
CEAI, Vol.12, No.3, pp. 23-33, 2010                                                                                                                 Printed in Romania 

Improving Classification with Support Vector Machines 
 

Maria Muntean*, Honoriu Valean**, Ioan Ileana*, Corina Rotar* 
 

*1 Decembrie 1918 University of Alba Iulia, Romania 
 (e-mail: mmuntean@ uab.ro, iileana@uab.ro, crotar@uab.ro) 

**2Technical University of Cluj Napoca, Romania 
(e-mail: Honoriu.Valean@aut.utcluj.ro) 

Abstract: A problem arises in data mining, when classifying unbalanced datasets using Support Vector 
Machines. Because of the uneven distribution and the soft margin of the classifier, the algorithm tries to 
improve the general accuracy of classifying a dataset, and in this process it might misclassify a lot of 
weakly represented classes, confusing their class instances as overshoot values that appear in the dataset, 
and thus ignoring them.  
This paper introduces the Enhancer, a new algorithm that improves the Cost-sensitive classification for 
Support Vector Machines, by multiplying in the training step the instances of the underrepresented 
classes. We have discovered that by oversampling the instances of the class of interest, we are helping the 
Support Vector Machine algorithm to overcome the soft margin. As an effect, it classifies better future 
instances of this class of interest. 
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1. INTRODUCTION 

Most of the real-world data are unbalanced in terms of pro-
portion of samples available for each class, which can cause 
problems such as over fit or little relevance. The Support 
Vector Machine (SVM), a classification technique based on 
statistical learning theory, was applied with great success in 
many challenging non-linear classification problems and was 
successfully applied to unbalanced data sets. 

Proposed by Vapnik and his colleagues in 1990’s [Vapnik, 
2000], SVM is a new machine learning method based on 
Statistical Learning Theory and it is widely used in the area 
of regressive, pattern recognition and probability density 
estimation due to its simple structure and excellent learning 
performance. Joachims validated its outstanding performance 
in the area of text categorization in 1998 [Joachims, 1998]. 
SVM can also overcome the over fitting and under fitting 
problems [Hong et al., 2009], [Duan et al., 2009], and it has 
been used for unbalanced data classification [Li et al., 2009], 
[Xinfeng et al., 2009].   

The SVM technique is based on two class classification. 
There are some methods used for classification in more than 
two classes. Looking at the two dimensional problem we 
actually want to find a line that “best” separates points in the 
positive class from the points in the negative class.  The 
hyper plane is characterized by the decision function  

))(,sgn()( bxwxf += φ , where w is the weight vector, 
orthogonal to the hyper plane, b is a scalar that represents the 
margin of the hyper plane, x is the current sample tested,   

)(xφ is a function that transforms the input data into a higher 
dimensional feature space and “,” representing the dot 
product. Sgn is the signum function. If w has unit length, then   

>< )(, xw φ is the length of )(xφ  along the direction of w.  

To construct the SVM classifier one has to minimize the 
norm of the weight vector w (where |||| w  represents the 
Euclidian norm) under the constraint that the training patterns 
of each class reside on opposite sides of the separating 
surface. The training part of the algorithm needs to find the 
normal vector w that leads to the largest b of the hyper plane. 
Since the input vectors enter the dual only in form of dot 
products, the algorithm can be generalized to non-linear 
classification by mapping the input data into a higher-
dimensional feature space via an a priori chosen non-linear 
mapping function φ and construct a separating hyper plane 
with the maximum margin.  

In solving the quadratic optimization problem of the linear 
SVM (i.e. when searching for a linear SVM in the new higher 
dimensional space), the training tuples appear only in the 
form of dot products, >< )(),( ji xx φφ , where )(xφ  is simply 

the nonlinear mapping function applied to transform the 
training tuples. Expensive calculation of dot products 

>< )(),( ji xx φφ in a high-dimensional space can be avoided 

by introducing a kernel function K: 

)()(),( jiji xxxxK φφ ⋅=      (1) 

 The kernel trick can be applied since all feature vectors only 
occur in dot products. The weight vectors than become an 
expression in the feature space, and therefore φ will be the 
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function through which we represent the input vector in the 
new space. Thus it is obtained the decision function having 
the following form: 
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( 2) 

where iα represent the Lagrange multipliers and the samples  

ix for which 0>iα  are called Support Vectors [Han & 
Kamber, 2006].  

Because of the uneven distribution and the soft margin of the 
SVM, the algorithm tries to improve the general accuracy of 
classifying a dataset, and in this process it might misclassify 
a lot of weakly represented classes.  

This paper introduces an algorithm named Enhancer aimed 
for increasing the TP of underrepresented classes of datasets, 
using Cost-sensitive classification and SVM. 

2. COST-SENSITIVE APPROACH 

In actual applications, it exist the problems that wrong 
classify result in different harm degree of different sort 
sample. The solution proposed in literature is the Cost-
sensitive SVM approach [He & Garcia, 2009], [Dai et al., 
2009], [Santos-Rodriguez et al., 2009], a new method for 
unbalanced classification.  

Fundamental to the Cost-sensitive learning methodology is 
the concept of the cost matrix. This approach takes the 
classify cost into account, and it aims to reduce the classify 
cost to the least. Instead of creating balanced data 
distributions through different sampling strategies, Cost-
sensitive learning targets the unbalanced learning problem by 
using different cost matrices that describe the costs for 
misclassifying any particular dataset. A very useful tool, the 
Confusion Matrix for two classes is shown in Table 1. 

Table 1. Confusion Matrix for a two-class problem 

Predicted Class  

Cls= 1 Cls= 0 

Cls= 1 TP FN Actual 
Class Cls= 0 FP TF 

The true positives (TP) and true negatives (TN) are correct 
classifications. A false positive (FP) occurs when the 
outcome is incorrectly predicted as 1 (or positive) when it is 
actually 0 (negative). A false negative (FN) occurs when the 
outcome is incorrectly predicted as negative when it is 
actually positive. 

In addition, the accuracy measure may be defined. It 
represents the ratio between correctly classified instances and 
the sum of all instances classified, both correct and incorrect 
ones. The above measure was defined as: 

FNFPTNTP
TNTPAcc
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+

=   (3) 

More precisely, the classification gives equal importance to 
all the misclassified data (false negatives and false positives 
are equally significant). The Cost-sensitive classifications 
strive to minimize the total cost of the errors made by a 
misclassification, rather than the total amount of 
misclassified data. 

Using the measures defined above, we calculated the 
accuracy mean, the true positives mean, and also the accuracy 
deviation and the true positives deviation: 
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3. DESCRIPTION OF THE ENHANCER 

Experimentally we have found out that the features that help 
in raising the TP of a class are the cost matrix and the amount 
of instances that the class has. The last one can be modified 
by multiplying the number of instances of that class that the 
dataset initially has. 

The algorithm proposed for increasing the TP of weakly 
represented classes, the Enhancer is detailed in the following 
pseudo code: 

1.  Read and validate input; 
2.  For all the classes that are not well represented: 
  BEGIN 
   Evaluate class with no attribute added 
   Evaluate class at Max multiplication rate 
   Evaluate the class at Half multiplication 

REPEAT 
 Flag = False 

Evaluate the intervals (beginning, middle), 
  (middle, end)  

If the end condition is met  
(i.e. If the difference between the beginning and the 
end of an interval is very small, under a set epsilon 
AND 

  If µ≥∆+∆ || AccTPi , 

  where )( inTPDeviatioonAccDeviati +=µ  ) 
 Flag = True 

If the first interval has better results we should use 
this, otherwise the other 
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Find the class evaluation after multiplying class        
instances middle times 
UNTIL Flag = False 
END  

3.  Multiply all the classes with the best factor obtained;  
4. Evaluate dataset.  
While reading and validating the input we collected from the 
command line the parameters that were used by this 
classifier, together with the classifier parameters that were 
usually transmitted to the program. The input parameters 
needed were the number of the class that needs to have its TP 
improved and the ε that is the maximum allowed difference 
between the evaluation of the two intervals (beginning, 
middle) and (middle, end). 

Our classifier had also as input parameters the multiplicands 
that the optimization algorithm had used. There are available 
two kinds of evaluations that also accept class multiplication: 

• Evaluating a dataset with only the instances of one class 
being multiplied, and keeping the other still to their initial 
value. This kind of operation was especially useful when we 
tried to find out what was the best multiplicand for a certain 
class. 

• Evaluation of a dataset where the instances of all classes 
could undergo a multiplication process. The multiplication of 
the classes could be any real number greater or equal to 1. If 
the multiplicand was 1, then the class remained with the 
initial number of instance. 

One of the most important parts in this pseudo code is 
knowing what, when, and how to evaluate data set, in order 
to maximize efficiency of the algorithm. This problem only 
appears when the search for the perfect number to be used as 
a multiplier for a certain class is not assisted by the human 
component. 

It is also  important to avoid performing the evaluation on 
data that the algorithm used to train the model on, because 
otherwise the algorithm is going to over fit on this particular 
dataset, and when new data is going to be introduced to be 
tested, the results are going to be disastrous. This way of 
evaluation is the 10 fold cross validation. Like this the dataset 
is being randomized, and stratified using an integer seed that 
takes values in the range 1-10. The algorithm performs 10 
times the evaluation of the data set, and all the time has a 
different test set (Fig. 1). 

 

Fig. 1. 10 fold cross validation 

So, after performing the stratification, each time the data set 
was split into the training and test set, the Enhancer took the 
training set and applied classMultiply() on it. Like this the in-
stances that were going to be multiplied were not going to be 
among that data that was going to test the result of the SMO 
model, the Weka implementation of SVM. The performance 
of the algorithm is only due to the multiplied data, and there 
is no over fitting to this specific data set. The data was trained 
in order to be evaluated as accurately as possible by a general 
test set, and not only by the one for testing. 

The instances were multiplied using the properties of the In-
stances object in which they were stored following this 
pseudo code: 

1  aux← all instances of class x from dataset 
2  for i=0 to max do 
3      add (instance from aux to dataset) 
4  Randomize dataset  

By performing this series of operations the number of in-
stances of the desired class was multiplied by the desired 
amount and in the same time we had a good distribution of 
instances inside the dataset in order not to harm or benefit 
any of the classes in the new dataset. 

In order to see what the best improvement is, we need to   
calculate an ending property of the logarithm. After some 
experiments the conclusion was that we must optimize the TP 
and in the same time keep the accuracy as high as possible. 
This can be translated as follows: 

max=∆+∆= CCi ATPϕ                                                     (8) 

This means that we are trying all the time to maximize the TP 
of classes and also the Accuracy. The only flaw in this 
equation is the Accuracy is medium (50%) and the TP of that 
certain class is really close to 0. If realize to get the TP of the 
class as high as 80-90%, the loss in the accuracy, that is 
going to appear inevitably, is going to pass unnoticed by this 
function. That is why we needed to introduce the following 

constraint: θ>∆ CCA , where θ is the minimum allowed drop 
in the accuracy.   

The Enhancer algorithm described in the pseudo code used a 
Divide et Impera technique, that searched in the space (0 
multiplication – max multiplication) for the optimal 
multiplier for the class. The algorithm is going to stop its 
search under two circumstances:  

• The granulation is getting to thin, i.e., the difference 
between the beginning and end of an interval is very small 
(under a set epsilon). This constraint is set, in order not to let 
the algorithm wonder around searching for solutions that vary 
one from another by a very small number (<10-2).  

• The modulus of the difference between the CCi ATP ∆+∆  
from the first and the second interval should be bigger that a 
known value. This value is the considered to be the deviation 
of the Accuracy added to the deviation of the TP of that class: 
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TPACC σσµ +=                                                                    (9) 

After finding the best multiplicand for the class that we are 
trying to optimize, we constructed a training set that 
contained each class instances multiplied by the optimal 
multiplicand found at the previous step. A fine tuning was 
performed on the multiplicands of each of the other weakly 
represented classes, in order to raise the accuracy and the TP 
of the other classes while keeping the TP of the interested 
class at least at the same value that the algorithm retrieved. 

4. EXPERIMENTAL RESULTS 

The classification is unbalanced when data presents many 
examples from one class and few from the other class, and 
the less representative class is the one which has more 
interest [Garcia et al., 2009]. 

For the evaluation, we used three unbalanced data sets, the 
Cleveland, the Dermatology, and the Blood Transfusion data-
sets obtained from the online UCI Machine Learning 
Repository.  A brief description of these datasets is presented 
in Table 2. The datasets have accuracy levels which are not 
very high, so improvement is possible. 

Table 2. The datasets used in the experiments 

Dataset No. of  
attributes 

No. of 
instances 

Attributes 
types 

Cleveland 13+1 303 Num, Nom 

Dermatology 34+1 358 Num, Nom 

Blood 
Transfusion 

4+1 748 Num, Nom 

 

The class distribution for the datasets is illustrated below 
(Fig. 2, Fig. 3, and Fig. 4): 

Cleveland dataset class distribution
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55

36

35 13
Class 0

Class 1

Class 2

Class 3
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Fig. 2. Cleveland dataset class distribution 

Dermatology dataset class distribution
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48
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111
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Class 2
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Fig. 3. Dermatology dataset class distribution 

Blood Transfusion dataset class 
distribution

178

570

Class 0

Class 1

 

Fig. 4. Blood Transfusion dataset class distribution 

In order to improve the classification of the weakly 
represented classes in those datasets, in which they are in 
very small numbers with respect to the other classes, two 
approaches were tested: 

•   Cost-sensitive classification; 
• Multiplication of the instances of weakly represented 
classes. 

4.1  Cost-sensitive classification 

In the case of the Cost-sensitive classification, the main aim 
was to find a good cost matrix, to increase the cost of 
wrongly classified instances that belong to the weakly 
represented classes. In order to perform this, we used the 
Cost-Sensitive Classifier that can be found in 
Weka.classifiers.meta on the three datasets described above 
as follows: 
• We have set as cost matrix the default cost matrix (0 on the 
main diagonal and 1 in rest); 
• We evaluated the datasets; 
• We “fixed” the cost matrix, to increase the cost of the 
wrongly classified instances where the Confusion Matrix 
indicated FN, to force the algorithm to correctly classify 
those instances as well. 
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• We re-evaluated the datasets and redid the previous step. 
By modifying the cost matrix, we obtained a variation quite 
high in the TP of Class 0 (88%-97%, Fig. 5). This class has 
164 instances from the total of 303 that are available in the 
dataset.  

Fig. 5. Class 0 TP variation with respect to Cost Matrix 
change 

Unfortunately, this increase in the TP of the most 
representative class affected the other, weaker represented 
classes with a low TP (Fig. 6, Fig. 7, and Fig. 8). 

The instances of the Classes 0 and 1 aren’t so well separated, 
because they have a high value for the FP and FN. In the case 
of class 1, that has 55 instances (18% of the total amount), we 
observed that its TP never goes higher than 32%. 

 

Fig. 6. Class 1 TP variation with respect to Cost Matrix 
change 

Class 2 has 36 instances, which represent 11% of the full 
dataset. In the case of class 2 we observed an ever tighter 
connection with another class, unlike the connection between 
the classes 0-1. This class is strongly connected with class 1. 
The TP of the two classes evolve almost complementary one 
from another (when one TP rises, the other falls and the other 
way around). The TP of class 2 also seemed to be bounded by 
about 30%. 

 

Fig. 7. Class 2 TP variation with respect to Cost Matrix 
change 

Class 3 has 35 instances, meaning 11% of the dataset. This 
class showed the most spectacular evolution of all. By 
modifying the cost matrix we were able to change the level of 
the accuracy from 20% to 60%. 

 

Fig. 8. Class 3 TP variation with respect to Cost Matrix 
change 

Class 4, which has 13 instances, meaning 4% from the total 
amount of instances is the worst class that the Cost-Sensitive 
Classifier managed to classify. The TP of this class was also 
bounded by a very low 25%. This class seemed to be very 
weekly represented for the SVM to classify it correctly, and 
regardless the value of the cost of a misclassification it kept 
on making the same confusions over and over again (Fig. 9). 

 

Fig. 9. Class 4 TP variation with respect to Cost Matrix 
change 
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Unfortunately, the increase in the TP of the Class 0 of Blood 
Transfusion dataset affected the other one, with a low TP. 
This class has 570 instances from the total of 748 that are 
available in the dataset (Fig. 10).  
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Fig. 10.   Class 0 TP variation of Blood Transfusion dataset 
with respect to Cost Matrix change 

By modifying the cost matrix, we obtained a high variation  
in the TP of Class 1. In the case of Class 1, that has 178 
instances (24% of the total amount), we observed that its TP 
never goes higher than 81.5% (Fig. 11). 
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Fig. 11.   Class 1 TP variation of Blood Transfusion dataset 
with respect to Cost Matrix change 

In the case of Dermatology dataset, the accuracy and the TP 
of the classes 0, 2, 4 and 5 remained constant with respect to 
Cost Matrix change (Fig. 12). 
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Fig. 12.   Class 0, Class 2, Class 4 and Class 5 TP variation of 
Dermatology dataset with respect to Cost Matrix change 

The TP of the Classes 1 and 3 evolved almost complementary 
one from another (when one TP rises, the other falls). We 
mention that the Class 1 has 60 instances, which represent 
17% of the full dataset and the Class 3 has 48 instances (13% 
of the total amount) (Fig. 13 and Fig. 14). 
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Fig. 13. Class 1 TP variation of Dermatology data set with 
respect to Cost Matrix change 
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Fig. 14. Class 3 TP variation of Dermatology data set with 
respect to Cost Matrix change 

After the experiments, we have found out that most of the 
time, when we were dealing with the classification of 
unbalanced data sets, and trying to improve the accuracy with 
which the classes were predicted, two main things happened: 

• The correct classifications of certain classes’ increased, and 
in the same time the general accuracy rose. In this case, the 
growth of the TP of that class hadn’t influenced the accuracy 
of other classes, so more instances were correctly classified, 
thus the increase in the accuracy. 

• The correct classification of certain classes’ increased and 
the general accuracy remained the same. In this case, the rise 
of the TP of a class affected the evaluation of other classes, 
which were going to get sloppier.  

Cost-sensitive classification proved to be a good method of 
improving the TP of the unbalanced classes in the dataset that 
were weakly connected with one-another.  

When the instances of certain classes were not correctly 
identified, this could be because of the soft margin of the 
SVMs, which were interpreted that the instances of the 
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weakly represented classes are just few errors in the 
classification of the larger classes. 

4.2 Multiplying underrepresented classes 

In order to improve the classification of one class of interest 
from the training dataset using SVM, we needed to improve 
its chances of being recognized. In order to recognize classes, 
SVM needed support vectors from those classes and that’s 
why we had increased the number of instances of a weakly 
represented class and in the same time we had kept the value 
of the other classes constant. First, we tried to find out what 
is the best multiplier to use for the several classes and how 
much did it affect the rest of the evaluation.  

After applying the class multiplications all the TP of Class 1 
hits a zone of instability, until the multiplying factor reached 
0.9, when the TP ascent stabilized. In the end, the TP of this 
class reached almost 60%, which is double from the accuracy 
that was reached using only the Cost-sensitive classification. 
Seemingly the problem in this case is that the accuracy was 
dropping or remaining constant, while the TP of the class was 
getting bigger and bigger (Fig. 15).  

 

Fig. 15. The evolution of the TP of Class 1 and the general 
accuracy with respect to the number of instances of Class 1 

As in the case of Class 1, the algorithm provided very good 
results in the classification of Class 2. Everything said about 
the ascent of the TP and the standing still of the accuracy 
remains valid in this case also. We observed that where we 
used the Cost-sensitive classification only, the increase in the 
TP of the class is more than double (Fig. 16).  

 

Fig. 16. The evolution of the TP of Class 2 and the general 
accuracy with respect to the number of instances of Class 2 

This algorithm helps Class number 3 as well. Although it 
started from a quite high, the TP of the class improved more 
and stabilized its ascent at around 0.88 (Fig. 17). 

 

Fig. 17. The evolution of the TP of Class 3 and the general 
accuracy with respect to the number of instances of Class 3 

The improving of the TP of Class 4 seemed to be very 
unstable, with peeks of maxima, which couldn’t be taken into 
consideration. The number of instances that this class has, is 
far too few (4%) and even though we multiplied the number 
of instance that belong to the class, the dataset didn’t know 
how to construct the boundary hyper plane, as the special 
span of the class distribution was too narrow (Fig. 18).  

 

Fig. 18. The evolution of the TP of Class 4 and the general 
accuracy with respect to the number of instances of Class 4 

This algorithm helps the Class 3 of the Dermatology dataset 
as well. Although it started from a quite high (0.85), the TP 
of the class stabilized its ascent at around 0.89 (Fig. 19). 
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Fig. 19. The evolution of the TP of Class 3 and the general 
accuracy with respect to the number of instances of Class 3 
(Dermatology dataset) 
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The accuracy of the Class number 1 reached 0.95, meaning a 
better value than the one reached using only the Cost-
sensitive classification (Fig. 20). 
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Fig. 20. The evolution of the TP of Class 1and the general 
accuracy with respect to the number of instances of Class 1 
(Dermatology dataset) 

The accuracy and the TP of the Classes 0, 2, 4 and 5 
remained constant with respect to Cost Matrix change (Fig. 
21).  
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Fig. 21. The evolution of the TP of Classes 0, 2, 4 and 5 and 
the general accuracy with respect to the number of instances 
of Classes 0, 2, 4, and 5 (Dermatology dataset) 

After applying the class multiplications, all the TP of Class 1 
(in the case of Blood Transfusion dataset) hit some zones of 
instability, until the multiplying factor reached 0.8, when the 
TP ascent stabilized and grew to 0.9. Seemingly the problem 
in this case is that the accuracy was dropping or remaining 
constant, while the TP of the Class was getting bigger (Fig. 
22).  

 

Fig. 22. The evolution of the TP of Class 1 (Blood 
Transfusion dataset) and the general accuracy with respect to 
the number of instances of Class 1 

So, the Enhancer multiplied the information accordingly, 

such that to maximize CCi ATP ∆+∆ , so the accuracy does not 
fall below a set ε. We set ε to 0.05 (5%) and we concluded 
that with the new algorithm, the TP of certain classes of 
interest were increased significantly while keeping the 
general accuracy in the desired range (Fig. 23, Fig. 24, and 
Fig. 25). 
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Fig. 23. Comparison between the TP of the classes resulting 
Cost-sensitive SMO Evaluation and with the Enhancer 
(Cleveland dataset) 
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Fig. 24. Comparison between the TP of the classes resulting 
Cost-sensitive SMO Evaluation and with the Enhancer 
(Dermatology dataset) 
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Fig. 25. Comparison between the TP of the classes resulting 
Cost-sensitive SMO Evaluation and with the Enhancer 
(Blood Transfusion dataset) 

We observed that the last classifier performs the best and the 
Enhancer algorithm could have pointed even more accurately 
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the instances that belong to the class of interest, but with the 
downside of pulling the general accuracy below the threshold 
preset ε.  

The cost matrices that were used here are the best ones that 
were found in the evaluation step. The rows are read as 
“classified as”, and columns as “actual class” (Table 3, Table 
4, Table 5). 

Table 3. Cleveland cost matrix 

Cls 0 Cls 1 Cls 2 Cls 3 Cls 4  

0.0 9.5 75.6 105.8 116.2 Cls 0 

28.4 0.0 14.2 23.6 86.9 Cls 1 

1.9 120.0 0.0 66.1 18.9 Cls 2 

95.4 98.3 115.3 0.0 109.6 Cls 3 

70.9 21.7 27.4 67.1 0.0 Cls 4 

Table 4. Dermatology cost matrix 

Cls 0 Cls 1 Cls 2 Cls 3 Cls 4 Cls 5  

0.0 1.0 1.0 1.0 1.0 1.0 Cls 0 

1.0 0.0 1.0 210.0 1.0 1.0 Cls 1 

1.0 1.0 0.0 1.0 1.0 1.0 Cls 2 

1.0 343.0 1.0 0.0 1.0 1.0 Cls 3 

1.0 1.0 1.0 1.0 0.0 1.0 Cls 4 

1.0 1.0 1.0 1.0 1.0 0.0 Cls 5 

Table 5. Blood Transfusion cost matrix 

Cls 0 Cls 1  

0.0 12.0 Cls 0 

30.0 0.0 Cls 1 

We also noted that the Enhancer had highest values for TP 
instances among all other metaclassifiers while the accuracy 
was kept at an acceptable level (Table 6, Table 7, and Table 
8). 

Table 6. The results obtained by compared metaclassifiers 
on Cleveland dataset 

TP 
MetaClassifier 

with SMO 
Acc 
(%) Cls 

0 
Cls 
1 

Cls 
2 

Cls 
3 

Cls 
4 

AdaBoost 59.07 0.95 0.18 0.17 0.23 0.00 

Attribute 
Selected 57.42 0.92 0.16 0.14 0.26 0.08 

CVParameter 
Selection 59.07 0.95 0.20 0.17 0.20 0.00 

Dagging 59.40 0.95 0.27 0.03 0.26 0.00 

Decorate 58.08 0.95 0.15 0.17 0.20 0.00 

Ensemble 
Selection 57.09 0.95 0.11 0.11 0.17 0.08 

Filtered   
Classifier 58.08 0.92 0.11 0.22 0.29 0.08 

MetaCost 58.08 0.95 0.2 0.11 0.20 0.00 

MultiClass 

Classifier 
54.12 1.00 0.00 0.00 0.00 0.00 

MultiBoost 
AB 50.82 0.86 0.18 0.06 0.03 0.00 

CostSensitive 
Classifier 59.07 0.95 0.32 0.28 0.62 0.23 

Enhancer 57.20 0.95 0.58 0.42 0.68 0.23 
 

Table 7. The results obtained by compared metaclassifiers 
on Dermatology dataset 

TP Meta 
Class 
ifier 
with 
SMO 

Acc 
(%) Cls 

0 
Cls 
1 

Cls 
2 

Cls 
3 

Cls 
4 

Cls 
5 

Ada 
Boost 95.81 1.00 0.85 1.00 0.88 1.00 1.00 

Attri 
bute 
Selec 
ted 

97.49 1.00 0.95 0.97 0.90 1.00 1.00 

CVPara
meter 
Selec 
tion 

95.81 1.00 0.85 1.00 0.88 1.00 1.00 

Dag 
ging 94.69 1.00 0.92 1.00 0.89 1.00 0.55 

Deco 
rate 96.37 1.00 0.88 1.00 0.88 1.00 1.00 

Ense 
mble 
Selec 
tion 

94.41 0.97 0.93 1.00 0.85 0.92 0.90 

Filtered   
Class 

96.09 1.00 0.87 1.00 0.88 1.00 1.00 
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ifier 

Meta 
Cost 68.44 0.99 0.00 1.00 0.00 0.96 0.90 

Multi 
Class 

Classi 
fier 

96.37 1.00 0.90 1.00 0.88 1.00 0.95 

Multi 
Boost 
AB 

96.09 1.00 0.87 1.00 0.88 1.00 1.00 

CostSe
nsitive 
Classi 

fier 

95.53 1.00 0.85 1.00 0.85 1.00 1.00 

Enhan 
cer 95.50 1.00 0.90 1.00 0.90 1.00 1.00 

 

Table 8. The results obtained by compared metaclassifiers 
on Blood Transfusion dataset 

TP MetaClassi 
fier with 

SMO 

Accuracy 
(%) Cls 

0 
Cls 
1 

AdaBoost 77.27 0.97 0.14 

Attribute 
Selected 76.20 1.00 0.00 

CVParamet
er Selection 76.20 1.00 0.00 

Dagging 76.20 1.00 0.00 

Decorate 76.47 0.99 0.03 

Ensemble 
Selection 77.01 0.92 0.28 

Filtered   
Classifier 76.20 1.00 0.00 

MetaCost 76.20 1.00 0.00 

MultiClass 

Classifier 
76.20 1.00 0.00 

MultiBoost 
AB 76.34 0.99 0.01 

CostSensi 
tive 

Classifier 
70.05 0.73 0.62 

Enhancer 51.30 1.00 0.88 

5. CONCLUSIONS 

This paper is focused on providing the Enhancer, a viable 
algorithm for improving the SVM classification of 
unbalanced datasets.  

Most of the times, in unbalanced data sets, the classifiers 
have a tendency of classifying in a very accurate manner the 
instances belonging to the best represented classes and do a 
sloppy job with the rest.  In order to overcome this problem 
we have developed the new classifying algorithm that can 
classify the instances of a class of interest better than the 
classification of the usual SVM algorithm. All of this is 
happening while keeping the accuracy at an acceptable level.  

The algorithm improves the classification of the weakly 
represented classes in the dataset, with the condition that the 
class must have more than 5% of the total number of in-
stances. For a smaller number of instances, the SVM just 
over fits the built model to the few amounts of data, and 
produces no real results when faced with new test instances. 
The idea of multiplying the unrepresented classes is original 
and came from the experimental work. We have also 
discovered that by over sampling the instances of the class of 
interest, we are helping the SVM algorithm to overcome the 
soft margin. As an effect, it classifies better future instances 
of this class of interest. 

The algorithm improves the classification of the weakly 
represented class in the dataset and it can be used for solving 
real medical diagnosis problems. This solution is especially 
important when it is far more important to classify the in-
stances of a class correctly, and if in this process we might 
classify some of the other instances as belonging to this class 
we do not produce any harm. For instance it is better to send 
people suspect of different diseases to further investigations, 
than sending ill people at home and telling them they don’t 
have anything to worry about. 

As a future work, we propose to maximize accuracy with 
geometric mean metric in order to balance both classes at the 
same time. This evaluation measure will allow us to 
simultaneously maximize the accuracy in positive and 
negative examples with a favourable trade-off.  
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