2

Class 3

Class 4

Fig. 2. Cleveland dataset class distribution

Dermatology dataset class distribution
20

48

48

71 60

111
Class 0

Class 1

Class 2

Class 3

Class 4

Class 5

Fig. 3. Dermatology dataset class distribution

Blood Transfusion dataset class
distribution

178

570

Class 0

Class 1

Fig. 4. Blood Transfusion dataset class distribution

In order to improve the classification of the weakly
represented classes in those datasets, in which they are in
very small numbers with respect to the other classes, two
approaches were tested:

• Cost-sensitive classification;
• Multiplication of the instances of weakly represented
classes.

4.1 Cost-sensitive classification

In the case of the Cost-sensitive classification, the main aim
was to find a good cost matrix, to increase the cost of
wrongly classified instances that belong to the weakly
represented classes. In order to perform this, we used the
Cost-Sensitive Classifier that can be found in
Weka.classifiers.meta on the three datasets described above
as follows:
• We have set as cost matrix the default cost matrix (0 on the
main diagonal and 1 in rest);
• We evaluated the datasets;
• We “fixed” the cost matrix, to increase the cost of the
wrongly classified instances where the Confusion Matrix
indicated FN, to force the algorithm to correctly classify
those instances as well.

CONTROL ENGINEERING AND APPLIED INFORMATICS 27

• We re-evaluated the datasets and redid the previous step.
By modifying the cost matrix, we obtained a variation quite
high in the TP of Class 0 (88%-97%, Fig. 5). This class has
164 instances from the total of 303 that are available in the
dataset.

Fig. 5. Class 0 TP variation with respect to Cost Matrix
change

Unfortunately, this increase in the TP of the most
representative class affected the other, weaker represented
classes with a low TP (Fig. 6, Fig. 7, and Fig. 8).

The instances of the Classes 0 and 1 aren’t so well separated,
because they have a high value for the FP and FN. In the case
of class 1, that has 55 instances (18% of the total amount), we
observed that its TP never goes higher than 32%.

Fig. 6. Class 1 TP variation with respect to Cost Matrix
change

Class 2 has 36 instances, which represent 11% of the full
dataset. In the case of class 2 we observed an ever tighter
connection with another class, unlike the connection between
the classes 0-1. This class is strongly connected with class 1.
The TP of the two classes evolve almost complementary one
from another (when one TP rises, the other falls and the other
way around). The TP of class 2 also seemed to be bounded by
about 30%.

Fig. 7. Class 2 TP variation with respect to Cost Matrix
change

Class 3 has 35 instances, meaning 11% of the dataset. This
class showed the most spectacular evolution of all. By
modifying the cost matrix we were able to change the level of
the accuracy from 20% to 60%.

Fig. 8. Class 3 TP variation with respect to Cost Matrix
change

Class 4, which has 13 instances, meaning 4% from the total
amount of instances is the worst class that the Cost-Sensitive
Classifier managed to classify. The TP of this class was also
bounded by a very low 25%. This class seemed to be very
weekly represented for the SVM to classify it correctly, and
regardless the value of the cost of a misclassification it kept
on making the same confusions over and over again (Fig. 9).

Fig. 9. Class 4 TP variation with respect to Cost Matrix
change

28 CONTROL ENGINEERING AND APPLIED INFORMATICS

Unfortunately, the increase in the TP of the Class 0 of Blood
Transfusion dataset affected the other one, with a low TP.
This class has 570 instances from the total of 748 that are
available in the dataset (Fig. 10).

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TP

Class 0

Fig. 10. Class 0 TP variation of Blood Transfusion dataset
with respect to Cost Matrix change

By modifying the cost matrix, we obtained a high variation
in the TP of Class 1. In the case of Class 1, that has 178
instances (24% of the total amount), we observed that its TP
never goes higher than 81.5% (Fig. 11).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TP

Class 1

Fig. 11. Class 1 TP variation of Blood Transfusion dataset
with respect to Cost Matrix change

In the case of Dermatology dataset, the accuracy and the TP
of the classes 0, 2, 4 and 5 remained constant with respect to
Cost Matrix change (Fig. 12).

0

0,2

0,4

0,6

0,8

1

1,2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

 T P

Class 0, Class 2, Class 4, Class 5

Fig. 12. Class 0, Class 2, Class 4 and Class 5 TP variation of
Dermatology dataset with respect to Cost Matrix change

The TP of the Classes 1 and 3 evolved almost complementary
one from another (when one TP rises, the other falls). We
mention that the Class 1 has 60 instances, which represent
17% of the full dataset and the Class 3 has 48 instances (13%
of the total amount) (Fig. 13 and Fig. 14).

0,74

0,76

0,78

0,8

0,82

0,84

0,86

0,88

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TP

Class 1

Fig. 13. Class 1 TP variation of Dermatology data set with
respect to Cost Matrix change

0,75

0,8

0,85

0,9

0,95

1

1,05

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TP

Class 3

Fig. 14. Class 3 TP variation of Dermatology data set with
respect to Cost Matrix change

After the experiments, we have found out that most of the
time, when we were dealing with the classification of
unbalanced data sets, and trying to improve the accuracy with
which the classes were predicted, two main things happened:

• The correct classifications of certain classes’ increased, and
in the same time the general accuracy rose. In this case, the
growth of the TP of that class hadn’t influenced the accuracy
of other classes, so more instances were correctly classified,
thus the increase in the accuracy.

• The correct classification of certain classes’ increased and
the general accuracy remained the same. In this case, the rise
of the TP of a class affected the evaluation of other classes,
which were going to get sloppier.

Cost-sensitive classification proved to be a good method of
improving the TP of the unbalanced classes in the dataset that
were weakly connected with one-another.

When the instances of certain classes were not correctly
identified, this could be because of the soft margin of the
SVMs, which were interpreted that the instances of the

CONTROL ENGINEERING AND APPLIED INFORMATICS 29

weakly represented classes are just few errors in the
classification of the larger classes.

4.2 Multiplying underrepresented classes

In order to improve the classification of one class of interest
from the training dataset using SVM, we needed to improve
its chances of being recognized. In order to recognize classes,
SVM needed support vectors from those classes and that’s
why we had increased the number of instances of a weakly
represented class and in the same time we had kept the value
of the other classes constant. First, we tried to find out what
is the best multiplier to use for the several classes and how
much did it affect the rest of the evaluation.

After applying the class multiplications all the TP of Class 1
hits a zone of instability, until the multiplying factor reached
0.9, when the TP ascent stabilized. In the end, the TP of this
class reached almost 60%, which is double from the accuracy
that was reached using only the Cost-sensitive classification.
Seemingly the problem in this case is that the accuracy was
dropping or remaining constant, while the TP of the class was
getting bigger and bigger (Fig. 15).

Fig. 15. The evolution of the TP of Class 1 and the general
accuracy with respect to the number of instances of Class 1

As in the case of Class 1, the algorithm provided very good
results in the classification of Class 2. Everything said about
the ascent of the TP and the standing still of the accuracy
remains valid in this case also. We observed that where we
used the Cost-sensitive classification only, the increase in the
TP of the class is more than double (Fig. 16).

Fig. 16. The evolution of the TP of Class 2 and the general
accuracy with respect to the number of instances of Class 2

This algorithm helps Class number 3 as well. Although it
started from a quite high, the TP of the class improved more
and stabilized its ascent at around 0.88 (Fig. 17).

Fig. 17. The evolution of the TP of Class 3 and the general
accuracy with respect to the number of instances of Class 3

The improving of the TP of Class 4 seemed to be very
unstable, with peeks of maxima, which couldn’t be taken into
consideration. The number of instances that this class has, is
far too few (4%) and even though we multiplied the number
of instance that belong to the class, the dataset didn’t know
how to construct the boundary hyper plane, as the special
span of the class distribution was too narrow (Fig. 18).

Fig. 18. The evolution of the TP of Class 4 and the general
accuracy with respect to the number of instances of Class 4

This algorithm helps the Class 3 of the Dermatology dataset
as well. Although it started from a quite high (0.85), the TP
of the class stabilized its ascent at around 0.89 (Fig. 19).

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Acc

 TP

Fig. 19. The evolution of the TP of Class 3 and the general
accuracy with respect to the number of instances of Class 3
(Dermatology dataset)

30 CONTROL ENGINEERING AND APPLIED INFORMATICS

The accuracy of the Class number 1 reached 0.95, meaning a
better value than the one reached using only the Cost-
sensitive classification (Fig. 20).

0,78
0,8

0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Acc

 TP

Fig. 20. The evolution of the TP of Class 1and the general
accuracy with respect to the number of instances of Class 1
(Dermatology dataset)

The accuracy and the TP of the Classes 0, 2, 4 and 5
remained constant with respect to Cost Matrix change (Fig.
21).

0,93

0,94

0,95

0,96

0,97

0,98

0,99

1

1,01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Acc

 TP

Fig. 21. The evolution of the TP of Classes 0, 2, 4 and 5 and
the general accuracy with respect to the number of instances
of Classes 0, 2, 4, and 5 (Dermatology dataset)

After applying the class multiplications, all the TP of Class 1
(in the case of Blood Transfusion dataset) hit some zones of
instability, until the multiplying factor reached 0.8, when the
TP ascent stabilized and grew to 0.9. Seemingly the problem
in this case is that the accuracy was dropping or remaining
constant, while the TP of the Class was getting bigger (Fig.
22).

Fig. 22. The evolution of the TP of Class 1 (Blood
Transfusion dataset) and the general accuracy with respect to
the number of instances of Class 1

So, the Enhancer multiplied the information accordingly,

such that to maximize CCi ATP ∆+∆ , so the accuracy does not
fall below a set ε. We set ε to 0.05 (5%) and we concluded
that with the new algorithm, the TP of certain classes of
interest were increased significantly while keeping the
general accuracy in the desired range (Fig. 23, Fig. 24, and
Fig. 25).

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Cl ass 1 Class 2 Class3 Class4

SMO

Cost
Sensitive
SMO
Enhancer

Fig. 23. Comparison between the TP of the classes resulting
Cost-sensitive SMO Evaluation and with the Enhancer
(Cleveland dataset)

0,75

0,8

0,85

0,9

0,95

1

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5

SMO

Cost-Sensitive
SMO
Enhancer

Fig. 24. Comparison between the TP of the classes resulting
Cost-sensitive SMO Evaluation and with the Enhancer
(Dermatology dataset)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

Class 0 Class 1

SMO

Cost sensitive SMO

Enhancer

Fig. 25. Comparison between the TP of the classes resulting
Cost-sensitive SMO Evaluation and with the Enhancer
(Blood Transfusion dataset)

We observed that the last classifier performs the best and the
Enhancer algorithm could have pointed even more accurately

CONTROL ENGINEERING AND APPLIED INFORMATICS 31

the instances that belong to the class of interest, but with the
downside of pulling the general accuracy below the threshold
preset ε.

The cost matrices that were used here are the best ones that
were found in the evaluation step. The rows are read as
“classified as”, and columns as “actual class” (Table 3, Table
4, Table 5).

Table 3. Cleveland cost matrix

Cls 0 Cls 1 Cls 2 Cls 3 Cls 4

0.0 9.5 75.6 105.8 116.2 Cls 0

28.4 0.0 14.2 23.6 86.9 Cls 1

1.9 120.0 0.0 66.1 18.9 Cls 2

95.4 98.3 115.3 0.0 109.6 Cls 3

70.9 21.7 27.4 67.1 0.0 Cls 4

Table 4. Dermatology cost matrix

Cls 0 Cls 1 Cls 2 Cls 3 Cls 4 Cls 5

0.0 1.0 1.0 1.0 1.0 1.0 Cls 0

1.0 0.0 1.0 210.0 1.0 1.0 Cls 1

1.0 1.0 0.0 1.0 1.0 1.0 Cls 2

1.0 343.0 1.0 0.0 1.0 1.0 Cls 3

1.0 1.0 1.0 1.0 0.0 1.0 Cls 4

1.0 1.0 1.0 1.0 1.0 0.0 Cls 5

Table 5. Blood Transfusion cost matrix

Cls 0 Cls 1

0.0 12.0 Cls 0

30.0 0.0 Cls 1

We also noted that the Enhancer had highest values for TP
instances among all other metaclassifiers while the accuracy
was kept at an acceptable level (Table 6, Table 7, and Table
8).

Table 6. The results obtained by compared metaclassifiers
on Cleveland dataset

TP
MetaClassifier

with SMO
Acc
(%) Cls

0
Cls
1

Cls
2

Cls
3

Cls
4

AdaBoost 59.07 0.95 0.18 0.17 0.23 0.00

Attribute
Selected 57.42 0.92 0.16 0.14 0.26 0.08

CVParameter
Selection 59.07 0.95 0.20 0.17 0.20 0.00

Dagging 59.40 0.95 0.27 0.03 0.26 0.00

Decorate 58.08 0.95 0.15 0.17 0.20 0.00

Ensemble
Selection 57.09 0.95 0.11 0.11 0.17 0.08

Filtered
Classifier 58.08 0.92 0.11 0.22 0.29 0.08

MetaCost 58.08 0.95 0.2 0.11 0.20 0.00

MultiClass

Classifier
54.12 1.00 0.00 0.00 0.00 0.00

MultiBoost
AB 50.82 0.86 0.18 0.06 0.03 0.00

CostSensitive
Classifier 59.07 0.95 0.32 0.28 0.62 0.23

Enhancer 57.20 0.95 0.58 0.42 0.68 0.23

Table 7. The results obtained by compared metaclassifiers
on Dermatology dataset

TP Meta
Class
ifier
with
SMO

Acc
(%) Cls

0
Cls
1

Cls
2

Cls
3

Cls
4

Cls
5

Ada
Boost 95.81 1.00 0.85 1.00 0.88 1.00 1.00

Attri
bute
Selec
ted

97.49 1.00 0.95 0.97 0.90 1.00 1.00

CVPara
meter
Selec
tion

95.81 1.00 0.85 1.00 0.88 1.00 1.00

Dag
ging 94.69 1.00 0.92 1.00 0.89 1.00 0.55

Deco
rate 96.37 1.00 0.88 1.00 0.88 1.00 1.00

Ense
mble
Selec
tion

94.41 0.97 0.93 1.00 0.85 0.92 0.90

Filtered
Class

96.09 1.00 0.87 1.00 0.88 1.00 1.00

32 CONTROL ENGINEERING AND APPLIED INFORMATICS

ifier

Meta
Cost 68.44 0.99 0.00 1.00 0.00 0.96 0.90

Multi
Class

Classi
fier

96.37 1.00 0.90 1.00 0.88 1.00 0.95

Multi
Boost
AB

96.09 1.00 0.87 1.00 0.88 1.00 1.00

CostSe
nsitive
Classi

fier

95.53 1.00 0.85 1.00 0.85 1.00 1.00

Enhan
cer 95.50 1.00 0.90 1.00 0.90 1.00 1.00

Table 8. The results obtained by compared metaclassifiers
on Blood Transfusion dataset

TP MetaClassi
fier with

SMO

Accuracy
(%) Cls

0
Cls
1

AdaBoost 77.27 0.97 0.14

Attribute
Selected 76.20 1.00 0.00

CVParamet
er Selection 76.20 1.00 0.00

Dagging 76.20 1.00 0.00

Decorate 76.47 0.99 0.03

Ensemble
Selection 77.01 0.92 0.28

Filtered
Classifier 76.20 1.00 0.00

MetaCost 76.20 1.00 0.00

MultiClass

Classifier
76.20 1.00 0.00

MultiBoost
AB 76.34 0.99 0.01

CostSensi
tive

Classifier
70.05 0.73 0.62

Enhancer 51.30 1.00 0.88

5. CONCLUSIONS

This paper is focused on providing the Enhancer, a viable
algorithm for improving the SVM classification of
unbalanced datasets.

Most of the times, in unbalanced data sets, the classifiers
have a tendency of classifying in a very accurate manner the
instances belonging to the best represented classes and do a
sloppy job with the rest. In order to overcome this problem
we have developed the new classifying algorithm that can
classify the instances of a class of interest better than the
classification of the usual SVM algorithm. All of this is
happening while keeping the accuracy at an acceptable level.

The algorithm improves the classification of the weakly
represented classes in the dataset, with the condition that the
class must have more than 5% of the total number of in-
stances. For a smaller number of instances, the SVM just
over fits the built model to the few amounts of data, and
produces no real results when faced with new test instances.
The idea of multiplying the unrepresented classes is original
and came from the experimental work. We have also
discovered that by over sampling the instances of the class of
interest, we are helping the SVM algorithm to overcome the
soft margin. As an effect, it classifies better future instances
of this class of interest.

The algorithm improves the classification of the weakly
represented class in the dataset and it can be used for solving
real medical diagnosis problems. This solution is especially
important when it is far more important to classify the in-
stances of a class correctly, and if in this process we might
classify some of the other instances as belonging to this class
we do not produce any harm. For instance it is better to send
people suspect of different diseases to further investigations,
than sending ill people at home and telling them they don’t
have anything to worry about.

As a future work, we propose to maximize accuracy with
geometric mean metric in order to balance both classes at the
same time. This evaluation measure will allow us to
simultaneously maximize the accuracy in positive and
negative examples with a favourable trade-off.

REFERENCES

Dai, Y., Chen, H., and Peng, T. (2009). Cost-sensitive
Support Vector Machine based on weighted attribute,
2009 International Forum on Information Technology
and Applications, pp. 690-692, 15-17, May, 2009,
Chengdu, China.

Duan, X., Shan, G., and Zhang, Q. (2009). Design of a two
layers Support Vector Machine for classification, 2009
Second International Conference on Information and
Computing Science, pp. 247-250, May, 21-22, 2009,
Manchester, UK.

Garcia, S., Fernandez, A., and Herrera, F. (2009). Enhancing
the effectiveness and interpretability of decision tree and

CONTROL ENGINEERING AND APPLIED INFORMATICS 33

rule induction classifiers with evolutionary training set
selection over imbalanced problems, Applied Soft
Computing 9 (2009), 1304–1314, Elsevier, 2009.

Han J. and Kamber, M. (2006). Data Mining: Concepts and
Techniques, Second Edition, Morgan Kaufmann Press,
Elsevier Inc, San Francisco, 2006, pp. 337.

He, H. and Garcia, E. A. (2009). Learning from imbalanced
data, IEEE Transactions on Knowledge and Data
Engineering, VOL. 21, NO. 9, September, 2009.

Hong, M., Yanchun, G., Yujie, W., and Xiaoying, L. (2009).
Study on classification method based on Support Vector
Machine, 2009 First International Workshop on
Education Technology and Computer Science, pp.369-
373, March, 7-8, 2009, Wuhan, China.

Joachims, I. (1998). Text categorization with Support Vector
Machines: Learning with many relevant features,
Proceedings of the European Conference on Machine
Learning, Berlin: Springer, 1998.

Li, Y., Danrui, X., and Zhe, D. (2009). A new method of
Support Vector Machine for class imbalance problem,
2009 International Joint Conference on Computational
Sciences and Optimization, pp. 904-907, April 24-26,
2009, Hainan Island, China.

Santos-Rodriguez, R., Garcia-Garcia, D., and Cid-Sueiro, J.
(2009). Cost-sensitive classification based on Bregman
divergences for medical diagnosis, 2009 International
Conference on Machine Learning and Applications, pp.
551-556, 13-15, December, 2009, Florida, USA.

Vapnik, V N. (2000). The nature of statistical learning
theory, New York: Springer-Verlag, 2000.

Xinfeng, Z., Xiaozhao, X., Yiheng, C., and Yaowei, L.
(2009). A weighted hyper-sphere SVM, 2009 Fifth
International Conference on Natural Computation, pp.
574-577, 14-16, August, 2009, Tianjin, China.

*** (2010) University of California Irvine, UCI Machine
Learning Repository, http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/

