
CEAI, Vol.26, No. 1, pp. 36-43, 2024 Printed in Romania

Static Wheels in Fast Sieves

Mircea GHIDARCEA ∗ Decebal POPESCU ∗∗

∗ University POLITEHNICA of Bucharest - Computer Science
Department, Splaiul Independentei 313, Romania

(e-mail: mircea.ghidarcea@stud.acs.upb.ro).
∗∗ University POLITEHNICA of Bucharest - Computer Science

Department, Splaiul Independentei 313, Romania
(e-mail: decebal.popescu@upb.ro).

Abstract: Prime numbers sieving is not anymore a topic of interest for the IT specialists and,
besides some commendable open source efforts, practically nobody tries to advance the domain
(Ghidarcea and Popescu, 2023) - despite all hardware progress, even today we are not capable
to generate all primes up to 264 in practical time .
This article deals with fast sieves based on the classic Sieve of Eratosthenes, introducing an
innovative approach for using the static wheels that has the potential to surpass the fastest
algorithms known so far. It then tries to generalize the new method and demonstrates its real
potential by benchmarking it against the best performing sieve implementation we are ware of,
the ultra-refined Primesieve, showing it can outperform it.

Keywords: Prime numbers sieving, Prime number generation, Algorithms, Algorithm
optimization, Parallel algorithms.

1. INTRODUCTION

Sieve of Eratosthenes (SoE), presumably dating from
the 3rd century BCE (Nicomachus, 1926), is still the
most popular algorithm to generate all prime numbers
in a contiguous set. As shown in (Crandall, Richard and
Pomerance, Carl, 2005), the complexity of SoE is:

C(SoE) = O(N ln(ln(N)))

This is not a stellar complexity – there are algorithms
which are linear, like (Mairson, 1977), (Pratt, 1977) or
(Gries and Misra, 1978), and even sub-linear ones, like
(Atkin and Bernstein, 2003). Yet, (Sorenson, 1991) shows
why Sieve of Eratosthenes is still basically superior in
practice to all other theoretically (sub)linear algorithms.

In this context, a lot of tricks are employed to reduce
the huge number of computations involved by sieving for
very large sets, and the Static Wheels technique is perhaps
the best known such strategy. The basic idea underlying
Static Wheels techniques is to eliminate from the sieving
process set as many operations as possible before the
sieving occurs:

• eliminate a large number of candidates as represented
in the target set by eliminating entire classes of com-
posites (i.e. eliminating even numbers or some other
arithmetical pattern proved to generate composites,
like 6k+[0,2,3,4]);
• in sieving, step over multiples of primes that are not
in the target set or are known to be eliminated in
previous sweeps by using certain patterns to generate
the eligible candidates.

The origins of the Static Wheels technique as applied in
prime sieving date very early, appearing with the first
modern implementations of sieving algorithms: even the

first sieving algorithm ever published, T.C.Wood’s (Wood,
1961) and Chartres’ 310 (Chartres, 1967), skipped over
even numbers. Chartres’ 311 (Charters, 1967) skips over
multiples of 2 and 3 using a very smart and concise
technique, thus implementing the 6k±1 pattern, and only
two years later Singleton introduces the idea for the 30k+i
pattern with his 357 article (Singleton, 1969b). It is easy
to recognise these patterns as the first three wheels:

• W (1)⇒ 2k + i, where i ∈ {1}
• W (2)⇒ 6k + i, where i ∈ {1, 5}
• W (3)⇒ 30k+i, where i ∈ {1, 7, 11, 13, 17, 19, 23, 29}.

The next big thing in wheels appeared in 1981 in a
paper from Paul Pritchard, introducing probably the most
beautiful prime sieving algorithm - Sieve of Pritchard
(Pritchard, 1981). The algorithm was further clarified
by the author in (Pritchard, 1982) with a detailed and
intuitive explanation regarding how dynamic wheels work,
thus throwing more light on the static wheels in general.

(Pritchard, 1983) is another meaningful and influential
work, being the one that definitively formalizes the so
called static or fixed wheel and proves the linear character
of the sieve when a static wheel of order k = max(i|P (i) ⩽√
N) is used (where P (i) is the Primorial for i, i.e. the

product of the first i prime numbers). The results are
somewhat refined in (Sorenson, 1990), but especially in
(Sorenson, 1998) and (Dunten et al., 1996).

Yet, the dynamic wheels are now forgotten and the static
wheels are only used in the form of W(3), which is
practically always hard-coded in the modern Eratosthenes
based fast sieve algorithms and is considered to be the
optimal compromise between the performance advantages

Control Engineering and Applied Informatics 37

Table 1. Wheels parameters

N π(N)
Wheel
values

Reduction
factor

Maximum
gap

1 2 1 2.00 2

2 6 2 3.00 4

3 30 8 3.75 6

4 210 48 4.38 10

5 2’310 480 4.81 14

6 30’303 5’760 5.21 22

7 510’510 92’160 5.54 26

8 9’699’690 1’658’880 5.84 34

9 223’092’870 36’495’360 6.11 40

10 6’469’693’230 1’021’870’080 6.36 46

11 200’560’490’130 30’656’102’400 6.54 474

brought by a wheel versus the overhead inflicted to the
algorithms.

NOTE 1: Given that probably the most important charac-
teristic of a sieve implementation is performance, the most
appropriate language for such implementation is arguably
C/C++ - thus, most of the algorithms described next were
fully implemented in C++. All the timings for this paper
were measured on a desktop computer with AMD processor
Ryzen 9 7900X, Auto OC on.

NOTE 2: All accompanying code used for the experi-
ments and proof-of-concept implementations in this article
can be consulted on GitHub at https: // github. com/
mirceag70/ StaticWheels .

2. STATIC WHEELS FUNDAMENTALS

In Table 1 we show the main parameters for the first eleven
wheels. We can draw two main conclusions from these
values:

• The reduction factor grows less and less with N,
with diminished returns for bigger Ns; anyway, after
N = 10 the number of wheel values is extremely large:
due to the added overhead for diminished returns, it
does not make much sense to even consider wheels
greater than N = 10
• As the wheel is always parsed in order and gaps
between consecutive values are lower than 255 for any
practical wheel, we can represent the wheel only as
increments in a vector of bytes. (The gap is always
even, so for N <= 7 one could keep it halved and
compress two values per byte if it makes sense for
some particular scenario)

When we think about wheel generation, the first idea that
comes to mind is some kind of brute force approach: the
wheels seem quite small and simple, so we assume that
there is not much work there - yet, for large wheels we are
deeply mistaken, as we can see in Table 2 where we show
the timings for single-threaded wheel generation.

Another intuitive alternative would be an optimized Sieve
of Pritchard (SoP), which in theory is devised for fast
wheel generation. We also added in the mix a classic
sieving algorithm based on the 1bit 6k technique we
devised for optimized Mairson. As we can see, for the
sensible range of wheels the 1bit 6k algorithm is the
fastest one - our optimized Sieve of Pritchard may take
over at N > 10, but at that point we are out of the

practical interval for wheels. Anyway, even past N = 10, a
parallelized version of 1bit 6k would be faster than Sieve of
Pritchard which is very tough to parallelize. The timings
for the parallel 1bit 6k procedure are added in the table
for reference. You can check the accompanying code for
further details.

Table 2. Wheel generation times [ms]

N Brute force SoP 1bit 6k 1b6k parallel

6 1 0 0 -

7 1 1 1 -

8 15 13 12 4

9 369 318 270 31

10 14’137 9’013 7’779 805

Devising a basic algorithm that exploits a static wheel is
pretty straightforward: while parsing for each the prime
p all the sieving composite values n = delta * p;, we
are using using only the revolving wheel values for the
multiplier delta (the wheel values storage as increments
comes in handy here).

The only tricky thing to do is to get the first multiple
wheel value that is greater than p2 as fast as possible, but,
at least for the first segment, as long as we are using the
wheel to generate the primes we are always in the right
spot, as we can see in the accompanying code.

For the general case, as long as we iterate primes in order,
the next wheel index multiplier for the next prime will
always be one of the next indexes from the last one,
thus some code gymnastics can speed up this task - see
accompanying code for details. In Table 3 we have timings
for the basic single threaded wheel based algorithm. The
sweet spots are highlighted accordingly:

Table 3. Sieving times [ms] (incl. wheel generation)

Wheel
Limit (10n)

5 6 7 8 9 10 11

W(2)* 0 1 10 91 1’400 20’949 239’183

W(3) 0 1 10 88 1’300 19’878 229’772

W(4) 0 1 9 82 1’209 17’674 200’644

W(5) 0 1 8 75 1’123 16’531 186’066

W(6) 1 2 8 72 1’072 15’665 175’578

W(7) 1 2 8 70 1’044 15’072 167’965

W(8)** - - 10 69 1’020 14’400 161’123

W(9) - - 37 95 1’029 14’006 156’829

W(10) - - 889 931 1’869 14’571 153’892

38 Control Engineering and Applied Informatics

*For N = 2 we used the faster 1bit 6k algorithms which hard-codes W(2)

**For N >= 8 we used parallel wheel generation.

For smaller ranges it is visible how for N > 7, even with
parallel wheel generation, the overhead imposed by the
wheel drastically hamper the performance. Nevertheless,
the sieving time is lowered, as seen if we deduce the
wheel generation time from the total - in scenarios where
repeated sievings may use the same wheel, the result may
justify the overhead. On the other hand, the performance
gains become really significant for large ranges, from 109

and above, where the improvements go beyond 30%.

As a final demonstration for the power of static wheels,
in Table 4 we have a comparison between the original
mobile sieve, as devised by Charters (1967) and optimized
by Singleton (1969a) (check out (Ghidarcea and Popescu,
2023) for details), and our modern implementation of
the front-wave sieve using the W(9) wheel: the wheel
based version achieves almost triple the performance (see
accompanying code for this optimized sieve):

Table 4. Times for Chartres/Singleton algo-
rithm improved with W(9) [ms]

Limit (10n) 6 7 8 9 10

Singleton 356 9 109 1’266 14’519 162’777

W(9) 335 365 718 5’068 57’707

3. PARALLEL CACHE INTENSIVE ALGORITHMS

Singleton’s 357 algorithm (Singleton, 1969b), the grand-
father of modern fast sieves, introduces two fundamental
ideas to modern sieving algorithms:

• sieve individual chunks of the target set instead of the
whole interval (the sieving is done using pre-generated
root primes);
• use a static wheel, i.e. W(3) - this wheel has two big
advantages:
- is small enough to be easily hard-coded;
- implements the 1bit buffer very efficiently.

Modern implementations use chunks small enough to fit
inside the L1/L2 cache - contemporary CPUs have very
intelligent prefetch algorithm, so most of the times L2
size is the one to be observed. As said, the original 357
algorithm was already built to work only on a small
window of the sieve at once - reducing this window to
fit within L2 and experimenting a bit with it will give you
the optimal value for the buffer/chunk.

This window size will not match exactly the L1/L2 sizes
as there are also other data to be cached and the CPU
will optimize data access within all memory layers so
that this buffers will seem greater than they should be
arithmetically.

Moreover, there is some overhead associated with every
window, so the optimal buffer size may slightly vary also
with the size of the targeted domain: for example, in our
case, for smaller domains (up to a couple of billions) the
optimal buffer was somewhere around 250k× 1byte vector,
whereas at tens of billions it was around 450k - the heavier
the overhead, the larger the differences.

Table 5. Buffer size [kB] related to sieving time
[ms] (up to 1 respectively 5 billions)

Buffer 1billion 5billions

1 2’556 17’962

5 1’321 8’222

10 1’061 6’460

50 780 4’236

90 765 3’960

100 754 3’901

110 755 3’898

125 756 3’954

150 750 3’830

175 748 3’792

200 748 3’785

250 748 3’809

300 751 3’798

350 748 3’795

400 750 3’751

450 749 3’757

500 753 3’755

550 753 3’750

600 755 3’770

675 756 3’775

750 762 3’780

850 763 3’820

950 771 3’868

1’000 776 3’839

1’100 777 3’855

1’200 772 3’911

1’300 783 3’903

1’400 789 3’903

1’500 844 3’920

5’000 850 4’252

10’000 1’010 4’301

20’000 1’367 5’180

30’000 1’614 6’926

40’000 1’614 8’569

50’000 1’929 9’990

60’000 2’181 11’330

There are 6 distinct zones that can be identified in the
Table 5 1 (of course, there are no exact boundaries for
each range, as the exact point where data caching stop
compensating for overhead loss is impossible to calculate
and somewhat subjective to establish empirically):

(1) Red – the overhead incurred by the very small buffer
is very bad

(2) Yellow – cache efficiency starts to compensated for
the overhead

(3) Green – the sweet spot: the overhead is optimally
spent for cache efficiency

(4) Yellow – L2 misses start to cancel L1/L2 efficiency
(5) Blue – L2 is trashed, but L3 manage to maintain some

level of efficiency
(6) Red – the cache misses are the most important factor

that affects the efficiency.

Nevertheless, we can see that L1 is not really a factor
anymore for modern computers, as our green zones are
clearly situates in the hundreds of kilobytes range, specific
to L2. In our concrete case – AMD 7900x – the 32k L1 data
cache is irrelevant, but the 1MB L2 cache per core clearly
marks the spot (the L1 is of course instrumental under the

1 We chose to mark down in the table the small statistical aberra-
tions as measured, as they do not alter our overall conclusions.

Control Engineering and Applied Informatics 39

hood, but the prefetching logic obscures it from our direct
observation): the second yellow range, where performance
starts again to deteriorate, is centered around that 1MB
range.

The relative performance plateau of the blue zone is
situated more or less within the range of L3 cache, that is
32MB per die here (64MB for the whole CPU).

The larger green zone for the 1billion limit vs the one
for 5billions is explained by the size of extra-data that is
managed for the larger limit and which has to be cached
and also processed in the same boundaries with added
overhead, thus less and less flexibility: for the lower values
the overhead takes over faster, while for the larger values
the caching of the other data (mainly the list of root primes
and their current multiples) is hampered earlier.

Anyway, the main conclusion to be taken from here is that
cache intensity will provide us a factor of at least 3x per-
formance gain, as demonstrated here, and is instrumental
for any good algorithm and especially for sieving.

3.1 Classic fast sieve

The fastest contemporary implementations of prime sieves
are based on the observations and ideas presented previ-
ously – cache intensive 1bit small windows sieve with hard-
coded W3. You can see in Table 6 a comparison between
timings of 357 and our initial attempt to implement the
fast W3 cached sieve – as visible from the values there, the
overhead involved in the basic manipulation of the wheel
practically cancels the performance gains.

The performance of our sieve, although deliberately de-
signed for cache intensity and benefiting from a superior
wheel, is only marginally better than 357 – a perfect
testimonial for the inspiration behind the good old 357
algorithm. The academic level implementation which can
be consulted in the accompanying code is a pretty good
exemplification for the basics of a standard modern sieve.

This basic ideas were perpetuated with small improve-
ments until 2001 when Tomás Oliveira e Silva intro-
duced the bucket sieve algorithm (Oliveira e Silva, 2015):
in this variant the root primes are distributed in buckets so
that all and only those primes that have multiples during
current interval/window/chunk are in placed the current
bucket.

The proof-of-concept code, demonstrating that the over-
head implied by bucket management is really well spent
for some major performance gain, is also published there
(the code includes several other typical optimizations for
fast sieves).

The main issue for this proof-of-concept implementation
is that it does not really generate the primes, but counts
them with very clever byte level operations that are much
faster than the actual prime generation – the performance
of such sieve implementations is somewhat misleading
but, unfortunately, many other similar implementations
perpetuate this practice. In order to allow for direct
comparison we had to modify our code also to count primes
instead of generating them. The results can be seen in
Table 7 – as one can see when comparing to the ones in
Table 6, the prime values generation is quite taxing.

We know that W(3) is only 10-15% faster than a normal
sieve, and the timings here show that the W(3) is less
efficient than the bucket technique, even if it still manages
to keep within the same range of performance.

After several years Tomás Oliveira published a new, im-
proved version of the bucket sieve, with many new opti-
mizations added to the code: the new timings are in Table
8. The new proof-of-concept code is power-of-two oriented,
and we decided to keep it that way for minimal alteration
of the code – still, we can interpolate 50-75% performance
gain with the new, refined code, versus his initial proof-of-
concept.

At this moment, the pinnacle of fast sieving is represented
by implementations using this approach: cache intensive
hard-coded W(3) with bucket sieve. The greatest overhead
cost for these sieves comes from

• buckets management;
• iterating wheel values;
• finding and marking the correct bit in the 1bit com-

pressed buffers.

If we can reduce this hassle the algorithm may benefit
greatly – of course, the best way to reduce something is to
avoid it altogether.

3.2 New fast sieve

In the classic W(3) approach each byte codifies all the 8
values of the wheel, one bit for each value: for every bit i
in byte k the codified candidate value n is

ni = 30 · k + ri

where ri ∈ {1, 7, 11, 13, 17, 19, 23, 29} (the values of W(3))
– both k and ri are here variable and dependant on the
current step i in the wheel/byte.

Similar, for each root prime p the multiplier delta to
obtain the composite n = delta * p to be sieved out
jumps from one revolving wheel value to the next, resulting
in some complicated code gymnastics involving lookup
tables and other intricate optimization techniques (see
Tomas Oliveira’s code for some inspired examples).

Our idea is to process each wheel value r indepen-
dently.

First, we codify all candidate values corresponding to the
current wheel value r on their own contiguous buffer,
independent of the others: this will eliminate most of the
overhead required for bit discrimination relative to r - thus,
the new formula for the candidate n is

ni = 240 · k + 30 · i+ r

where r is now fixed per each of the eight sieve buffers and
i sweeps monotonously the interval [0..7]. This split buffer
approach is depicted in figure 1, where the classic stacked
buffer approach is on the left.

Second, we now compute the multiples n for each root
prime p much simpler. Let us take two such multiples:

n1 · p = 30 · k1 + r

n2 · p = 30 · k2 + r

Thus
(n2 − n1) · p = 30 · (k2 − k1)

40 Control Engineering and Applied Informatics

Table 6. Times for basic cache intensive algorithms [ms]

Limit (10n) 6 7 8 9 10 11 12

357 2 9 83 817 8’304 87’160 -

W(3) 7 13 77 749 7’662 77’207 -

W(3) 2T 7 11 53 517 5’581 59’502 -

New W(3) 11 14 50 416 3’908 38’153 384’981

New W(3) 2T 11 14 40 273 2’398 22’168 221’699

Fast W(3) LP 8T 23 25 27 49 301 2’904 27’919

Fig. 1. Split buffer approach

Table 7. Times for advanced cached algorithms
[ms]

Limit (10n) 8 9 10 11 12

Buckets (PoC) 42 430 4’663 53’581 -

New W(3) (count only) 50 519 5’526 60’215 -

While p is prime and all values are integers, it is necessary
that 30 exactly divides (n2 − n1) ⇒ the smallest value for
n2 − n1 = 30 ⇒ the smallest value for k2 − k1 = p. So,
for each of the sieves corresponding to ri, we have now the
formula to advance to the next bit for each root prime p
: just advance with p bits – no more divisions, modulus,
multiplications, lookup tables and conditional statements.

Other advantages of this approach:

• the eight times increase of the window span will
drastically reduce the impact of a bucket strategy to
the point where the cost of the added bucket overhead
becomes comparable to the associated gain;

• each of the 8 buffers are completely independent, thus
allowing for parallel sieving without any synchroniza-
tion or other special care.

Of course, something has to give:

• the logic required to determine the initial position of
each root prime is marginally more complex;

Control Engineering and Applied Informatics 41

Table 8. Times for advanced cached algorithms [ms]

Limit (2n) 26 28 30 32 34 36 37 38

Buckets (fast) 16 64 272 1’142 4’786 20’270 - -

New W(3) (count only) 11 37 149 611 2’492 10’404 21’233 42’948

Table 9. Generalized Wheel timings [ms]

generalized wheel
Limit (10n) primesieve

3 4 5 6 7

11 743 1’481 1’099 920 871 1’190

12 9’177 15’284 12’085 10’218 9’024 9’252

13 117’605 - - 112’730 100’197 96’627

14 1’298’232 - - - 1’331’153 1’244’144

• there are 8 distinct sets of auxiliary data for root
prime positioning that have to be maintained.

Nevertheless, the gains far outweigh the costs, as exempli-
fied by the timings in Table 6. Moreover, as seen in Table
8, even when compared with the academic single-threaded
optimized implementation of the most advanced algorithm
to date - Tomas Oliveira’s bucket sieve - our algorithm,
although benefiting from much less code optimization and
refinement, outpaces it with quite a good margin.

One can object that the bucket implementation we are
comparing against does not benefit from the W(3) wheel -
we argue that a similar level of optimization applied to the
new algorithm will benefit the NewW(3) code significantly
more than W(3) applied to bucket sieve, as we plan to
demonstrate further.

For further reference and analysis, in Table 6 we compiled
the timings for the full New W(3) sieve (including full
prime values generation) and added a version of New W(3)
2T where the prime generation is delegated to a separate
thread.

Also, you will find there timings for Fast W(3) 8T, a light
parallel version for the NewW(3) with the native 8 threads
(each processing independently one of the 8 buffers) - the
performance there includes again full prime generation and
speaks for itself. Furthermore, adding just one extra thread
for parallel counting (as exemplified in New W(3) 2T),
may increase performance with another 20-30%.

For supplementary clarifications check the accompanying
code which includes implementations for all the new sieve
variants introduced and referred here.

3.3 Wheel generalization

Looking closer at the idea behind our improved W(3)
algorithm introduced in previous chapter (3.1) we sense
that we can extend it to any wheel beyond W(3): for any
N , we should be able to devise an algorithm that can
sieve individually and independently a number of sub-
sieves equal with the number of elements in the wheel
W(N) - such an algorithm may achieve several objectives
at once:

• significantly larger reduction in sieving effort, propor-
tional with the wheel’s reduction factor;
• greater native parallelism of the process due to the
bigger number of distinct, independent buffers;

• practical elimination of the need for bucket sieve
tactics because a larger wheel will determine an even
larger window span.

We’ve already seen how to generate large wheels quite
fast or how to iterate multiples of root primes on split
buffers with minimal complexity. Still, the somewhat crude
solution employed by us in NewW(3) for initial positioning
of each root prime multiple at the beginning of sieving for
each segment can work decently for W(3), which has only 8
values, but, as seen in Table 1, the number of values grows
exponentially with larger wheels: W(6) already has 5’760
values, and W(7) no less than 92’160. At this point we have
to analyze which are the possible combinations involved
when generating the composites, so we need get back at
the theory behind static wheels and make some theoretical
considerations, starting with a very short review:

(a) the product of the first n prime numbers is called a
Primorial (P):

P (n) =

n∏
i=1

pi (← p1 = 2, p2 = 3, ... ; pi is prime).

(b) if an integer δ is coprime with any pi, then P (n)+ δ is
also coprime with any pi.

(c) a wheel W(N) is made from all the natural numbers
lower than P (N) that are not divisible by any of the first
N primes:

W (N) = {r | 1 ⩽ r ⩽ P (N)& (r, P (N)) = 1}.

(d) we say that the Length of wheelW (N) is the primorial
P (N). The main ideas behind the static wheels are:

• any prime can be represented by a wheel: p = P ·k+r,
thus reducing the set of candidates;

• any multiplier used to mark composites is also in the
form n = P · k + r, thus reducing the number of
markings.

Given the above, we can express any composite c in
relationship with two values of a wheel:

c = (P · kp + rp) · (P · kn + rn) = P · kc + rp · rn
⇒ c ≡ (rp · rn) modP

But, because (r, P) = 1 for any r in wheel W, any (rp ·
rn) modP must also be a member of wheel W (otherwise
either rp or rn is not coprime with P). Moreover, it can
be verified that for each rp and rk there is exactly one rn
so that (rp · rn)modP = rk. As rp is fixed per each root
prime p and rk is fixed per each buffer k, it becomes clear
that all multipliers for p are in the form n = P · k + rn

42 Control Engineering and Applied Informatics

where rn is again fixed for each pair (p, k) - the practical
problem is now to predetermine rn for each rp and rk.

Of course, a good starting point is to compute the sym-
metrical moduli matrix R where rij = (ri · rj)modP , and
from here to derive the rn factor matrix. Our New W(3)
implementation hard-codes the factor matrix as follows:

uint8 w3[8] = {1, 7, 11, 13, 17, 19, 23, 29};

//w3_pattern[i][j] = (w3[i]*w3[j]) mod 30
uint8 w3_pattern[8][8] =

{{ 1, 7, 11, 13, 17, 19, 23, 29},
{ 7, 19, 17, 1, 29, 13, 11, 23},
{11, 17, 1, 23, 7, 29, 13, 19},
{13, 1, 23, 19, 11, 7, 29, 17},
{17, 29, 7, 11, 19, 23, 1, 13},
{19, 13, 29, 7, 23, 1, 17, 11},
{23, 11, 13, 29, 1, 17, 19, 7},
{29, 23, 19, 17, 13, 11, 7, 1} };

//(w3[i] * w3_factors[i][j]) mod 30 = w3[j];
uint8 w3_factors[8][8] =

{{ 1, 7, 11, 13, 17, 19, 23, 29},
{13, 1, 23, 19, 11, 7, 29, 17},
{11, 17, 1, 23, 7, 29, 13, 19},
{ 7, 19, 17, 1, 29, 13, 11, 23},
{23, 11, 13, 29, 1, 17, 19, 7},
{19, 13, 29, 7, 23, 1, 17, 11},
{17, 29, 7, 11, 19, 23, 1, 13},
{29, 23, 19, 17, 13, 11, 7, 1} };

To speed up significantly the process we use this very
important observation derived from studying the moduli
and factor matrices: the lines in the factor matrix
are the same with the ones in the moduli matrix,
just in different order and interchangeable – this
was verified experimentally by us for N ≤ 7 and we
assume that the statement holds for everyN , but presently
we do not have a mathematical demonstration for this
conjecture.

Here we begin to see the practical limitations of this
approach: the matrix already has 92’1602 ≃ 8.5 billion
elements for N=7 and over 2.75 trillion for N=8 - we
can conclude here that W(7) is the largest wheel that
is practically manageable with the precomputed factor
matrix technique. In the accompanying code you can
find a relatively efficient implementation for in-place fast
computing of the W(7) factor matrix from the moduli
matrix in just under 3 seconds on our reference AMD
7900X CPU.

To demonstrate the strength of the new algorithm we
created a fully parallelized academic implementation of the
generalized wheel in two versions: one for N in [3..6] and
one for N=7, and we compared the timings of our relative
crude and unrefined code with Kim Walisch’s Primesieve
(Walisch, 2023), an extremely optimized version of W(3)
bucket sieve. Table 9 contains comparison between our
generalized wheel and Primesieve, proving the potential
of the new algorithm.

We have to stress out that Primesieve was at version
v11.1 at the moment of writing this article (august 2023)
and benefits from many years of intensive code optimiza-
tion and refinement, so the better timings above obtained
with our proof-of-concept crude code are all the more
significant for the potential of the new algorithm. There
are at least several optimization paths that could be im-
plemented:

• generate root primes and associated helper data only
for the LIMIT at hand

• improve positioning algorithm and procedure; posi-
tioning is not at all cache intensive, it can be very
well distributed over several threads

• use a separate thread for counting
• use an optimized free-fall approach to strike out com-

posites - the accompanying code already contains the
core of the free-fall procedure (see Bit reset pattern
+ list init section of methods at the end of Free-
Gen.cpp in accompanying code), but the positioning
and hand-over details have to be optimized in order
to outperform the basic approach.

An even more ambitious plan would be to avoid the factor
matrix altogether and come up with a faster positioning
method that would allow for very fast on-the-fly generation
of that rn used in positioning so that the initial full
computation overhead of the factor matrix would not be
required anymore, thus allowing for N=8 and even greater.

4. CONCLUSIONS

In this paper we analyzed some practical aspects regarding
the exploitation of static wheels for primes sieving and
proposed a new generalized method to approach the al-
gorithms based on such wheels. We have shown both the
advantages and practical limitations of the wheels, accom-
panied by exemplifying code that demonstrate such basic
techniques and pertinent data supporting out conclusions
that wheels do benefit the sieving, but wheels above N=10
become impractical.

We presented a brief history of the most efficient sieving
algorithm to date and we analyzed the way in which cache
intensity influence the performance. We also introduced
a new approach to the sieving process that achieves
superior performance in practice when applied to the
basic implementation of state-of-the-art cache intensive
fast sieve algorithms.

Finally, we tried to generalize the method exposed pre-
viously. We analyzed some theoretical aspects regarding
the new method and built a proof-of-concept level imple-
mentation with excellent performance. We benchmarked
our method against the best performing implementation
we know at the moment of any sieving algorithm – Kim
Walish’s Primesieve – and showed it to be on par or
outperform it for bigger values, although our proof-of-
concept code is by far less optimized than Primesieve.

ACKNOWLEDGEMENTS

We express our gratitude to professors Nirvana POPESCU,
Emil SLUSANSCHI and Vlad CIOBANU from University

Control Engineering and Applied Informatics 43

POLITEHNICA of Bucharest, Computer Science Depart-
ment, for their invaluable guidance and advice – their
input was decisive for the quality of this paper.

CRediT 2 author statement - Mircea Ghidarcea :
Conceptualization, Methodology, Software, Validation,
Formal analysis, Investigation, Writing – Original & Edit-
ing, Visualization; Decebal Popescu : Validation, Super-
vision, Project administration, Writing - Review

Funding: This research did not receive any specific grant
from public, commercial or not-for-profit funding agencies.

Conflicts of Interest: The authors declare no conflict of
interest.

REFERENCES

Atkin, A.O.L. and Bernstein, D.J. (2003). Prime
sieves using binary quadratic forms. Mathematics
of Computation, 73(246), 1023–1030. doi:10.1090/
S0025-5718-03-01501-1.

Charters, B.A. (1967). Algorithm 311: Prime number
generator 2. Communications of the ACM, 10(9), 570.
doi:10.1145/363566.363692.

Chartres, B.A. (1967). Algorithm 310: Prime number
generator 1. Communications of the ACM, 10(9), 569.
doi:10.1145/363566.363689.

Crandall, Richard and Pomerance, Carl (2005). Prime
Numbers: A Computational Perspective. Springer-
Verlag, New York. doi:10.1007/0-387-28979-8.

Dunten, B., Jones, J., and Sorenson, J. (1996). A space-
efficient fast prime number sieve. Information Process-
ing Letters, 59(2), 79–84. doi:10.1016/0020-0190(96)
00099-3.

Ghidarcea, M. and Popescu, D. (2023). Prime Numbers
Sieving - a Systematic Review with Performance Anal-
ysis. doi:10.2139/ssrn.4536720.

2 https://credit.niso.org/

Gries, D. and Misra, J. (1978). A linear sieve algorithm for
finding prime numbers. Communications of the ACM,
21(12), 999–1003. doi:10.1145/359657.359660.

Mairson, H.G. (1977). Some new upper bounds on the
generation of prime numbers. Communications of the
ACM, 20(9), 664–669. doi:10.1145/359810.359838.

Nicomachus (1926). Introduction to Arithmetic. Studies.
Humanistic Series. Macmillan.

Oliveira e Silva, T. (2015). Fast implementa-
tion of the segmented sieve of Eratosthenes.
https://sweet.ua.pt/tos/software/prime sieve.html.

Pratt, V.R. (1977). CGOL - an Algebraic Notation
For MACLISP users. Working paper, MIT AI Lab,
Cambridge.

Pritchard, P. (1981). A sublinear additive sieve for finding
prime number. Communications of the ACM, 24(1), 18–
23. doi:10.1145/358527.358540.

Pritchard, P. (1982). Explaining the wheel sieve. Acta
Informatica, 17(4). doi:10.1007/BF00264164.

Pritchard, P. (1983). Fast compact prime number sieves
(among others). Journal of Algorithms, 4(4), 332–344.
doi:10.1016/0196-6774(83)90014-7.

Singleton, R.C. (1969a). Algorithm 356: A prime number
generator using the treesort principle [A1]. Communi-
cations of the ACM, 12(10), 563. doi:10.1145/363235.
363244.

Singleton, R.C. (1969b). Algorithm 357: An efficient prime
number generator [A1]. Communications of the ACM,
12(10), 563–564. doi:10.1145/363235.363247.

Sorenson, J. (1990). An Introduction to Prime Num-
ber Sieves. Technical report, University of Wisconsin-
Madison, Computer Sciences Department.

Sorenson, J. (1991). An Analysis of Two Prime Num-
ber Sieves. Technical report, University of Wisconsin-
Madison, Computer Sciences Department.

Sorenson, J. (1998). Trading time for space in prime num-
ber sieves. Technical report, Springer-Verlag Springer
e-books, Berlin, Heidelberg.

Walisch, K. (2023). Primesieve.
Wood, T.C. (1961). Algorithm 35: Sieve. Communications

of the ACM, 4(3), 151. doi:10.1145/366199.366257.

