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Abstract: The main requirement for an efficient carbon isotope separation in a cryogenic distillation 
column is to maintain the operating parameters at constant levels. This paper uses some simplified 
nonlinear equations of the carbon isotope separation process that model the isotope transfer rate, the top 
and bottom column temperatures. The control strategies proposed in this paper are an optimal, linear 
quadratic regulator that effectively rejects the disturbances in temperature variations, thus allowing only 
minor variations in the isotope transfer rate and a robust nonlinear controller, based on feedback 
linearization and a ∞H controller that ensures the robust stability despite modeling uncertainties.  
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1. INTRODUCTION 

The 13 carbon isotope, with a natural abundance of 1.1%, 
plays an important role in numerous applications, such as the 
study of human metabolism changes, molecular structure 
studies, non-invasive respiratory tests, Alzheimer tests, air 
pollution and global warming effects on plants. The main 
drawback with the (13C) isotope is related to the difficulty of 
raising its natural concentration. The main methods available 
for the separation of (13C) are: gaseous diffusion, chemical 
exchange, thermal diffusion, laser isotope separation by 
multi-photon dissociation, chromatography. One of the 
effective methods for separating the carbon isotopes was 
developed at the National Institute of Research and 
Development for Isotopes and Molecular Technologies 
(INCDTIM) Cluj Napoca and consists of a distillation 
column that operates at very low temperatures. 

The column, with the simplified scheme presented in Fig.1, 
separates the carbon isotopes based on the cryogenic 
distillation of pure carbon monoxide, which is fed at a 
constant flow rate as a gas through the feeding system. At 
extremely low temperatures (about -192oC), the vapour 
pressure (P1) of (12C16O) is greater than the pressure (P2) of 
(13C16O) and the separation coefficient is (Axente, et al., 
1994): 

007.1
2

1 ≈= α
o

o

P
P

                                                     (1) 

Due to the very-low operating temperature, an efficient 
thermal isolation vacuum jacket is necessary.  

Since the “elementary separation ratio” (α) (Axente, et al., 
1994) is very close to unity in order to raise the (13C) isotope 
concentration up to a desired level, a permanent counter-

current of the liquid-gaseous phases of the carbon monoxide 
is created by the main elements of the equipment: the boiler 
in the bottom-side of the column and the condenser in the  

 Fig. 1. Simplified cryogenic isotope separation column 
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top-side. The gaseous carbon monoxide upstream (from 
boiler and from the feeding system) condenses on the “cold-
wall” of the condenser, cooled with liquid nitrogen by 
atmospheric pressure and falls, in small drops, downstream to 
the electrically heated boiler. The (13C) isotope, slightly 
heavier than the predominant (12C) isotope, accumulates in 
liquid phase and will be extracted as end product at the 
bottom of the column, while the (12C) component 
accumulates in vapour phase and will be extracted as waste at 
the top of the column. The column operates with two zones: 
the stripping zone, from the feeding point to the top of the 
column and the enriching (rectifying) zone, in its lower part 
(Gligan, et.el., 2006). 

The characteristics of the carbon cryogenic separation 
column, presented in what follows, suggest the necessity of 
modern control strategies. The paper focuses on a two 
different strategies: optimal control and nonlinear robust 
control, a problem that the authors have previously discussed 
(Pop, et al., 2009; Dulf, et al., 2009; Dulf, et al., 2008).  

2. CONTROL PROBLEMS  

The counter current cryogenic distillation column described 
is a highly complex plant, nonlinear, multivariable, with large 
time constants that overcomplicate the control solutions. The 
control strategy is to maintain the column operation 
parameters constant, by eliminating the effects of the 
disturbances while keeping the overall system stable, despite 
the uncertainties that may arise. The main parameters that 
need to be overseen are: 

The liquid nitrogen level in the condenser. The drop of the 
liquid nitrogen level below a critical value would lead to the 
impossibility of efficiently condensing the vapour upstream 
and thus would compromise the entire separation process.  

The electrical power supplied to the boiler. High variations 
would affect the separation by modifying the upward gaseous 
stream.  

The vacuum pressure. Variations in the vacuum pressure 
bring about the loss of the efficient thermal isolation and 
cause the increment of the inner column temperature. 

The column temperature. Considering the above presented 
isotope separation column, the objective is to keep the 13C 
isotope transfer rate ( c& ) constant. The isotope transfer rate 
depends on the separation ratio and as seen in (Axente, et al., 
1994) the latter is closely related to the temperature. The 
typical values of the separation factor (α) as a function of the 
column temperature are given in Table 1. 

Table 1.  The typical values of the separation factor (α) 

Temperature -191.3 -163.1 -205 
(α) 1.0069 1.0052 1.012 

Thus, by keeping the column temperature constant, the 
separation factor will also be kept constant and ultimately a 
properly designed controller would ensure the overall 
requirement of constant 13C isotope transfer rate.  

The paper proposes two control strategies, one that tackles 
the problem of rejecting temperature disturbances and one 
that deals with parameter uncertainties. For temperature 
disturbance rejection the proposed solution is a linear 
quadratic regulator, while for compensation of the 
uncertainties the solution consists of a nonlinear robust 
controller. Both controllers were designed tacking into 
account the linearized system, obtained in nominal 
conditions. The closed loop nonlinear system is then 
simulated considering a temperature disturbance for the 
optimal controller and a range of possible values for the 
uncertain parameters in the case of the robust controller. 
Based on experimental data, the paper considers the 
equilibrium operating point of the separation column to be: 
79K and 77K temperature at the boiler and condenser, 
respectively. Under this assumption, considering nominal 
operating conditions (no disturbances), a 25W electrical 
power supplied to the boiler and around 20cm nitrogen level 
in the condenser, during 100 hours of column operation the 
maximum achievable 13C isotope concentration would be 
approximately 2.8 % at. The aim of the controllers designed 
is to maintain the isotope transfer rate constant and thus 
maintain a proper separation process that would ensure the 
goal of 2.8% at concentration in the isotope of interest, 
during 100 hours, despite disturbances or uncertainties.  

3. NONLINEAR MODEL OF THE 13C ISOTOPE 
SEPARATION COLUMN 

The paper considers a simplified nonlinear model for the 
cryogenic isotope separation column presented, in which the 
isotope transfer rate depends on the inner column 
temperature. The objective is to design a temperature control 
loop, by manipulating the level of liquid nitrogen in 
condenser (hc) and the electrical power at the boiler (Pel).  

The nonlinear system of the isotope separation process can be 
modeled as (Dulf, et al., 2008): 
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concentration, x2 is the temperature in the boiler zone, x3 is 
the temperature in the condenser zone TB and TC are the 
boiler and condenser time constants and k10, k11, k12, k21 and 
k31 are specific coefficients. The control vector is: 

[ ] [ ]Tcel
T hPuuu == 21 .  

The equations for the temperatures evolutions are 
approximated by first order transfer functions. The first state 
variable equation is derived based on experimental data  
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obtained at INCDTIM and on the assumptions that the 
vapour pressure difference is proportional to the column 
temperature and also inversely proportional to the square of 
the absolute temperature (Vasaru, 1968).  

As it has been stated, the separation factor (α) depends upon 
the vapour pressure difference (equation (1)) and thus the 
isotope transfer rate would be modelled as depending on the 
column temperature, resulting in the final equation for the 
isotope transfer rate: 

( ) 2
321232111101 )( xxkxxkxkx +−−+−=& .  

To control the temperatures at the boiler and condenser, the 
nonlinear model of the isotope separation column is firstly 
linearized around a nominal operating point chosen as: 

]77;79;87.2[x0 = . The linearized model of the column is: 
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The simulations, performed in the programming environment 
Simulink, Matlab, of the open loop system, without 
considering any disturbances, are given in Fig. 2, which 

presents the evolution of the 13C isotope concentration, for 
both the linear and the nonlinear closed loop system.  

 
Fig. 2. 13C isotope evolution for linear and nonlinear closed 

loop system 

The simulations show a good agreement between the 
dynamics of the nonlinear system, given in (2) and the 
linearized system given in (3), both models behaving 
according to the experimental data provided at INCDTIM. 
The simulation values are compared to the experimental data 
obtained under the same operating parameter values: 77K for 
the condenser temperature, 79K for the boiler temperature, 
25W electrical power and approximately 20cm liquid 
nitrogen level.                                                                          .

 

 

Fig. 3. Closed loop control scheme of the cryogenic isotope separation column using a linear quadratic regulator
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4. LINEAR QUADTRATIC REGULATOR FOR 
TEMPERATURE CONTROL  

For the linearized state space representation given in (3), a 
linear quadratic regulator was designed. The cost function 
used in this paper is translated from classic disturbance 
rejection to a tracking problem (Budiyono, et al., 2007). 
The authors propose a modified cost function as given 
below: 

( ) ( )[ ]∫
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with dx  being the desired values for the isotope transfer 
rate, boiler and condenser temperatures and Q and R, the 
weighting matrices for the states and the input vector, 
respectively. 

The weighting matrices in (4) were chosen to be: 
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for specifying input constraints, that is constraints 
regarding the electrical power supplied to the boiler and 
the liquid nitrogen level and: 
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for specifying state constraints, meaning restrictions on the 
isotope transfer rate, the boiler and condenser 
temperatures.  

The weighting matrix for the states was chosen 
significantly larger than the weighting matrix for the input 
vector in order to penalize more strictly the evolution of 
the system states as compared to the evolution of the input 
signals (Zhang, et al., 2007).  The resulting linear 
quadratic regulator is: 
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The nonlinear closed loop system control scheme is 
presented in Fig. 3, the linearized closed loop system 
control scheme being similar. 

To test the ability of the optimal controller designed, a fail 
of the vacuum is considered, acting as a disturbance. The 
effect of the vacuum loss is modelled as a 3 degrees 
increment in the boiler and condenser temperature. Such 
increment, in an open loop case- without the optimal 
controller considered- implies a modification of the 
separation coefficient and thus would cause significant 
changes in the isotope transfer rate. 
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Fig. 4.  Evolution of the boiler temperature, considering a 
vacuum fail 

Fig. 4-8 present the closed loop simulations for the linear 
and nonlinear system, considering the disturbance 
mentioned previously.  

Fig. 4 presents the evolution of the boiler temperature, 
while Fig. 5 presents the evolution of the condenser 
temperature.  

The input control signals evolutions are given in Fig. 7 and 
Fig. 8. The electrical power and the liquid nitrogen level 
are maintained around their nominal operating values. 
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Fig. 5.  Evolution of the condenser temperature, 
considering a vacuum fail 
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Fig. 6. Evolution of the 13C isotope concentration, 
considering a vacuum fail 
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Fig. 7. Evolution of the electrical power supplied to the 
boiler, considering a vacuum fail 

The simulations, given in Fig. 4 and 5, show that the 
optimal controller can eliminate the disturbances caused 
by the vacuum fail within less than an hour. However, it 
cannot maintain the exact set-point values – 79K and 77K, 
respectively - for the boiler and condenser temperatures. 
The isotope transfer rate is then slightly altered and a final 
isotope concentration of approximately 2.8% at cannot be 
achieved. Due to the disturbance affecting the separation 
process, the isotope transfer rate is again slightly changed, 
for a short period of time. Nevertheless, the final isotope 
concentration value is not significantly altered, the 
maximum concentration reached being around 2.68% at 
(Fig. 6).  

Fig. 4-8 also show that the designed optimal controller can 
achieve the same performance when applied to the 
linearized model or the nonlinear one, since the evolution 
of the state variables and the control inputs remain similar, 
with the corresponding curves overlapping. 

5. ROBUST NONLINEAR CONTROL OF THE 
SEPARATION PROCESS 

To account for the uncertainties that may exist considering 
the nonlinear model in (2), the authors propose a control 
strategy based on an inner feedback linearization method 
and a robust ∞H controller. Since the feedback 
linearization method leads to a Brunovsky form for the 
linearized system, which has been stated to be a non robust 
form with a dynamic that is completely different from that 
of the original system and which is highly vulnerable to 
uncertainties (Franco, et al., 2006), the authors have 
chosen a different approach (Franco, et al., 2006, Guillard, 
et al., 2000) to the classical feedback linearization 
technique, that leads not to the classical chain of 
integrators but to the linearized system given in (3).  

In classical feedback linearization, we consider a multi 
input- multi output (MIMO) nonlinear system having n 
states and m inputs being given by: 
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where nx ℜ∈ is the state and mu ℜ∈ is the control input 
vector. We assume that f and g are smooth vector fields 
defined on nℜ .  In what follows, we assume the feedback 
linearization conditions (Isidori, 1989) are satisfied and 
that the output of the nonlinear system given in (1) can be 
chosen as: )()( xxy λ= , where )]().....([)( 1 xxx mλλλ = is a 
vector formed by functions )(xiλ , such that the sum of the 
relative degrees of each function )(xiλ is: 

nrrr m =+++ .....21    (10) 

We also assume that the decoupling matrix of the system 
in (8) is invertible, being given by the following 
equation:
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Fig. 8. Evolution of the liquid nitrogen level in condenser, 
considering a vacuum fail 

In a classical approach, the feedback linearization leads to 
a linearized system of the form: 

wBxAx ffff +=&                                 (12) 

with w a linear control. The system in (12) is obtained 
using a linearizing control law given by: 

wxxu ff )()( βα +=                                 (13) 

and a state transformation given by (Franco, et al., 2006): 
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The feedback linearization used in this paper for the 
nonlinear system (2) is performed in a neighbourhood of 
an operating point, 0x . The linearized system is obtained 
in a similar manner as with the classical approach. The 
linearizing control law has the form: 

vxxu rr )()( βα +=                                              (19) 

with v a linear control and a state transformation given by: 

)(xx rr Φ=                                                   (20) 

The linearized system has the form: 

vBxAx rrrr +=&                                 (21) 

with )( 0xfA xr ∂=  and )( 0xgBr = . 

In the robust feedback linearization approach the 
computation steps to determine the linearized system in 
(14) are as follows (Franco, et al., 2006), (Guillard, et al., 
2000): )()( 1 xTx fr

Φ=Φ − , )()( 00 xxML fxα∂−=

)()()()( 1 xLTxxx fffr Φ+= −βαα , )( 0xT fxΦ∂= ,
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1 xMR −=  and 1)()( −= Rxx fr ββ .  

Thus, by choosing a feedback of the form given in (19) the 
nonlinear system in (8) will be transformed in its tangent 
linearized system (21) around the operating point 0x . 

In our situation, in order to meet the feedback linearization 
requirements, the output of the nonlinear system given in 

(2) can be chosen as:
Txxxxy ][)()( 21== λ . Given such 

choice for the controlled outputs, the sum of the relative 

degrees of each function )(xiλ is 321 =+ rr , equal to the 
number of states. The decoupling matrix of the nonlinear 
system is:  
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In a classical approach, the control law for the nonlinear 
system in (2) would be given by : 

( ) 



















++

+−+
−

−

=

312221221131

2
312

2
212311110

221

1

xkxkkk

xkxkxkxk
xk

fα

                             (23) 

( ) ( )

















++
++−

−
++

−
=

312221221131
3122212211

312221221131

1
21

10

xkxkkk
xkxkk

xkxkkk

k
fβ

  (24)           

while the state transformation is: 

[ ]Tf xfxx 211)( =Φ                                 (25) 

Using the mathematical background presented above, the 
linearized system obtained is in the Brunovsky form. In 
order to obtain the linearized system given in (3), the 
linearizing control law has the form: 

vxxu rr )()( βα +=                                 (26) 

with v a linear control and a state transformation given by 

the mathematical equation, )(xx rr Φ= . Some of the 
matrices required to derive the nonlinear control law are 
given below (Pop, et al., 2009):  
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For the linearized system in (3) a robust controller is 
designed based on the McFarlane-Glover method (Glover, 
et al., 1989) with loop-shaping that ensures the robust 
stabilization problem of uncertain linear plants, given by a 
normalized left coprime factorization. The loop-
shaping )()()( sPsWsPs = , with P(s) the transfer matrix of 
the linearized system in (3), is done with the weighting 
matrix W chosen as: 


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The weighting matrix W adds an integrator to the first row 
of the transfer matrix )(sPs , which is related to the isotope 
concentration, to avoid steady state errors. To the other 
lines of the transfer matrix, related to the boiler and 
condenser temperatures, only gains are added. The 
resulting controller is simple and has a reduced order. 
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Fig. 9. Evolution of the 13C isotope concentration, 
considering a vacuum fail 

The simulations of the closed loop nonlinear system under 
nominal parameter values are given in Fig. 9, as well as 
the simulations considering the uncertain family of 
nonlinear closed loop system. The variations considered 
for the uncertain parameters, for simulation purposes, are: 

10k , 11k  and 12k   ranging  10%± from nominal value, 

BT  and CT  ranging  15%±  from nominal value. 

The results in Fig. 9 show that with all the considered 
parameter variations (simulations marked with a black “-” 
line) the closed loop system controlled by the McFarlane-
Glover regulator associated with the feedback linearization 
presented, behaves as desired, since the performance of the 
entire family of nonlinear systems tested remains close to 
the nominal case. However, for uncertainties outside the 
range considered (simulations marked with grey “-” line) 
the nonlinear robust controller can maintain the robust 
stability of the system, but the performances in terms of 
final isotope concentration are no longer met. 

6. CONCLUSIONS 

Figures 4 and 5 above show that the optimal controller 
designed can eliminate the disturbances in temperature 
variations, while keeping the control inputs around their 
nominal values. Variations in the electrical power and the 
liquid nitrogen level are within the acceptable range. All in 
all, the simulations show that the optimal controller 
designed for the linearized system still maintains its 
characteristics when applied to the initial nonlinear model 
of the column. 

A comparison between Fig. 2 and Fig. 6, plotting the 
evolution of the 13C isotope concentration in no 
disturbance and active disturbance situations, shows that 
the variation of the isotope transfer rate is only slightly 
affected by the disturbances in temperature variations.  

As it has been previously demonstrated theoretically 
through mathematical computations (Guillard, et al., 

2000), the results in this paper prove that by combining the 
method detailed for feedback linearization with a robust 
linear controller, the robustness properties are kept when 
simulating the closed loop nonlinear uncertain system. As 
opposed to a Brunovsky form obtained classically by 
feedback linearization, the linearized system in (3) will 
have the same physical meaning as the initial nonlinear 
one. Thus, the choice of the weighting matrix is easier and 
will have the same meaning for the linearized system (3) 
as for the initial nonlinear system (Pop, et al., 2009). The 
simulations demonstrate that the method described in this 
paper leads to a nonlinear controller that is robust with 
respect to model uncertainties.  

The two control strategies proposed for the separation 
process maintain a proper isotope transfer rate under the 
conditions considered, despite some modelling 
uncertainties and disturbances. A comparison between Fig. 
6 and 9 shows that robust controller can achieve a more 
desirable isotope transfer rate, than the optimal controller, 
since it ensures the maximum achievable 13C isotope 
concentration. 
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