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Abstract: Driving style, a critical indicator that affects vehicle fuel economy, its recognition has
traditionally relied on onboard sensors and limited vehicle-to-vehicle communication. However,
6G technology facilitates the collection of vast amounts of data, including vital signs like
vehicle speed, power sources performance, and real-time traffic conditions, which can be used
for real-time driving style recognition. It enables vehicles to make informed decisions about
power allocation and fuel consumption, thereby advancing the future of green and efficient
transportation. For driving style recognition problem, the principal component analysis (PCA)
method is adopted to select the speed and the absolute values of acceleration as driving style
identification parameters and the fuzzy-logic controller optimized by genetic algorithm (GA)
is designed to identify driving style. Afterwards, the driving style optimal control strategy is
realized by matching the recognized driving style with the optimal equivalent factor in each
driving condition and the matched equivalent factor is combined with the objective function
of equivalent consumption minimum strategy (ECMS). The effectiveness of proposed driving
style based on ECMS is validated by real vehicle test, which indicates that, compared with the
strategy without considering driving styles, the proposed driving style recognition based ECMS
reduces the hydrogen consumption of FCHEV by 3.7% in the combination of HWFET and
UDDS.

Keywords: Fuel cell hybrid electric vehicle, energy management strategy, driving style
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1. INTRODUCTION

6G vehicular communication systems are at the forefront
of next-generation wireless technologies, promising to rev-
olutionize various aspects of automotive operations. One of
the promising domains for their application is energy man-
agement strategy for fuel cell electric vehicle(FCHEV),
particularly in the context of vehicle driving style recog-
nition. The FCHEV equipped with fuel cell (FC), battery
(BAT) and super capacitor (SC), among which fuel cell
can provide the power demand continuously and steadily
(Hmidi et al., 2020), battery can provide the power de-
mand rapidly (Zhang et al., 2021), and super capacitor
can provide the transient high power (Li et al., 2019),
the three energy sources exert their respective advantages
to provide the power demand for hybrid electric vehicle
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(Rahman et al., 2021). The key technology of FCHEV is to
coordinate the output power of energy sources to achieve
optimal economic performance and practical performance
(Wang et al., 2019). Studies show that FCHEVs (Sun
et al., 2020), like conventional vehicles (Fu et al., 2020),
are profoundly influenced by the driver’s driving style in
terms of fuel economy and emissions (Tao et al., 2020).
By integrating 6G vehicular communication into energy
management systems, vehicles can continuously exchange
data with the infrastructure and other connected vehicles,
allowing for real-time assessment of the driver’s driving
style. This recognition enables dynamic adjustments to
vehicle power allocation, optimizing fuel consumption and
Increasing driving comfort. For instance, a driver with a
more aggressive driving style might benefit from adaptive
power allocation that encourages smoother accelerations
and decelerations. Therefore, it is of great significance to
develop an appropriate and effective energy management
strategy (EMS) based on driving style to improve the fuel
economy of FCHEV and expand the lifespan of energy
sources.

For driving styles, there are many factors influencing driv-
ing style recognition (Feng et al., 2020). Such as personal
driving habits (Xia et al., 2021), driving environment,
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driving conditions, etc. These factors are a great challenge
for the identification of driving styles (Wu et al., 2020). In
the existing researches, driving styles are usually divided
into three categories: aggressive, normal and calm. In the
aggressive driving style, the pedal range is larger and
the speed of FCHEV is fast, so the fuel consumption of
FCHEV is relatively high. However (Fernandes et al.,
2021), in the normal or calm driving style (Fu et al.,
2020), the pedal range is relatively reasonable and the
speed of FCHEV is moderate (Li et al., 2019), so the fuel
consumption is relatively reasonable (Quan et al., 2021).
To achieve better fuel economy for FCHEV (Deng et al.,
2017), it is necessary to understand and develop driving
style recognition in advance (Zhang et al., 2020).

The first step of driving style recognition consists of de-
termining the characteristic variables to describe driving
styles and classify them. The driving styles of drivers can
be reflected by the following driving characteristics: speed,
acceleration, brake pedal position, throttle opening and
fuel consumption, so these parameters are extensively used
to identify driving style. For example, the longitudinal
acceleration and lateral yaw rate are taken as the driving
style identification parameters, and an artificial neural
network method using a large amount of data is adopted to
classify driving styles (Efremov et al., 2017). Although the
classification accuracy is improved, it is time-consuming in
the calculation process. To reduce the calculation time, the
longitudinal acceleration and throttle pedal opening and
closing are taken as the identification parameters of driving
style which are classified into aggressive and normal by
using a semi-supervised support vector machine method
(Wang et al., 2017). In addition, to reduce the number
of samples, with brake pedal position, vehicle acceleration
and accelerator pedal position as identification parame-
ters, the expectation maximization method and K-nearest
Neighbor algorithm are used to classify driving style styles
into conservative and aggressive types (Guo et al., 2020).
In the research on driving style recognition methods, dif-
ferent algorithms, such as machine learning algorithms,
fuzzy control and statistical algorithms, are frequently
used. By analyzing the selected characteristic parameters,
the optimum characteristic parameters are selected, so as
to realize the recognition of different driving styles. Among
them, fuzzy control is a better method to identify driving
styles, because the relationship between driving styles and
characteristic parameters can be described by a set of
vague driving rules that have been developed through the
conditions and the experiences of different drivers. The
throttle pedal openness and the change rate of openness
are used as driving style identification parameters to iden-
tify the newly added driving styles, and fuzzy logic rules
are designed to divide driving styles into four categories:
economical, comfortable, normal and aggressive (Guo et
al., 2019).

To reduce the fuel consumption of the whole vehicle un-
der different driving styles, many scholars have proposed
an energy management strategy combining driving style
recognition and equivalent consumption minimum strat-
egy (ECMS). Driving styles are divided into six categories
from moderate to radical by kernel density estimation and
entropy theory, then the optimal equivalent factor adjust-
ment rules in ECMS strategy are designed to improve the

fuel economy of hybrid electric vehicles (Yang et al., 2018).
Driving styles are divided into economic, comfort, common
and aggressive by using fuzzy logic rules, and the rela-
tionship between driving styles and equivalent factors are
optimized by using ECMS, particle swarm optimization
(PSO) and GA, verifying the effectiveness of the driving
style adaptive optimal control strategy (Guo et al., 2019).
An EMS strategy based on driving style is proposed, which
uses the K means clustering algorithm to divide driving
style into three categories: aggressive, normal and calm.
The ECMS is optimized by GA to adjust the battery
SOC punishment function and charge-discharge coeffi-
cient, compared with the traditional ECMS, the proposed
strategy has low fuel consumption (Gong et al., 2019).
The K-nearest neighbor method is used to preprocess the
driving style samples, and the driving style is divided
into offensive and conservative types through the expecta-
tion maximization method. At the same time, the driving
style is integrated into ECMS, and the simulation results
show that the charging sustainability and the equivalent
fuel consumption of the strategy are superior traditional
ECMS (Tian et al., 2019).

According to the current research, most of the researches
have classified the driving style into 2 to 4 categories. To
make the driving style classify more accurately and reduce
the fuel consumption of FCHEV, this paper proposes
driving-style-aware EMS for FCHEV based on ECMS.
The motivation and contributions of this paper can be
summarized as follows.

(1) Considering the on-line use of recognition algorithm, a
recognition algorithm based on fuzzy control is designed,
in which fuzzy rules are optimized by GA.

(2) Considering the influence of different driving styles on
fuel consumption of the FCHEV, driving styles are iden-
tified under the optimized fuzzy logic rules based on GA.
Then the optimal equivalent factor of each driving style
is solved by weighted average and the equivalent factor
query table is made. The identified driving style is matched
with the corresponding equivalent factor. The matched
equivalent factor is embedded into the objective function
of ECMS to ensure the minimum fuel consumption of the
FCHEV.

(3)Considering the battery SOC balance and keeping the
battery in the high efficiency range, the penalty factor
function is designed to consider the battery and fuel cell
lifespan.

The remainder of this paper is organized as follows. In
Section 2, the power train of FCHEV is modeled and
built in detail. In Section 3, the fuzzy-logic controller
optimized by GA is designed to identify driving styles
and the matched equivalent factor is combined with the
objective function of ECMS. On this basis, in Section 4,
the simulation test of the EMS is given in this section and
analyzed to verify the effectiveness of the proposed driving
style based on ECMS. Finally, the conclusions are drawn
in Section 5.

2. SYSTEM DESCRIPTION AND MODELING

The model of FCHEV is shown in Fig. 1. FC is the
primary energy source that delivers power to a motor
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via a unidirectional DC/DC converter. BAT and SC are
equipped as energy storage system, where BAT is used
to supply auxiliary power for FC. SC is connected to the
bi-directional DC/DC to provide/absorb peak power. The
above three energy sources provide power to satisfy the
power demand of the vehicle.

2.1 Power model

To allocate the power requirements of the hybrid system,
the total power of the hybrid system should be calculated
firstly. FCHEV is supposed to overcome the climb resis-
tance, acceleration resistance, rolling resistance and air
resistance during the journey, which can be calculated by
Equation 1. The relationship between power demand and
above resistances shown as Equation 2.


Fr = εmg cos θ
Fb = 0.5ρACdv2

Fc = mg sin θ
Fr = ma

(1)

Preq = (Fr + Fb + Fc + Fr)v (2)

where Fr,Fb,Fc and Fa represent the rolling resistance,
air resistance, climb resistance and acceleration resistance,
respectively, ξ is the rolling resistance coefficient, m is the
vehicle mass, θ is the road angle, ρ is the air density,
A is the front projection area of the vehicle, Cd is the
air resistance coefficient of the vehicle, v and a represent
the speed and acceleration, respectively, Preq is the power
demand of vehicle. The power demand of the hybrid
system comes from FC, BAT and SC, which can be
calculated as follows:

Preq = Pfc + Pbat + Psc (3)

where Pfc, Pbat and Psc are the power of FC, BAT and
SC, respectively.

2.2 Fuel cell model

In this paper, fuel cell is the Proton Exchange Membrane
Fuel Cell. Hydrogen and oxygen through chemical reaction
convert the chemical energy into electric energy. The Pfc

can be described as follows:

Pfc = ηfc ×
∫ t

0

mH2
(t)× 1.4× 108

3600
dt (4)

where mH2 indicates the mass of H2, ηfc indicates the
efficiency of hydrogen combustion into power which can
be described as follows:

ηfc =
Pfc

PH2

(5)

where PH2 indicates the power of hydrogen.

The hydrogen consumption of FC can be described by
Equation (6).

Cfc =

∫ t

0

ifc(t)

2×NA× e
dt (6)

where ifc(t) represents the current generated by the FC
at time t, NA represents Avogadro constant, e means the
electric quantity of electrons.

2.3 Battery model

Ignoring the internal resistance of the battery, the Pbat can
be expressed as follows:

Pbat = u

∫ t

0

i(t)dt (7)

where u indicates the voltage of battery, i(t) indicates the
instantaneous current of battery at time t.

To prevent BAT from overworking to prolong its lifespan,
the SOC of BAT should be changed within a reasonable
range. The SOC of BAT can be calculated as follows:

SOCbat = SOCbat int −
∫ t

0

i(t)

Qbat
dt (8)

where SOCbat indicates the SOC of battery, SOCbat int

indicates the initial SOC of battery, Qbat indicates the
maximum charge of battery, and i(t) indicates the current
of battery i(t) < 0 means the battery is charged, and
i(t) > 0 means the battery is discharged.

2.4 Supercapacitor model

The SOC of SC can be expressed as follows:

SOCsc = SOCsc int −
Q0 −

∫ t

0
u(t)
Ri

dt

Qsc max
(9)

where SOCsc indicates the SOC of SC, SOCsc int indicates
the initial SOC of SC, indicates the initial charge of
SC, Qsc max indicates the maximum charge of SC, u(t)
indicates the instantaneous voltage of SC at time t, Ri

indicates the internal resistance of SC.

3. EMS BASED ON DRIVING STYLE
IDENTIFICATION OPTIMIZED BY GA

The EMS is proposed in this paper as shown in Fig.
2. In part I, the driving styles are identified by the
fuzzy controller and GA is used to optimize membership
functions of the fuzzy controller. In part II, firstly, off-
line simulation processing using ECMS strategy is carried
out to obtain the optimal equivalent factor under each
driving condition. secondly, according to the proportion
of a certain driving style in the whole working condition,
the optimal equivalent factor for a certain driving style
is obtained. Finally, based on driving style recognition
results, the optimal equivalent factor of each driving style
is matched with ECMS for energy allocation.

3.1 Driving style identification based on GA-based fuzzy
logic control

Considering that there is no clear boundary for driving
style classification (Wang et al., 2019), fuzzy logic control
strategy is very suitable for driving style classification as
a method that relies on personal subjectivity (Wang et
al., 2019). Before driving style identification, driving style
identification parameters need to be constructed (Wu
et al., 2020), such as speed, acceleration, impact, pedal
position, etc. In this paper, the parameters of speed and
acceleration are used to identify the driving style, and
the fuzzy logic control strategy is adopted to identify the
driving style, The main advantage of this method is that
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Fig. 1. The power structure of FCHEV.

Fig. 2. The flow diagram of A-ECMS based on driving style.

fuzzy logic control classification is simple, the calculation
is small, and the accuracy of classification is guaranteed by
optimizing the member function of the genetic algorithm.

The proposed fuzzy logic control strategy consists of two
inputs and one output. The two input parameters are
the velocity and the acceleration, which mainly reflect the
power demand of the automobile and its changing trend.
The output parameter is the driving style factor, reflecting
the driving style of driver. The driving style factor is
divided into six categories: economical, safe, soft, normal,
fast, and aggressive. Based on the experience and practical
application, the range of input and output, membership
functions, fuzzy logic rule can be designed as follows:

(1) The range of input and output

According to the practical application and expert experi-
ence, the membership degree range of speed, acceleration
and driving style parameters of involved are listed in Table
1,2,3.

(2) Membership functions

Considering triangular membership functions can ade-
quately cover the universe of discourse without unnec-
essary complexity, which is beneficial for online control

Table 1. The membership degree range setting
for speed.

S(trimf) M(trimf) VB(trimf) B(trimf)

Speed 0-20 20-50 50-80 80-100

trimf: triangular membership function

Table 2. The membership degree range setting
for acceleration.

S(trimf) M(trimf) VB(trimf) B(trimf)

Acceleration 0-1 1-2 2-3 3-4

application of actual vehicle. Meanwhile, to unify the
membership function of input and output parameters,
therefore, this article will choose for the triangular mem-
bership function parameters of membership functions. The
absolute value of speed and acceleration and the member
function of driving style factor are shown in Fig. 3.

(3) Fuzzy logic rule

To our best knowledge, at the same speed, if the ac-
celeration is larger, the driving style is more aggressive.
Meanwhile, at the same acceleration, if the speed is faster,
the driving style is more aggressive. After fuzzy logic
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Table 3. The membership degree range setting for driving style factor.

eco safe soft norm fast agg

Driving style factor 0-0.1 0.1-0.3 0.3-0.5 0.5-0.7 0.7-0.9 0.9-1

Fig. 3. The fuzzy membership functions.

Fig. 4. Fuzzy logic surfaces of driving style.

rule calculation, the driving style can be divided into six
categories as shown in Fig. 4.

3.2 GA-based Optimization of the membership function

Considering the fuzzy control is highly dependent on ex-
pert experience and actual theory, so the optimization
algorithm is needed to optimize the fuzzy controller to
achieve the optimal driving style classification effect. GA
has strong global search ability and can carry out dis-
tributed computing, which is more efficient than simu-
lation degradation algorithm. The optimization process
based GA can be designed as follows:

(1) Select population

The essence of optimizing the membership functions of
fuzzy controller is to optimize the coordinate values of the
vertices of the membership functions. Thus, it is necessary
to partition the input/output membership functions. As
shown in Fig. 5, x1∼x10, x11∼x20, x21∼x36 represent
membership functions partition points of speed, acceler-
ation and driving style factor, respectively. Then, a 36
one-dimensional decimal matrices x1∼x36 is chosen as the
chromosomes of the initial population.

(2) Select the individual

The selection of individuals is based on the fitness assess-
ment of individuals in the population. The more adaptable
an individual is, the better it can be passed on to the
next generation. The fitness function of population can be
shown as follows:

f(i) =
1

J(i)
(i = 1, · · · , N)

J(i) = Cfc + Cbat + Csc

(10)

where f(i) represents the fitness function of individual,
J(i) represents the total energy consumption of FCHEV,
Cfc, Cbat and Csc represent hydrogen consumption of FC,
BAT, and SC, respectively.

According to the principles of evolution, the greater the
individual fitness, the more likely it is to be selected,
and vice versa. A uniform random number between [0,1]
is generated in each round, which is used as a selection
pointer to determine the selected individual.

P (i) =
f(i)

36∑
i=1

f(i)

(11)
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Fig. 5. The results of driving style classification.

where P (i) represents the probability that the th individ-
ual is selected.

(3) Crossover and mutation

The point of GA is the crossover operator of genetic
operation. The crossover is the operation of replacing and
recombining the partial structure of two parent individuals
to generate a new individual. By crossing, parts of two
individuals are swapped to produce a new combination.
The crossover can be calculated as follows:{

Ii
′ = (1− α)Ii + αIi+1

Ii+1
′ = αIi + (1− α)Ii+1

(12)

where the Ii and Ii+1 represent the i th and i+ 1 th
individuals, respectively, the Ii

′ and Ii+1
′ represent the

i th and i+ 1 th offspring individuals, α is a random
number between 0 and 1. New individuals formed after
crossover operation have a certain probability of genetic
variation. Like selection operation, this operation is based
on probability, which is called mutation probability. Gen-
erally, mutation probability is less than or equal to 0.05.
For the mutation probability, the membership function of
fuzzy logic controller is designed as:

{
a′ = amin + α(amax − amin)
b′ = bmin + α(bmax − bmin)
c′ = cmin + α(cmax − cmin)

(13)

where the a′ , b′ and c′ are respectively the values of
the three vertices of the triangle membership function in
the mutated fuzzy rule, the amax , bmax and cmax are
respectively the maximum values of the three vertices of
the triangle membership function, and amin, bmin and cmin

are its respectively the minimum values.

The population size will affect the optimality of the off-
spring. When the population size is large, the optimization
time will be longer, while when the population size is small,
the offspring may not be optimal. The 36 membership
function points of the fuzzy controller were optimized.
Under the premise of guaranteeing both the optimization
rate and individual optimality, 30 population, 0.9 crossover
probability and 0.09 mutation probability were selected.
On the premise of ensuring the optimal solution, it is
necessary to set a reasonable genetic algebra to reduce

Fig. 6. The fuzzy membership functions after GA optimiz-
ing

the optimization time. According to the actual needs, the
number of optimization iterations is set as 200.

The optimization operation of membership function based
on the above GA. The membership of speed, acceleration
and driving style factors is reclassified as shown in Table 4.
After the optimization of fuzzy logic by GA, the new fuzzy
membership functions and fuzzy logic surfaces are shown
in Fig. 6 and Fig. 7. From Fig. 6, it can be seen that the
overlapping of membership functions is very reasonable,
which satisfies the requirements for coverage of discourse.

By comparing with Fig. 4, it can be found that the opti-
mized driving style classification is more accurate when the
speed is 50-80 km/h and the acceleration is 3-4m/s2. How-
ever,when the speed is 30-40 km/h and the acceleration is
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Table 4. The Reclassification of the membership of speed, acceleration and driving style factors.

parameter Value

x01 · · ·x10 0 12.238 25.678 34.427 42.400 54.509 65.870 75.079 87.212 100
x11 · · ·x20 0 0.373 0.848 1.305 1.705 2.308 2.806 3.258 3.636 4
x21 · · ·x36 0 0.098 0.156 0.204 0.272 0.332 0.404 0.444 0.505 0.585

0.637 0.681 0.773 0.837 0.892 1

Fig. 7. Fuzzy logic surfaces of driving style optimized by
GA.

3-4 m/s2, the driving style recognition after optimization
is quite different from that before optimization. Therefore,
the classification of fuzzy logic rules optimized by genetic
algorithm is more accurate.

4. A-ECMS BASED ON DRIVING STYLE
IDENTIFICATION

The essence of minimum equivalent consumption is to
convert the battery power into equivalent fuel consumption
and optimize the total hydrogen consumption to minimize
the fuel consumption of FCHEV. The hydrogen consump-
tion of hybrid electric vehicles consists of the equivalent
hydrogen consumption of BAT, FC, and SC, and the total
hydrogen consumption can be expressed as follows:

Cm=Cfc+Cbat+Csc=Pfc+λbatPbat+λscPsc (14)

where the Cm represents the minimum hydrogen consump-
tion, λbat and λsc are the equivalent factor of BAT and SC,
respectively.

To keep the SOC of BAT and SC changing in a reasonable
area. The relevant penalty coefficients are added into
equation (12), and the objective function is defined as
follows:

Cm=Cfc+Cbat+Csc=Pfc+kbatλbatPbat+kscλscPsc (15)

where the kbat and ksc is the penalty function of SOC of
BAT and SC, respectively.

To reduce the optimization complexity of the ECMS,
the high-frequency power provided by the SC has been
separated previously, so only the battery and fuel cell
are optimized during the ECMS optimization process,
equation (15) can be reconstructed as follows:

Cm=Cfc+Cbat=Pfc+kbatλbatPbat (16)

The hydrogen consumption of FC can be expressed by
equation (17).

Cfc =

∫ t

0

ifc(t)

2×NA× e
dt (17)

where ifc(t) represents the current generated by the FC
at time t, NA represents Avogadro constant, e means the
electric quantity of electrons.

The equivalent hydrogen consumption of BAT can be
expressed as follows:

Cbat =
∫ t

0
ifc(t)×Pbat

2×NA×e×Pfc×ηdis×ηchg
dt

=
Cfc×Pbat

Pfc×ηdis×ηchg

(18)

where ηchg and ηdis indicate the charging and discharging
efficiency of battery, respectively, which can be expressed
as follows: ηdis =

(
1 +

√
1− 4RdisPbat/U2

)/
2

ηchg = 2
/(

1 +
√
1− 4RdisPbat/U2

) (19)

The equivalent factor of the equivalent hydrogen consump-
tion of the BAT is related to the SOC of BAT. Considering
the output performance of battery can be changed with the
value of SOC in different variation range, the Kbat can be
expressed as follows:

Kbat=


(
1− 2∗(SOC−SOCbat int)

SOCbat max−SOCbat min

)4
SOCbat min < SOC < SOCbat max(
1− 2∗(SOC−SOCbat int)

SOCbat max−SOCbat min

)20
SOC < SOCbat minSOC > SOCbat max

(20)

where the constant SOCbat max and SOCbat min represent
the maximum and minimum SOC of battery, respectively.
SOCbat int represents the initial SOC of the battery.

To extend lifespan of fuel cell and battery, the charging and
discharging state of the BAT and the working range of the
FC are taken as constraints, as shown in equation (20).
Equation (21) represents the main constraints considered
in EMS.



Pfc min < Pfc < Pfc max

SOCbat min < SOCbat < SOCbat max

Pbat min < Pbat < Pbat max

SȮCbat chg < 2C

SȮCbat dis < 4C
SOCsc min < SOCsc < SOCsc max

(21)

where Pfc min and Pfc max represent the minimum and
maximum output power of FC, respectively, Pbat min and
Pbat max represent the minimum and maximum output
power of BAT, respectively, SȮCbat chg and SȮCbat dis

mean the variation gradient in charging and discharging
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Table 5. The optimal equivalent factor of six
working conditions.

Working conditions The optimal equivalent factor

HWFEWT 1.3918
EUDC 1.1805
UDDS 3.2185

WVUSUB 3.4055
NEDC 2.8723

status, respectively, SOCsc max and SOCsc min represent
the maximum and minimum SOC of SC,respectively.

4.1 Optimization of equivalence factor based on driving
style

The equivalent factor of ECMS is the main factor affecting
the power distribution between energy sources, so most of
the current studies combine driving style with equivalent
factor. This section constructs an approach based on
equivalent factor query tables that is easy to manipulate
and query.

Five typical working conditions are used in this paper.
According to the offline optimization objective function,
the equivalent factor of each working condition is obtained
by offline simulation for each typical working condition.
The optimal equivalent factor is obtained by weighted
average of the equivalent factor at each moment, which can
be calculated by Equation (20), and the optimal equivalent
factor of each typical working condition is shown in Table
5.

The optimization objective function of offline simulation
can be expressed as:

Pfc min < Pfc < Pfc max

SOCbat min < SOCbat < SOCbat max

Pbat min < Pbat < Pbat max

SȮCbat chg < 2C

SȮCbat dis < 4C
SOCsc min < SOCsc < SOCsc max

(22)

The s(t) = λ(t)· Qlhv

Qbat(t)
,then formula (22) can be expressed

as:
H(x(t), u1(t), u2(t), λ(t), t) = mf (Pfc(t), t)+

s(t) · Qbat(t)
Qlhv

· f(x(t), Pbat(t), t)
(23)

where, λ(t) is the costate, s(t) is the equivalent factor at
each moment, Qbat is the current capacity of the battery,
Qlhv is the calorific value of the fuel, and x(t) is the SOC of
lithium battery. According to equation (23), the equivalent
factor at each moment of each driving condition can be
calculated. Then, the optimal equivalent factor at each
driving condition can be expressed as:

s (j) =
1

m

m∑
a=1

s(a) (24)

where s(j) is the optimal equivalent factor of the j driving
conditions, s(a) is the equivalent factor at each moment
of the j working conditions, m is the length of a single
working condition.

Considering the different driving styles in a certain work-
ing condition, it is necessary to calculate the weight of a
certain driving style in the working condition. Based on the

Table 6. The query table of optimal equivalent
factors for each driving style.

Driving style The optimal equivalent factor

eco 3.1791
safe 2.7260
soft 2.3521
norm 2.7694
fast 3.0329
agg 2.8723

fuzzy logic control strategy mentioned above, the length of
each driving style in the certain working condition can be
obtained, and the proportion of a certain driving style in
the whole working condition can be calculated as follows:

Pj (r) =
Tr(k)

T (j)
(r = 1, 2, · · · , n) (25)

where Pj (r) is the weight of rth driving style in the j
working condition, Tr(k) is the length of r th driving style,
T (j) is the length of jth working condition.

Considering that the optimal equivalent factor is obtained
for a certain working condition.the driving style length
is used to determine the specific gravity. The six typical
working conditions are combined into a new working
condition, the proportion of the typical working condition
to the new working condition can be calculated as follows:

Pc(j) =
T (j)
c∑

j=1

T (j)
(26)

The optimal equivalent factor for a certain driving style
can be calculated as follows:

s(r) =

c∑
j=1

s(j)Pj(i)Pc(j)

n∑
j=1

Pj(i)Pc(j)
(27)

where the s(r) is the optimal equivalent factor for each
driving style.

The equivalent factor query table corresponding to each
driving style obtained after weighted average is shown
in Table 6. Once the driving style is determined, the
equivalent factor can be matched by looking up the ta-
ble. Meanwhile, to ensure that the SOC of the battery
can maintain stability, the penalty function of designing
Equation (20) is designed to modify the equivalent factor
after matching, so obtain the optimal energy distribution
under the driving style.

5. SIMULATION AND ANALYSIS

To verify the effectiveness of the proposed EMS, the pro-
posed EMS is compared with the ECMS without consider-
ing the impact of driving style by the MATLAB/Simulink.
The vehicle simulation model is established in Simulink, as
shown in Fig. 8.

The verification is based on a compound driving condition
involving Highway Fuel Economy Test (HWFET) driving
cycle and Urban Dynamometer Driving Schedule (UDDS)
driving cycle given in Fig. 9.
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Fig. 8. The simulation model of FCHEV.
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Fig. 9. The data of the driving condition.

The recognition results of the driving styles are shown in
Fig. 10. In Fig. 10(1)-(5) respectively indicate eco, safe,
soft, norm and fast driving styles. In this driving condition,
most of the driving styles belong to safe and soft driving
styles.
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Fig. 10. Driving style recognition results of the compound
driving cycle.

Fig. 11 shows the power distribution of FC, BA and SC in
EMS based on driving style identification under compound
driving conditions. For Fig. 11(a), as the main energy
source among the three energy sources, the output power
of the FC is always maintained in the range of 4.5-20 kW,
providing a continuous and stable output power for the
vehicle. From Fig. 11(b), the output power of the BAT is
mostly kept in the range of (-10)-12 kW, which not only
reflects the stability of the battery to the power output,
but also helps to prolong the service life of the battery.
Furthermore, as shown in Fig. 11(c), the output power of
the SC is mainly in the range of (-5)-10kW, which reflects
its advantages of providing transient high power.

Fig. 12 shows the sum of the output power of the three
energy sources is almost the same as the required power
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Fig. 11. The power provided by three sources.

of the vehicle, indicating that the power provided by the
three energy sources can satisfy the required power of
the vehicle. From Fig. 13, it is evident that the error
between original power and real-time power maintain
power fluctuations around 2200 samples between -20 and
0. It is nothing that the power provided by the three energy
sources is greater than the power required by the vehicle
due to energy loss by DC/DC converter.
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Fig. 12. Comparison diagram of three energy sources
output power and vehicle demand power.

From Figs. 14-15, it is reasonably seen that there are
some apparent differences between EMS-considering driv-
ing style and EMS-without considering driving style. And
as shown in Fig. 14, the battery SOC curves under the
two strategies are consistent in the first 90 seconds. This
is because fuel cells has not started, with only the bat-
tery and ultracapacitors providing power for the first 90
seconds. After 90 seconds, the battery SOC curves under
both strategies began to change. In the former strategy, it
is obvious that the values of battery SOC is only varying
in the range from 0.66 to 0.72, which play an important
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Fig. 13. The error between the three energy sources output
power and the vehicle power demand.

role in improving battery economy and prolonging battery
lifespan for FCHEV. In the latter strategy, battery SOC
mainly varies from 0.6 to 0.66, with a large difference from
the initial value of 0.7, which verify the stability of battery
SOC of EMS-considering driving style. The battery SOC
range of the two strategies is shown in Fig. 15. It is very
evident that the SOC range of EMS-considering driving
style is mainly between 0.64 and 0.72, while the SOC range
of the EMS-without considering driving style is mostly
between 0.6 and 0.66.
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Fig. 14. The comparison of battery SOC via two EMSs.
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Fig. 15. The SOC range of the two strategies.

The power fluctuation of two energy sources of different
optimization methods is listed and compared in Fig. 16 to
show that EMS-considering driving style maintain power
fluctuations around 1500 samples at 0 points, which have
lower overall power fluctuations and verify the superiority
of proposed strategy. From Fig. 16(a), under the con-
straint of battery charge-discharge gradient in Equations
(5-11), most of the power fluctuation of the battery is near
100W/s, which effectively reduces the battery fluctuation
and prolongs the service life of the battery. From Fig.
16(b), the fluctuation of fuel cell also decreases corre-

spondingly, which not only benefits from the constraints
of Equations (5-11), but also is assisted by BAT and SC.
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Fig. 16. The power fluctuation of energy sources between
two strategies.

The ultimate goal of EMS based on driving style is to
design corresponding energy management strategy accord-
ing to driver’s driving style to achieve the purpose of
minimizing fuel consumption. To verify the effectiveness
of EMS considering driving style in reducing hydrogen
consumption, the EMS based on ECMS, fuzzy logic control
(Tao et al., 2020) and model predictive control (Fu et
al., 2020) are selected as the baseline strategy, where all
three strategies don?t consider the driving style. Then
the hydrogen consumption under four methods are list in
Table 7. As can be seen from Table 7, under the HWFET
and UDDS combined compound driving conditions, the
hydrogen consumption of the proposed strategy reduced
by about 3.7%, 4.92%, 3.85% compared with the EMS
based on ECMS, fuzzy logic control and model predictive
control, respectively.

6. CONCLUSION

In this paper, an EMS for FCHEV based on driving
style recognition is proposed. Firstly, the speed and the
absolute values of acceleration are selected as driving style
identification parameters by principal component analysis
method and fuzzy logic controller is designed to classify
and recognize driving style. Considering the accuracy of
recognition, the membership function of fuzzy logic con-
troller is optimized by GA, and the optimized results is
used to update fuzzy logic rules, so as to use the new
fuzzy logic controller to reclassify and recognize the driving
style. In the above-mentioned driving style recognition,
the optimal equivalent factors under each driving style
are obtained by weighted average, according to the rela-
tionship of driving style factors and the equivalent factor
establish the query table of equivalent factor. The accuracy
of classification results was verified by the combination
of HWFET and UDDS. Simulation results confirm that,
compared with the strategy without considering driving
style, the proposed driving-style-aware EMS using ECMS
can reduces the hydrogen consumption of FCHEV by
about 3.7%.

Although the optimization result of membership function
of fuzzy logic controller by using GA is outstanding, the
searching ability of GA for optimal solution in new space
is limited and cannot be optimized in real time. Therefore,
in the future work, the optimization method based on
intelligent algorithm (such as DDPG) is proposed to real-
time optimize the parameters of fuzzy logic controller.
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Table 7. The hydrogen consumption under two strategies.

Strategy Hydrogen consumption(gal) improvement
The proposed strategy 3.0618 -
The ECMS based EMS 3.1795 3.7%
The fuzzy logic control based EMS 3.2204 4.92%
The model predictive control based EMS 3.1845 3.85%
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