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Abstract: This paper aims to investigate a fast attitude tracking control strategy for a solar
sail equipped with sliding masses (SM) and roll stabilized bar (RSB) in presence of uncertain
inertia, unknown disturbance, actuator saturation, and coupling between control torque and
attitude angles. The state-dependent saturation of the attitude control torque is proposed to
deal with the coupling between control torque and attitude angles. A novel adaptive finite-
time control law is proposed to obtain fast attitude tracking, where two novel adaptive control
parameters are designed to compensate the uncertain inertia, the unknown disturbance, and
the state-dependent torque saturation. Compared to traditional attitude controller for solar
sail, the proposed control strategy has the advantages of guaranteeing the success of actuator
allocations by considering the torque constraints and of making full use of the saturated torque
for fast attitude tracking. The effectiveness of the proposed control strategy is shown in a Sun-
line tracking mission via simulation.
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1. INTRODUCTION

Solar sail is a propellantless propulsion spacecraft that
gain a continuous thrust from the solar radiation pressure
(SRP) force by reflecting the sunlight via a light sail, which
has gradually received increasing attention in recent years
(Spencer et al., 2021; Quarta et al., 2022; Carzana et al.,
2022; Pengyuan et al., 2022). The Attitude control system
is particularly important for a solar sail, as its orbital
acceleration is mainly controlled by the attitude of the sail.
Although the attitude control torques of solar sails can be
provided by traditional actuators of spacecrafts, scholars
tend to design new actuators based on SRP force for the
goal of propellantless propulsion. (Huang and Zhou, 2019;
Yoshimura et al., 2020).

Many attitude actuators have been developed based on
SRP force so far, e.g., roll stabilized bar (RSB) (Thomas
et al., 2005; Wie and Murphy, 2007), sliding masses(SM)
(Scholz et al., 2011; Romagnoli and Oehlschlagel, 2011;
Wu et al., 2018), reflectance control device (Tian et al.,
2016; Tamakoshi and Kojima, 2017; Bassetto et al., 2022),
and tip vanes (Hassanpour and Damaren, 2018, 2019). In
fact, only tip vanes can offer control torques along three
axes, but its mechanical structure is complex and has an
impact on the deployment of sail surface. Sliding masses
and reflectance control device are capable of generating
control torques for pitch and yaw axes, while the latter
asks for high requirement of material manufacture and
high financial cost. RSB generates control torque for roll

axis only, making it easy to combine with other actuators.
Considering the mechanical complexity and cost, this
paper takes sliding masses and RSB as actuators to study
the attitude control strategy for a solar sail.

In order to achieve the desired thrust, the solar sail-based
missions require fast attitude control. For example, a solar
polar mission was investigated by Macdonald and Hughes
(2006) and demonstrated that the sail’s attitude slew rate
should be at least 10deg/day. Orphee et al. (2016) pointed
out that the general angular rate for sail should be 1 −
2deg/day for the NEA Scout mission of NASA. Wu and
Guo (2020) focused on the effect of attitude control on
the orbit maintenance of solar sail, which showed that
the speed of the attitude control had a dominant effect
in comparison with the attitude error boundary.

Nevertheless, a solar sail has extremely large inertia but
much smaller attitude control torque than traditional
spacecrafts. The magnitudes of attitude control torque
that the actuators of a solar sail could offer are highly
limited by their scales or structure. For the sliding masses,
they change the arm of SRP force by moving masses
to generate attitude control torques for yaw and pitch
axes (Wie and Murphy, 2007; Bolle and Circi, 2008),
and the moving distance of each mass is in proportion
to the sail’s scale. The RSB generates control torque for
roll axis by tilting the bar’s angle to adjust the SRP
force, but the tilting angle is usually kept within a small
boundary because of its limited mechanical structure. The
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existence of torque saturation obviously poses a challenge
to the attitude control of solar sail, which would result
in quite a long response time of the attitude maneuver.
A few of studies have investigated the attitude control
considering the torque saturation for solar sail so far.
Mu et al. (2015) studied attitude control for a spinning
solar sail and applied a saturated function to avoid the
excess of control torque after the control law design, where
the stability of the system may not be guaranteed if the
required control effort was beyond the saturation. Baculi
and Ayoubi (2017) designed a fuzzy attitude controller
for solar sail, where a control parameter was applied to
modify the torque saturation, but the actuator allocation
and the design of control parameter were not considered.
Lian et al. (2018) proposed a saturated attitude controller
for solar sail based on the adaptive sliding mode control
theory where the stability analysis of the control system
was given, but only the dynamics of pitch axis was taken
into account.

Besides of the saturation due to the scales and mechanical
structure of actuators, the attitude maneuver introduces
obvious constraints on the control torque as well. For actu-
ators designed based on SRP, e.g., sliding mass and RSB,
the attitude control torques they provide are functions of
SRP force and actuators’ variables, while the SRP force
on a sail surface is related to its attitude. The attitude
adjustment of sail varies direction or magnitude of the
SRP force, which in turn changes the attitude control
torques. Thus, the control effort and the controlled objects
are strongly coupled in attitude control of solar sail. How-
ever, studies of solar sail attitude control seldom consider
this torque constraint. Actually, neglecting the coupling
between attitude angles and control torques would affect
the actuator allocation since the three-axis control torques
are functions of both the attitude angles and the actuators’
variables. Lian et al. (2018) choose the torque saturation
as the maximum value that the actuator could offer with
attitude angle of 90 degree, and assumed that the actuator
should be always ready for the maximum torque for any
other attitude, but the solutions of actuators’ variables
may not always exist for the required torque. The poten-
tial failure in actuator allocation would also damage the
stability of attitude control system due to the considerable
error between the controller’s output and the affordable
torque from the actuator system.

Furthermore, the sliding masses adjust the offset between
center of mass(CM) and center of pressure(CP) by chang-
ing the mass center of solar sail, which leads to a time-
varying inertia. Meanwhile, there usually exists an in-
herent CM/CP offset due to the manufacturing error or
uncertainties in sail’s deployment (Wie and Murphy, 2007;
Adeli et al., 2011), which introduces an unknown SRP
disturbance torque to the attitude control system. For
such uncertainties and unknown disturbances, a control
strategy with high robustness and efficient adaptability is
required for solar sail equipped with sliding masses and
RSB. Nevertheless, most researches on solar sail’s attitude
control tend to focus on the dynamics studies of specific
actuator (Gong and Li, 2015; Eldad and Lightsey, 2015;
Niccolai et al., 2017) but less on the control strategy inves-
tigation for the uncertainties and unknown disturbances in
practice, especially for that with sliding masses and RSB.

Considering the aforementioned issues, this paper aims
to develop a finite time attitude controller for solar sail
due to its good performance in fast convergence and
the wide applications in attitude control of spacecraft
(Zhong et al., 2016; Hu and Tan, 2017; Zhu and Guo,
2017; Zhu et al., 2019), to obtain a fast tracking control
of sail’s attitude required by orbit mission. A solar sail
equipped with sliding masses and RSB is investigated,
taking into account the changing inertia, the unknown
SRP disturbance, as well as the torque constraints caused
by actuator saturation and attitude maneuver. The remain
is organized as follows. Section 2 gives the mathematical
preliminaries, and establishes the mathematical model of
control torque with respect to attitude angle. Section
3 proposes the design of control strategy and gives the
stability analysis. Numerical simulation is given in Section
4. The conclusions are drawn in Section 5.

2. MATHEMATICAL PRELIMINARIES

2.1 Attitude Models

Consider a square solar sail like the one shown in Fig. 1,
where the sail is assumed to be flat and the degradation of
the sail membrane is not taken into account. Define SI as
an inertia frame and Sb(oxbybzb) as a body-fixed frame.
In particular, o is the geometrical centre of sail, xb (the
roll axis) is along with the normal vector of sail, pointing
towards Sun, yb (the pitch axis) is along with one of the
diagonal line of sail, and zb (the yaw axis) forms the right
handed frame.

To avoid the singularity, the quaternion is used to describe
the attitude of solar sail. The attitude dynamics in body
frame is given by

Jω̇ + ω×Jω = τc + τd (1)

Q̇ =
1

2

[
q4I3 + q×

−qT

]
ω (2)

where ω ∈ R3 is the angular velocity of the solar sail with
respect to frame SI described in frame Sb, J ∈ R3×3 is the
inertia matrix, Q = [qT, q4]

T, with q = [q1, q2, q3]
T and

satisfying ||Q|| = 1, represents the orientation of frame Sb

with respect to frame SI, I3 ∈ R3×3 is the identity matrix.
The operator × for any vector a = [a1, a2, a3]

T is

a× =

[
0 −a3 a2
a3 0 −a1
−a2 a1 0

]
so that the following property holds: ||a×|| = ||a||.
Following Thomas et al. (2005) and Wie and Murphy
(2007), the attitude control torque generated by two
sliding masses and RSB system can be described as

τc =

√
2
3 lbFs sin

αb

2 − m
M (Fzdy − Fydz)

−m
M dzFx

m
M dyFx

 (3)

where, lb is the length of RSB, αb is the tilting angle of
RSB, dy and dz are the trim positions of the sliding masses
on the pitch and yaw axes, respectively, αb, dy, and dz
are the so-called actuators’ variables, Fs is the norm of
SRP force, Fx, Fy, and Fz are the roll, pitch, and yaw
components of SRP force in body frame, respectively, M
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Fig. 1. Square Solar Sail

is the total mass of the solar sail and m is the mass of each
sliding mass.

Due to the limitations from RSB’s structure and sail’s
scale, the actuators’ variables are subject to{ |αb| ≤ αbm

|dy| ≤ dm
|dz| ≤ dm

(4)

where αbm is the maximum rotational angle of the RSB
and dm is the maximum moving distance of each sliding
mass.
The components of the inertia matrix change when the
sliding masses move and are given by Jx = Jx0 +mr(d

2
y + d2z)

Jy = Jy0 +mrd
2
z

Jz = Jz0 +mrd
2
y

(5)

where Jx0, Jy0, and Jz0 are the principal inertia moments
of solar sail with sliding masses fixed at their initial
positions, and mr is the so-called reduced mass, defined
as

mr =
m(M −m)

M
(6)

Actually, the inertia can be denoted as J = J0 + △J ,
where

J0 = [Jx0, Jy0, Jz0]
T (7)

△J = [mr(d
2
y + d2z),mrd

2
z ,mrd

2
y]

T (8)

The disturbance torque due to CM/CP offset can be
written as (Adeli et al. (2011))

τd = ι0 × Fsb (9)

where ι0 = [0, ι0y, ι0z]
T is the inherent CM/CP offset

vector and Fsb = [Fx, Fy, Fz]
T is the SRP force described

in the body frame.

2.2 Constraints of attitude control torque

From Eq.(3), it can be seen that the attitude control torque
is not only changed by the varying distances of the sliding
masses (dz/dy) and by the rotational angle of RSB (αb),
but it is also limited by the SRP force, which is adjusted
by solar sail’s attitude. Thus, the attitude maneuver would
also change the attitude control torque. Here, the mathe-
matical model is provided for the description of attitude
control torque in terms of the attitude angles of solar sail.

Two attitude angles, the so-called Sun angle and clock
angle, are usually defined for solar sails, see Fig 1. In
particular, αs is the Sun angle, that is the angle between
sail’s normal vector (n) and the sunlight vector (rs), while
θs is the clock angle, defined as the angle between the
projection of the sunlight vector in ybobzb plane and the
zb axis.

The SRP force can be decomposed along the normal vector
and the tangential vector which is denoted as ta, that
is(Adeli et al. (2011))

Fsrp = Fnn+ Ftta (10)

with

Fn = −PAs[(1 + ρs)cos
2 αs + 2/3ρd cosαs] (11)

Ft = −PAs(1− ρs)cosαs sinαs (12)

where As is the effective area of sail, P is the value of SPR
at 1 astronomical unit from the Sun, ρs is the specular
reflection coefficient, and ρd is the diffuse reflection coeffi-
cient. The optical parameters are assumed to be constant.

The SRP force described in Sb is

Fsb =

[
Fn

Ft sin θs
Ft cos θs

]
(13)

Substituting Eqs.(11) and (12) into Eq.(13), yields

Fx = −PAs[(1 + ρs)cos
2 αs + 2/3ρd cosαs] (14)

Fy = −PAs(1− ρs)cosαs sinαs sin θs (15)

Fz = −PAs(1− ρs)cosαs sinαs cos θs (16)

Thereafter, Fx, Fy, and Fz are substituted into Eq.(3),
thus giving

τc =

√
2
3 lbFs sin

αb

2 + m
M Fo(cos θsdy − sin θsdz)

m
M PAsdz[(1 + ρs) cosαs + 2/3ρd] cosαs

−m
M PAsdy[(1 + ρs) cosαs + 2/3ρd] cosαs

 (17)

where Fo = PAs(1− ρs)cosαs sinαs.

It is clearly shown that the three-axes control torques are
nonlinear functions of the two attitude angles and actua-
tors’ variables. The changes in Sun and clock angles during
the attitude maneuver introduce obvious constraints on
the control torque.

Note that αs and θs can be calculated as

cosαs = rsb · xb (18){
sin θs =

rsb(2)√
r2
sb
(2)+r2

sb
(3)

, αs ̸= 0

θs = 0, αs = 0
(19)

where θs is set to zero when αs = 0 for the calculation
logic.

The sunlight vector in frame SI can be transformed from
its description in Sb as

rsb = AbIrsI (20)

where AbI is the transform matrix from SI to Sb, which
can be described by the attitude quaternions as

AbI =

1− 2q22 − 2q23 2q1q2 + q4q3 2q1q3 − q4q2
2q1q2 − q4q3 1− 2q21 − 2q23 2q2q3 − q4q1
2q1q3 + q4q2 2q2q3 − q4q1 1− 2q21 − 2q22


(21)

Thus, the transformation from attitude quaternions to
attitude angles is obtained.
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From Eq.(4)-(8), it can be seen that the inertia changing
with respect to the positions of sliding masses is bounded.
Meanwhile, the SRP disturbance torque is bounded due to
the limited area of sail, see Eqs.(9)-(16). As a consequence,
the following assumptions can be given.

Assumption 1. There exist bJ > 0, bJ1 > 0, and bJ2 > 0
such that bJ1 ≤ ∥J0∥ ≤ bJ and ∥△J∥ ≤ bJ2, where bJ, bJ1,
and bJ2 are unknown.

Assumption 2. The SRP disturbance torque is bounded
such that ∥τd∥ ≤ ds, where ds > 0 is unknown.

2.3 Definition and lemma

The definition of practical finite-time stable (PFS) and
lemma of finite-time control are introduced, which will be
utilized in the design of the attitude controller.

Definition 1. (Zhu et al. (2011)) Consider the nonlinear
system ẋ = f(x,u), where x is a state vector and u
is the input vector. The solution is practical finite-time
stable (PFS) if for all x(t0) = x0 , there exist ε > 0 and
T (ε, x0) < ∞, such that ||x(t)|| < ε, for all t ≤ t0 + T ,
where t0 is the initial time.

Lemma 1. (Zhu et al. (2011)) Consider the nonlinear
system ẋ = f(x,u), where x is a state vector and u is the
input vector. Suppose that there exist continuous function
V (x) , scalars α > 0, 0 < γ < 1, and 0 < β < ∞ such that

V̇ (x) ≤ −αV γ(x) + β (22)

Then, the trajectory of system ẋ = f(x,u) is PFS. The
decrease of V (x) drives the trajectory of the system into

V γ(x) ≤ β

α(1− κ)
, κ ∈ (0, 1) (23)

and the needed time is bounded by

T ≤ V 1−γ(x0)

ακ(1− γ)
(24)

where x0 is the initial state of the system.

2.4 Error model

To describe the attitude tracking problem for solar sail,
another frame Sd is defined to describe the desired attitude
of solar sail. In particular, the orientation of Sd with
respect to SI is described by Qd = [qT

d , qd4]
T , where

qd = [qd1, qd2, qd3, qd4]
T satisfies ||Qd|| = 1. Let ωd ∈

R3 denotes the desired angular velocity described in Sd,
equivalent to the angular velocity of Sd with respect to
SI. In addition, Qe = [qT

e , qe4]
T = [qe1, qe2, qe3, qe4]

T ,
satisfying ||Qe|| = 1, is defined to describe the rotation
from Sd to Sb, while ωe ∈ R3 describes the angular
velocity of Sb relative to Sd in Sb. The transformation
matrix from Sd to Sb is denoted by C ∈ R3×3 , where

C = (q24 − qT
e qe)I3 + qeq

T
e − 2q4q

×
e (25)

is such that ||C|| = 1, and Ċ = −ω×
e C. The quaternion

error is

qe = qd4q − q×
d q − q4qd (26)

qe4 = qTqd + q4qd4 (27)

ωe = ω −Cωd (28)

Substituting Eq.(28) into Eq.(1), it has

Jω̇e =− (ωe +Cωd)
×J(ωe +Cωd)+

J(ω×
e Cωd −Cω̇d) + τc + τd

(29)

The following error model of dynamics can be obtained

J0ω̇e =− (ωe +Cωd)
×J0(ωe +Cωd)+

J0(ω
×
e Cωd −Cω̇d) + τc + τd −△Jω̇e

− (ωe +Cωd)
×△J(ωe +Cωd)+

△J(ω×
e Cωd −Cω̇d)

(30)

and the error model of kinematics is

Q̇e =
1

2

[
qe4I3 + q×

e

−qT
e

]
ωe (31)

Since the desired angular velocity required by the orbital
mission of solar sail is usually bounded, the following
assumption can be given.

Assumption 3. The desired attitude angular velocity and
its time derivative are bounded. There exist unknown vi >
0, with i = 1, 2 that satisfy ||ωd|| ≤ v1, and ||ω̇d|| ≤ v2.

Therefore, the control objective is to design an attitude
tracking controller for solar sail described by Eqs.(1) and
(2) in presence of the actuator saturation limitations
described by Eq.(4), the uncertain inertia described by
Eq.(5), the SRP disturbance torque given by Eq.(9),
and the control torque subject to Eq.(17) under the
Assumptions 1-3. With the designed attitude controller,
the attitude angular error and the angular velocity error
described by Eqs.(30) and (31) are PFS.

3. CONTROL STRATEGY DESIGN

The attitude tracking controller is designed in this section.
A state-dependent torque saturation is firstly proposed
to deal with the constants of attitude control torque
of solar sail, and then the adaptive finite-time control
law is designed. The actuator allocation is thereafter
studied. Fig. 2 shows the block diagram of the control
system, where us is the control law, αbc is the reference
command of RSB’s rotational angle, dyc and dzc are
reference commands of sliding masses’ positions, while αbc,
dyc and dzc are solved from us in actuator allocation.

3.1 State-dependent torque saturation

Firstly, the torque constraints are considered. Baculi and
Ayoubi (2017) proposed a control parameter to change
the actuator’s saturation to adjust the attitude control
performance of solar sail. Inspired by the idea, a state-
dependent torque saturation is proposed to combine the
torque constraints of actuator saturation and attitude
maneuver. In detail, the influence of attitude maneuver
is equivalent to the saturation of control torque.

Most orbit missions of solar sail are dependent on the
Sun angle (Adeli et al., 2011; Wie and Murphy, 2007;
Macdonald and Hughes, 2006; Heiligers et al., 2015),
therefore the item of the clock angle (θs) in Eq. (17) can
be ignored to simplify the controller design, thus yielding

τc1 =

 √
2
3 lbFs sin

αb

2
m
M PAsdz[(1 + ρs) cosαs + 2/3ρd] cosαs

−m
M PAsdy[(1 + ρs) cosαs + 2/3ρd] cosαs

 (32)
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Fig. 2. Diagram of control system

The equals are taken in Eq. (4) to use the maximum values
of actuators’ variables. Thus, the saturation of the control
torque can be obtained by substituting αbm and dm into
Eq. (32) as

Um =

 |
√
2
3 lbFs sin

αb

2 |
|mr

M PAsdm[(1 + ρs) cosαs + 2/3ρd] cosαs|
|mr

M PAsdm[(1 + ρs) cosαs + 2/3ρd] cosαs|

 (33)

which gives the torque saturation as a function of the Sun
angle.

3.2 Finite-time Attitude Tracking Law

The attitude control law is designed based on the fast ter-
minal sliding mode finite-time control theory for its good
performance in fast convergence. Two adaptive parameters
are proposed to compensate the uncertain inertia, the un-
known SRP disturbance, and the state-dependent torque
saturation.

The following sliding surface is applied

s = ωe + c1qe + c2F (qe, r) (34)

where c1 > 0,c2 > 0, r = g/h, g and h are two positve
odd numbers satisfying g/h ∈ (0, 1). For any vector x =
[x1, x2, x3]

T and any scalar v, the function F (x, v) is

F (x, v) = [|x1|vsign(x1), |x2|vsign(x2), |x3|vsign(x3)]
T

(35)

To reduce the number of estimated parameters, the follow-
ing lumped disturbance item is defined

D =τd −△Jω̇e +△J(ω×
e Cωd −Cω̇d)

− (ωe +Cωd)
×△J(ωe +Cωd)

(36)

The following theorem can be given

Theorem 1. Considering the attitude system in Eqs.(1)-
(2) subject to the control torque in Eq.(17) and to the
actuator saturation in Eq.(4) with Assumptions 1-2, there
exists a > 0 such that

||ω̇|| ≤ ||ω||2 + a (37)

Proof. According to Eq. (1), it has

||J ||||ω̇|| =|| − ω×Jω + τc + τd||
≤||ω×Jω||+ ||τc||+ ||τd||
≤||J ||||ω||2 + ds + ||τc||

(38)

From Eq.(17), the control torque components are the
trigonometric functions of Sun angle and actuators’ vari-
ables. The trigonometric functions of Sun angle are

bounded, and the actuators’ variables are saturated as
described by Eq.(4). Thus, the control torque is bounded
and the boundary can be denoted as

||τc|| ≤ a0, a0 > 0 (39)

from which

||J |||ω̇|| ≤ ||J ||||ω||2 + ds + a0 (40)

and

||ω̇|| ≤||ω||2 + (ds + a1)/bJ1 (41)

Define a =: (ds + a1)/bJ1, thus having

||ω̇|| ≤ ||ω||2 + a (42)

The following theorem can also be given according to
Theorem 1.

Theorem 2. Considering the lumped disturbance given by
Eq.(36) that satisfies Assumptions 1-3, there exist ai > 0,
with i = 1, 2, 3, such that the following inequality holds

||D|| ≤ a1||ω||2 + a2||ω||+ a3 (43)

Proof. From Eq.(36), it has

||D|| ≤||τd||+ ||△J ||||ω̇ +Cω̇d + Ċωd||+ ||△J ||(||ωe||
||ωd||+ ||ω̇d||) + ||△J ||||ω||2

≤ds + ||△J ||||ω̇||+ ||△J ||||ω||2 + 2||△J ||(||ω̇d||
+ ||ωe||||ωd||)

≤ds + ||△J ||||ω̇||+ 2||△J ||||ωd||||ω||+ ||△J ||||ω||2

+ 2||△J ||||ωd||2 + 2||△J ||||ω̇d||
(44)

According to Theorem 1, it has

||D|| ≤||△J ||(||ω||2 + a) + 2||△J ||||ωd||||ω||+ ds+

||△J ||||ω||2 + 2||△J ||||ωd||2 + 2||△J ||||ω̇d||
=2||△J ||||ω||2 + 2||△J ||||ωd||||ω||+ ds

+ 2||△J ||||ωd||2 + 2||△J ||||ω̇d||

(45)

From Assumptions 1 and 2, a1, a2, and a3 can be always
found such that

a1 ≥ 2||△J || (46)

a2 ≥ 2||△J ||||ωd|| (47)

a3 ≥ ds + 2||△J ||||ωd||2 + 2||△J ||||ω̇d|| (48)

then yields

||D|| ≤ a1||ω||2 + a2||ω||+ a3 (49)

The following assumption can also be given

Assumption 4. There exist p1 > 0 and p2 > 0 such that
the following inequalities hold

c1||qe||+ c2||qe||r +
c2
2
||qe||r−1 + 2||ωd||+

c1
2

≤ p1
bJ

(50)

||ω̇d||+
(c1
2

+
c2
2
r||qe||r−1

)
≤ p2

bJ
(51)

Since the desired angular velocity and its derivative are
bounded from Assumption 3, and the error quaternion is
subject to ||Qe|| = 1 , Assumption 4 is reasonable.

Theorem 2 and Assumption 4 combine the information
about the inertia, the SRP disturbance, and the saturation
of attitude control torque, which aims to reduce the
number of estimated parameters.
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For further reduction, it denotes

p = max(p1, p2) (52)

d = max(a1, a2, a3) (53)

Thus, only two adaptive parameters, d and p, are applied
in the proposed controller, which are updated online as the
following laws

˙̂
d = η0(Φ0||s|| − ϵ0d̂) (54)

˙̂p = η1(Φ1||s|| − ϵ1p̂) (55)

where Φ0 = 1 + ||ω|| + ||ω||2, Φ1 = 1 + ||ω||, ϵ0 > 0,
and ϵ1 > 0. η0 and η1 are positive numbers which will be
determined in following control law design.

The saturated control law is designed as

us = −χ(u)u (56)

where χ = diag[χ1, χ2, χ3] is used to avoid the excess of
attitude control torque, and

χi =

{
1, |ui| ≤ Umi

Umi/uisign(ui), otherwise
,with i = 1, 2, 3 (57)

u is the finite-time control law designed as

u = k1s+ k2F (s, r) + uad(s, d̂, p̂) (58)

where k1 > 0, k2 > 0, and uad(s, d̂, p̂) is the adaptive law
and designed as

uad(s, d̂, p̂) =

{
s

||s|| d̂Φ0 +
s

||s|| p̂Φ1, ||s|| ≥ σ
s
σ d̂Φ0 +

s
σ p̂Φ1, ||s|| < σ

(59)

where σ > 0.

The stability of the closed-loop system based on the
proposed control law is given in following theorem.

Theorem 3. Consider the system described by Eqs.(1)-(2)
that satisfies Assumptions 1-4 with the actuator satura-
tion in Eq.(4), the uncertain inertia in Eq.(5), the SRP
disturbance torque in Eq.(9), and the torque constraint
in Eq.(17). Then, the attitude error qe and the angular
velocity error ωe defined in Eq.(30) and Eq.(31) are PFS
with the control laws (56)-(58) and the adaptive laws (59),
(54)-(55).

Proof. According to Lu et al. (2013), there exists a
constant satisfying that 0 < δ ≤ min(χi) ≤ 1, while the
following Lyapunov function is chosen

V =
1

2

(
sTJ0s+

1

η0δ
d̃2 +

1

η1δ
p̃2
)

(60)

where d̃ = d− δd̂, p̃ = p− δp̂. Its derivative is

V̇ =sTJ0ṡ− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

=sT
[
J0ω̇e + c1J0q̇e + c2rJ0diag

(
|qe|r−1

)
q̇e
]

− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

=sT[−ω×J0ω + J0(ω
×
e Cωd −Cω̇d) + c1J0q̇e

+ c2rJ0diag
(
|qe|r−1

)
q̇e] + τc +D

− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

=sT[−(s− c1qe − c2F (qe, r) +Cωd)
×J0ω + J0

(ω×
e Cωd −Cω̇d) + c1J0q̇e + c2rJ0diag(|qe|r−1)q̇e]

+ sTus + sTD − 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

(61)

Noting that sTs× = [0, 0, 0], it has

V̇ =sT[(c1qe + c2F (qe, r)−Cωd)
×J0ω+

J0(ω
×
e Cωd −Cω̇d) + c1J0q̇e + c2rJ0diag(|qe|r−1)q̇e]

+ sTus + sTD − 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

(62)

Noting that (Cωd)
×(Cωd) = [0, 0, 0]T, ||C|| = 1, ||qe4 +

q×
e || = 1, it has

V̇ ≤||s||||c1qe + c2F (qe, r)−Cωd||||J0||||ω||
+ ||s||||J0||||ω×

e Cωd −Cω̇d||+ c1||s||||J0||||q̇e||
+ c2r||s||||J0||||qe||r−1||q̇e||+ sTus + sTD

− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

≤||s||(c1||qe||+ c2||qe||r + ||C||||ωd||)||J0||||ω||
+ ||s||||J0||[(ω −Cωd)

×Cωd + ||C||||ω̇d||]

+
c1
2
||s||||J0||||qe4 + q×

e ||||ω −Cωd||

+
c2
2
r||s||||J0||||qe||r−1||qe4 + q×

e ||+ sTus + sTD

− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

≤||s||(c1||qe||+ c2||qe||r + ||ωd||)bJ||ω||+

||s||bJ(||ω||||ωd||+ ||ω̇d||) +
c1
2
||s||bJ(||ω||+ ||ωd||)

+
c2
2
r||s||bJ||qe||r−1(||ω||+ ||ωd||) + sTus + sTD

− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

=bJ||s||||ω||(c1||qe||+ c2||qe||r +
c2
2
r||qe||r−1 + 2||ωd||

+
c1
2
) + bJ||s||[||ω̇d||+ (

c1
2

+
c2
2
r||qe||r−1)||ωd||]+

sTus + sTD − 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

≤p||s||||ω||+ p||s||+ sTus + ||s||d(1 + ||ω||+ ||ω||2)

− 1

η0
(d− δd̂)

˙̂
d− 1

η1
(p− δp̂) ˙̂p

(63)

By substituting Eqs.(54) and (55) into Eq.(63), it has
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V̇ ≤ p||s||||ω||+ p||s||+ sTus + ||s||d(1 + ||ω||+ ||ω||2)
− (d− δd̂)||s||d(1 + ||ω||+ ||ω||2) + ϵ0d̂(d− δd̂)

− (p− δp̂)||s||(1 + ||ω||) + ϵ1p̂(p− δp̂)

≤ −δsTu+ δd̂||s||Φ0 + ϵ0d̂(d− δd̂)

+ δp̂||s||Φ1 + ϵ1p̂(p− δp̂)
(64)

When ||s|| ≥ σ , the following result holds by substituting
u into Eq.(64)

V̇ ≤ −δk1s
Ts− δk2s

TF (s)− δsTuad + δd̂||s||Φ0

+ ϵ0d̂(d− δd̂) + δp̂||s||Φ1 + ϵ1p̂(p− δp̂)

= −δk2||s||r+1 + ϵ0d̂(d− δd̂) + ϵ1p̂(p− δp̂)

= −δk2||s||r+1 + ϵ0d̃d̂+ ϵ1p̂p̃

(65)

For any n0 > 1/2, one has

ϵ0d̃d̂ =
ϵ0
δ
(dd̃− d̃2)

≤ ϵ0
δ
(−d̃2 +

1

2n0
d̃2 +

n0

2
d2)

=
−ϵ0(2n0 − 1)

δn0
d̃2 +

ϵ0n0

2δ
d2

(66)

and it results in
ϵ0(2n0 − 1)

δn0
d̃2 + ϵ0d̃d̂ ≤ ϵ0n0

2δ
d2 (67)

Let γ = r+1
2 , then 0.5 < γ < 1. It has(

ϵ0(2n0 − 1)

δn0
d̃2
)γ

≤ ϵ0(2n0 − 1)

δn0
d̃2 (68)

for ϵ0(2n0−1)
δn0

d̃2 ≥ 1, and(
ϵ0(2n0 − 1)

δn0
d̃2
)γ

≤ 1 (69)

when ϵ0(2n0−1)
δn0

d̃2 ≤ 1. Thus, it always has(
ϵ0(2n0 − 1)

δn0
d̃2
)γ

≤ ϵ0(2n0 − 1)

δn0
d̃2 + 1 (70)

thus yielding(
ϵ0(2n0 − 1)

δn0
d̃2
)γ

+ϵ0d̃d̂ ≤ ϵ0(2n0 − 1)

δn0
d̃2+ϵ0d̃d̂+ 1 (71)

From Eq.(67), it has(
ϵ0(2n0 − 1)

δn0
d̃2
)γ

+ϵ0d̃d̂ ≤ ϵ0n0

2δ
d2 + 1 (72)

Then, the following inequality holds

ϵ0d̃d̂ ≤ ϵ0n0

2δ
d2 + 1−

(
ϵ0(2n0 − 1)

δn0
d̃2
)γ

(73)

Similarly, for any n1 > 1/2, it has

ϵ1p̃p̂ ≤ ϵ1n1

2δ
p2 + 1−

(
ϵ1(2n1 − 1)

δn1
p̃2
)γ

(74)

Thus, the derivative of V is

V̇ ≤ −δk2||s||r+1 +
ϵ0n0

2δ
d2 + 1−

(
ϵ0(2n0 − 1)

δn0
d̃2
)γ

+
ϵ1n1

2δ
p2 + 1−

(
ϵ1(2n1 − 1)

δn1
p̃2
)γ

(75)

Define

λ :=
k22

γ

||J0||γ
(76)

η :=
ϵ0n0

2δ
d2 +

ϵ1n1

2δ
p2 + 2 (77)

η0 and η1 can be designed as

η0 =
n0λ

ϵ0(2n0 − 1)
(78)

η1 =
n1λ

ϵ1(2n1 − 1)
(79)

Considering Eqs.(75)-(79), it has

V̇ ≤ −λ

[(
1

2
sTJ0s

)γ

+

(
1

2η0δ
d̃2
)γ

+

(
1

2η0δ
d̃2
)γ]

+ η

= −λV γ + η
(80)

According to Lemma 1, the following result can be
achieved in finite time

V γ ≤ η

λ(1− κ)
, κ ∈ (0, 1) (81)

As a result, the trajectory of the sliding surface s is
bounded in finite time T1, such that

lim
t→T1

s(t) ∈ {s : ||s|| ≤ Γ} (82)

where Γ =
η
√

2||J0||
λ(1−κ) , and

T1 ≤ V
(1−γ)
0

λκ(1− γ)
(83)

where V0 is the initial state of V .

It can be concluded that the trajectory of the closed-loop
system of Eqs. (30) and (31) can be driven onto area of
||s|| ≤ Γ in finite time T1.

In the case of ||s|| < σ, reaching the sliding surface s = 0
in finite time cannot be guaranteed. According to Zhong
et al. (2016), σ ≤ Γ can always hold by properly choosing
σ. In this way, with the proposed controller, the system
states would converge to the small neighborhood ||s|| ≤ Γ
in finite time.

3.3 Actuator Allocation

The moving distances of sliding masses and rotational
angle of RSB are solved from the designed control law.
According to Eq.(3), the actuators’ solutions can be de-
scribed as

αbc =
3
√
2

lb(Fs + ε)

[
usx +

mr

M
(Fzdyc − Fydzc)

]
(84)

dyc = − uszM

mr(Fx + ε)
(85)

dzc =
usyM

mr(Fx + ε)
(86)

where usx, usy, and usz are control torques along three axes
and hold us = [usx, usy, usz]

T . ε is a small positive variable
applied to avoid the singularity when cosαs = 0.

The dynamics of the actuators are considered as (Wie and
Murphy (2007))
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Taα̇b + αb = αbc (87)

Tmḋy + dy = dyc (88)

Tmḋz + dz = dzc (89)

where Ta and Tm are the time constants of the RSB and
sliding masses.

4. SIMULATION

The parameters of a 40m× 40m solar sail taken form Wie
and Murphy (2007) are shown in Table 1. Because the Sun-
line law has important application in orbit design of solar
sail, e.g., Heiligers et al. (2015), it is taken as the desired
attitude to prove the effectiveness of our proposed attitude
control strategy. It requires the sail’s normal vector to
track the sunlight vector, i.e., αs is asked to converge to 0.
The motion of the sunlight vector can be described in the
inertia frame as

rsI = [cos(ωst),− sin(ωst), 0]
T (90)

The initial attitude angular error is set to 35deg, which can
be described by quaternion Q0 = [0, 0, 0.2588, 0.9659]T,
while the initial angular velocity is ω0 = [0, 0, 0]T. In
addition, ρs = 0.9 and ρd = 0.1. The control parameters
are designed as c1 = 0.01, c2 = 0.001, g = 9, h = 17,
n0 = n1 = 0.8, ϵ0 = ϵ1 = 0.0001, k1 = 0.1, k2 = 0.1,
σ = 0.001, ε = 0.0001.

Figs.3 and 4 give the errors in attitude quaternion and
angular velocity. To illustrate the result of attitude track-
ing, the Sun angle is shown in Fig. 5. It can be seen that
the angle converges to the neighborhood of zero in less
than 1 h with an error of 0.7 deg. For a 35-degree attitude
maneuver, the convergence in Wie and Murphy (2007)
took about 2h. Thus, the control process of our proposed
control system is relatively fast.

Fig.6 and 7 show the time histories of the changing inertia
and the SRP disturbance torque. It can be noted that the
inertia changes a lot compared to its principal part due
to the large movements of the sliding masses. The SRP
disturbance torque is time varying because of the attitude
adjustment.

Fig.8 illustrates the time histories of the state-dependent
torque saturation. Figs.9-11 present the proposed control
law and the actual control torques generated by the
actuators along three axes. In each figure, the red dashed
lines indicate the upper and lower bounds of each axis as
shown in Fig.8. The control torques for the roll and pitch
axes are within their saturation limits. For the yaw axis, at
the beginning of simulation, the saturation is soon reached
to make full use of the control effort. Then, with the
drop of attitude tracking error, the designed control effort
decreases a lot. At last, small torques are still required
to counteract the disturbance. The time-delay properties
of the actuators’ dynamics result in errors between the
designed control effort and the actual torque.

Fig.12 displays the rotational angle of the RSB and the
positions of two sliding masses. The saturation of dy
also appears following the trend of control torque along
yaw axis. Additionally, dz and αs both vary within their
affordable values. As the control efforts decrease, the
oscillations of αs, dy, and dz also decay. The actuators’

variables are almost fixed at certain values to generate
control torque for disturbance rejection and uncertainty
compensation.

Table 1. The parameters of solar sail

Parameter Value

lb 1m
αbm 30deg
ι0y 0.1m
ι0z 0.1m
As 1400m2

Ta 560s
M 150kg
dm 28m

[Jx0, Jy0, Jz0] [4332, 2116, 2116]kgm2

ωs 1.5178× 10−4deg/s
P 4.563× 10−6N/m2

Tm 560s

Fig. 3. Attitude quaternion error

Fig. 4. Attitude angular velocity error
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Fig. 5. Sun angle

Fig. 6. Changing Inertia

Fig. 7. SRP disturbance torque

Fig. 8. Torque saturation

Fig. 9. Control efforts of roll axis

Fig. 10. Control efforts of pitch axis
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Fig. 11. Control efforts of yaw axis

Fig. 12. Time histories of the actuators’ motions

In conclusion, the desired attitude is successfully tracked
in finite time under the proposed control strategy in
the presence of actuators dynamics, changing inertia,
unknown SRP disturbance, and torque constraints caused
by actuator saturation and attitude maneuver.

5. CONCLUSION

In this paper, a three-axis attitude tracking controller is
designed for a solar sail equipped with sliding masses and
RSB in the presence of uncertain inertia, unknown SRP
disturbance and torque constraints caused by actuator sat-
uration and attitude maneuver. The model of the control
torque with respect to attitude angle is established. A
state-dependent torque saturation is proposed to deal with
the torque constraints. Effective adaptive laws are pro-
posed to handle the uncertain and unknown information
of inertia, SRP disturbance, and torque constraints. The
proposed control strategy successfully stabilizes the closed-
loop attitude control system in finite time, where the state-
dependent saturation of control torque are fully used, and

achieves a relatively fast attitude tracking control for solar
sail.
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