
CEAI, Vol.25, No.4, pp. 14-21, 2023 Printed in Romania

A Mathematical Model for SDN Control Plane Scalability Evaluation

Based on Controller Utilization

Firas Zobary*1, Li ChunLin**

* School of Computer Science and Artificial Intelligence, Wuhan University of Technology

Wuhan, Hubei, China (e-mail: firas_zobary@hotmail.com)

** School of Computer Science and Artificial Intelligence, Wuhan University of Technology

Wuhan, Hubei, China (e-mail: chunlin74@aliyun.com)
1Corresponding Author: Firas Zobary

Abstract: The increasing number of users on internet, clouds, and data centers should be followed by more

efforts to change the behavior of traditional networks. Software-defined networks give more flexibility to

the network, but the scalability of SDN is still a problem for network designers and administrators about

which architecture is suitable to be applied in their network. As more studies study the scalability problem,

controller utilization as a scalability metric for different SDN control planes still doesn’t have a deep

analysis which is the novelty of this work. In this paper, we propose a mathematical model for SDN control

plane scalability evaluation based on controller utilization as a metric. This paper employs mathematical

techniques to examine and contrast various architectures. The numerical results conclude that the

decentralized global view has the worst utilization, while the hierarchical root controller has the best, and

the local decentralized control plan has almost the same utilization as the hierarchal leaf controller. These

findings have significant implications for network designers and administrators as they suggest that

implementing a hierarchical control plane can optimize the network scalability, ensuring efficient network

management and resource utilization. This paper not only presents a mathematical model for evaluating

SDN scalability, but also provides valuable insights into the implications of the findings. Network

professionals can leverage this knowledge to make informed decisions and design more efficient and

scalable SDN. The validity of the findings presented in this study is further substantiated through numerical

assessments and achieved by proposing a novel method.

Keywords: Control Plane, Controller, Scalability, SDN, Utilization.

1. INTRODUCTION

With the increasing development of networks, internet, and

cloud services, traditional networks start to show their

limitations when they move to new concepts like 5G networks,

mobility, server virtualization, or IoT. Because of the huge

number of users as well as their needs related to the quality-of-

service speed, researchers have started to rethink today’s

network architecture. The traditional architecture we know

nowadays suffers from complexity and difficulties when it

comes to configuring, device installation, and vendor

compatibilities. Adding or removing a switch or a router in a

network is a wasted time job as the administrator should deal

with hundreds and maybe thousands of network devices (Sezer

et al., 2013). Software Defined Network (SDN) is a new

paradigm of modern network architectures that creates an

operative relation and communication between network

devices, clouds, mobile phones, internet of things, and data

centers (Yurekten and Demirci, 2021). In SDN, the control

layer is decoupled from the physical layer, and the network

device is abstracted from the upper layer, which is called

“controller.” This abstraction brings many advantages to the

new architecture as it starts to be more flexible, and

programmable, and gives the ability to centralized network

monitoring. Three layers compose an SDN architecture: the

application, control plane, and data plane. The main part of the

SDN is the control plane (controller) which has the core

responsibility of managing the data plane and flow control. In

the data plane, network devices such as switches and routers

are responsible for executing the controller instructions about

packet forwarding and data flows from the source to their

destination. As a new paradigm, SDN are facing multiple

challenges that should be addressed during its implementation.

Scalability is one of the most important challenges that should

be focused on to ensure the effectiveness of processing the

increasing demands on network resources. Decoupling data

and control planes may need more efforts to secure the

controller from unauthorized access to ensure the privacy of

sensitive data. Moreover, SDN deployments often involve a

mix of vendors and protocols, so the interoperability can be

challenging and therefore, it’s essential to establish

standardization protocols to facilitate the deployment of

heterogeneous environments. Also, the transition from

traditional network to SDN can affect the recent network

infrastructure and add more costs to deploy new hardware,

software and training. Addressing the previous challenges

requires ongoing researches to ensure a successful adoption of

SDN. Thus, most researchers and studies are focusing on

controller-related issues as the controller is the key part of

SDN. These issues vary from choosing the suitable controller

for the network to evaluating the controller's performance

under many conditions. Control plane scalability is one of the

most important issues that researchers should focus on. In

general, three classifications of control plane are introduced:

CONTROL ENGINEERING AND APPLIED INFORMATICS 15

centralized, decentralized, and hierarchal design (Schmid and

Suomela, 2013). Only one controller is implemented in

centralized architecture, and it’s responsible for all the data

flow management and has a global view of the whole network.

However, this design is appropriate for some small-sized

networks, but as the incoming flows increase and the number

of network devices grows, the controller will become a

bottleneck and a single point of failure as, at some point, it will

not be able to handle all the requests (Benson et al., 2010). In

decentralized architecture, some multi-controllers are

distributed in a flat design. The hierarchal architecture also

uses multi-controllers but in tree distribution. That is, the

network is divided into several clusters, and each cluster is

controlled by only one leaf controller, which has a local view

of its network. The leaf controllers at the end are managed by

an upper-layer root controller that has a global view of the

whole network. Our study aims to mathematically model and

evaluate the control plane utilization in these three basic SDN

architectures to further address their scalability behavior. The

mathematical model for SDN controller utilization, while

primarily designed to assess scalability, can indeed be used to

analyze the task execution time including calculation time, I/O

time and transmission time and therefor impact service

response time. Interpreting the controller utilization data is

important to understand how the workload on SDN controllers

can impact the time it takes to perform computational tasks,

handle I/O operations, and transmit data across the network.

As the controller utilization increases, the time taken to

perform calculations may also increase, and that may indicate

a resource contention (CPU, memory) between different tasks,

so the high utilization controller needs to be allocated by more

resources to process calculations faster. Also, the workload on

a controller can directly affect tasks involving input/output

operations such as reading or writing data to storage devices.

Moreover, controller utilization can directly affect the

transmission time and network latency. As the high controller

utilization might lead to network congestion due to an

increased number of control messages being transmitted. This

congestion can significantly impact the time taken for

messages to travel across the network, so it’s very important

for network administrators to analyze how congestion during

peak utilization affects transmission time and, consequently,

task execution time. This evaluation is necessary for network

operators and designers before building their network

topology and choosing the most suitable network architecture.

Controller performance evaluation has been studied in many

researches. A comparison between SDN and non-controller

networks was made in(Alraawi & Adam, n.d.) in terms of

throughput and delay, while seven controllers are evaluated

against several performance metrics (Lunagariya and

Goswami, 2021). Controller performance in special network

designs such as wireless and IoT are evaluated in scholars (S.

Islam et al., 2019; Urrea and Benítez, 2021; Zhou et al., 2022).

The main goal of the above studies is to help the network

administrator to choose the most suitable controller for the

network. Before controller deployment, the operator must

know in advance the controller’s ability to be scaled and can

handle the increasing number of flows and network devices. In

this scenario, the distributed controller is much better than the

centralized one as this architecture provides high throughput

and low delay without being a bottleneck (Othman et al.,

2017).

The novelty and contributions of this study are as follows:

1. The proposed mathematical model for evaluating SDN

control plane scalability is based on controller utilization

as a metric.

2. The use of mathematical techniques to examine and

contrast various SDN control plane architectures.

3. The conclusion is that the hierarchical root controller has

the best utilization, while the decentralized global view has

the worst utilization, and the local decentralized control

plan has almost the same utilization as the hierarchal leaf

controller.

4. The numerical assessments further substantiate the validity

of the findings presented in this study.

2. RELATED WORKS

Scalability measurement is not a new idea. Several works have

been done to measure the scalability of different systems, and

most of them focused on scalability measurement in

distributed systems and algorithms as well, but scalability

evaluation in terms of control plane utilization is still widely

unexplored. An experiment was conducted on the popular Ryu

controller, a Python-based controller, to measure scalability

metrics (Asadollahi et al., 2018). The experiment involved a

test bed with 6 switches arranged in a mesh topology, and the

host was able to support up to 300 nodes. The experiment

measured the throughput performance, and it was found to be

stable. However, when compared to scenarios with 100 and

200 nodes, the results were negative, indicating that the

performance degraded as the number of nodes increased.

These findings suggest that implementing the Python-based

controller over Ryu may not be optimal for a larger network.

A study was conducted in (Satre et al., 2021) to analyze the

performance of firewall applications, using a custom topology

and firewall scripts written with the aid of another firewall

script. The objective was to filter traffic based on their parsed

headers, and TCP/UDP traffic was tested to be blocked using

POX as a reference. Round trip time (RTT) was evaluated,

with no significant variation observed when the firewall switch

application was not used. However, when testing throughput

with and without the firewall application, variation in results

was noted. Latency variation and jitter time were also found to

be higher when compared to the default switch application.

The purpose of this experiment was to examine the

performance impact of running a switch application with an

embedded firewall script to filter traffic based on rules.

The purpose of the study (M. T. Islam et al., 2020) is to assess

the performance of the Ryu controller in terms of bandwidth,

throughput, round trip time (RTT), jitter, and packet loss. To

evaluate the Ryu controller's bandwidth, iPerf3 tool is used to

generate TCP traffic and analyze the bandwidth between three

hosts arranged in a single topology. Throughput was measured

between nodes acting as client and server, and a graph was

created to depict the highest and lowest values of TCP traffic.

The minimum, maximum, and average RTT times between

hosts were also calculated. The study found no fluctuations in

jitter results, which is important for maintaining connection

16 CONTROL ENGINEERING AND APPLIED INFORMATICS

reliability, as high jitter can disrupt the connection.

Additionally, the packet loss did not exceed 1%, as exceeding

this threshold can lead to TCP re-transmission, which

negatively impacts bandwidth.

A performance evaluation of five controllers, namely Libfluid,

ONOS, OpenDaylight, POX, and Ryu, was carried out in

(Abdullah et al., 2018) to assess their end-to-end delay and

throughput. The evaluation was conducted using a linear

topology with a varying number of switches, ranging from 8

to 64. In this topology, one host was designated as a server,

and the other as a client to test throughput. It is worth noting

that no protocol can ensure 100% throughput to bandwidth,

and delay, generally referred to as round-trip time (RTT), starts

to increase as the number of switches load increases. Among

the five controllers tested, ONOS had the lowest delay value,

while Libfluid had the highest delay value. Libfluid and POX

exhibited the highest throughput but stopped responding at

1024 hosts, whereas the other controllers stopped at 512. The

performance analysis concluded that the throughput and delay

increased with an increased number of switches in the linear

topology.

Experimental comparison and evaluation in (Badotra and

Panda, 2020) were conducted on Mininet using four different

topologies, including single, linear, tree, and custom with

varying numbers of hosts, ranging from 10 to 1000, to assess

the performance of seven different controllers, namely Terna,

Floodlight, POX, Ryu, OpenDaylight, and ONOS. The

primary objective was to determine the controller's

performance by analyzing whether it took less time with an

increased number of nodes, which is generally considered

indicative of good performance. OpenDaylight outperformed

the other controllers in terms of bandwidth transmission and

jitter delay. The analysis showed that OpenDaylight took less

time with minimum RTT analysis for both 10 hosts and 1000

hosts in a single topology and even in a custom topology,

indicating that OpenDaylight performs better based on the

minimum time analysis.

Because of the increasing number of users and network

devices, the scalability of the control plane is a very important

topic that should be studied by literature and researchers. RYU

controller scalability is addressed by implementing different

topologies (Cabarkapa and Rancic, 2022). It is concluded that

distributed controllers offer high throughput and the future of

SDN relies on distributed control plans. The proposal

(Yeganeh et al., 2013) was to design a control plane with more

than one controller and make these controllers communicate

and cooperate to process incoming and outgoing data flows.

This approach doesn’t need a special network device.

Hyperflow (Tootoonchian and Ganjali, 2010), Kandoo

(Hassas Yeganeh and Ganjali, 2012), and Onix (Koponen et

al., 2010) are three major distributed controllers, each with a

different distribution strategy. Hyperflow uses a decentralized

controller architecture with only one layer containing all the

controllers that share the same view of the whole network

topology, and they know everything about all the events that

happened in that network. This design has the advantage of

decreasing the processing time for the controller and in-

creasing the throughput, but its disadvantage is resource

consuming as the controller may process and store

unnecessary information. Onix architecture consists of many

clusters on which multiple Onix instances are running. The

network state is distributed among these multiple instances.

An Onix instance is responsible for distributing the network

state to other instances within the same cluster. In Onix, each

controller with its managed network is introduced as one

logical node. The third controller distribution architecture is

the hierarchal architecture, and Kandoo is the major controller

that is adopting this design. In Kandoo, the multiple controllers

are distributed in two layers, leaf controllers and root

controllers. Leaf controllers communicate directly with

network devices and know only about their network and

nothing about network-wide information, whereas root

controller has a global view of the network and can manage

the local controllers.

The works mentioned above have a general view of SDN

scalability and were only studied in experiments, not as

mathematical modeling. Furthermore, all of the previous

studies discussed the performance evaluation of a limited

number of SDN controllers and didn’t mention the control

plane itself, while in our work, we mathematically evaluate the

controller utilization as a scalability metric in different control

plane architectures.

3. PROBLEM MODELING

3.1 SDN Controller Scalability

We can consider SDN as a distributed system, and most

distributed systems should be scalable. They should be

deployable in a wide range of scales, and scalability here

means not just to operate well but also to operate efficiently

over any range of configurations (Jogalekar and Woodside,

2000). One of the important scalability metrics is the controller

utilization, the probability that the controller is busy, and the

ability of the controller to handle the increasing number of

incoming flows from network devices and process it

efficiently. We use distributing system utilization as the

controller utilization (𝑈) which is defined as:

𝑈 =
𝜆(ℎ)

𝜇(ℎ)
 (1)

where (ℎ) is the number of hosts, 𝜆(ℎ) is the mean arrival rate

of the controller, and 𝜇(ℎ) is the mean processing rate of the

controller. As λ and µ have the same unit of flows per unit time

(e.g., flows per second), therefore, the controller utility is a

dimensionless value because it presents the utilization as a

ratio or percentage indicating the efficiency or utilization level

of the controller in handling incoming flows.

Since the flow initiation request arriving at the controller

follows a Poisson distribution with the average 𝜆 (Ross, 2014),

we can consider each SDN controller as a queue with a

notation of M/M/1 as both the interarrival time and service

time are exponentially distributed. In distributed systems, if

𝑈 ≥ 1, the queue becomes unstable, the wait time in the queue

will be infinite, and the system needs additional servers to get

back to stability. In SDN, different flows can pass the network

from the network devices to the controller and vice versa, such

as network view, packet-In messages, and network failure

messages. The most important flow is the initiation flow

request shown in Fig. 1. When the network device receives a

CONTROL ENGINEERING AND APPLIED INFORMATICS 17

new flow with a new source or new destination, it is unknown

how to deal with this flow because there is no flow entry

matching in the flow tables, so it sends a flow initiation request

to the controller which process that flow and installs it on the

flow table and broadcast that flow entry to the network devices

under its control simultaneously. In this case, each flow can

generate one flow initiation request to the controller. For this

reason, we will focus on controller utilization during the

initiation requests processing level.

Fig. 1. Flow Initiation Request.

3.2 Controller Computation Process

When the controller receives a flow request from a switch, it

processes that request to compute a network path for it and

sends that new path as a flow entry to the corresponding

network devices. Three parameters are involved in the path

computing process; controller CPU power (𝑃), the routing

algorithm used by the controller, and the number of network

nodes (𝑉). The CPU power reflects how many operations the

controller can handle per second. The routing algorithm affects

the processing time due to its complexity. Each routing

algorithm has a time complexity related to the network node

number (𝑉) and the connections between these nodes (E), and

it is represented as 𝑔(𝑉, 𝐸). In this paper, we will assume that

Dijkstra algorithm is used to find the best route between two

hosts. In general, this algorithm has a complexity of 𝑂(𝑉2)
and for simplicity, we will consider 𝑔(𝑉, 𝐸) = 𝑉2 . The

processing time follows the exponential distribution with an

average of
𝑔(𝑉,𝐸)

𝑃
. Because the average controller processing

rate (𝜇) is inversely proportional to the processing time, so:

𝜇 =
𝑃

𝑔(𝑉,𝐸)
 (2)

3.3 Control Plane Architecture

SDN has three main architectural designs: centralized,

decentralized, and hierarchical. Centralized architecture is the

initial proposal for the SDN control plane where only one

controller is used and stores all the network information. This

structure is very simple, but the controller will be a single point

of failure when the network devices and hosts are increasing.

The decentralized design uses multiple controllers that work

together to process the network flows. In this category, we will

study two cases:

• Decentralized control plane with a global view: where all

the controllers have the same information, and they know

everything about the network. This can be useful in

reducing the traffic load between controllers but also is

resource-consuming (CPU and memory).

• Decentralized control plane with a local view: in this

category, each controller has only information about its

local network, manages it, and doesn’t know about other

networks. This design needs more communication between

controllers.

A hierarchical structure is a type of decentralized design, but

the control plane has two layers, leaf, and root. The leaf

controller has a local view and manages its network, whereas

the root controller is located in the upper layer, and it manages

all the leaf controllers and has a global view of the whole

network. This hierarchy allows for both centralized control at

the top levels and distributed control at the lower levels, so the

combination of centralized and distributed control aspects

aligns with the fundamental characteristics of hybrid

architectures. In the hierarchical model, legacy distributed

control mechanism can coexist with SDN controllers, allowing

for a smooth transition and integration process. This

integration aspect is also a characteristic trait of hybrid

architecture. Moreover, the hierarchy model allows for such

adaptability and flexibility by enabling different levels of

control based on the specific needs of different network

segments. This dynamic allocation of control functionalities is

a hallmark of hybrid architectures also and asserts that the

hierarchical architecture proposed in our study indeed falls

within the category of hybrid SDN control plane architecture.

4. CONTROLLER UTILIZATION EVALUATION

4.1 Centralized Design

When there are (ℎ) hosts in the network, each host can

communicate with any other host, so there are ℎ(ℎ − 1) flows

can pass the network and be processed by the controller. Thus,

the average arrival and processing rates for flows received by

each controller are illustrated in (3) and (4) respectively:

𝜆𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝜆ℎ(ℎ − 1) (3)

𝜇𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑃

ℎ2
 (4)

4.2 Decentralized Design

In decentralized design, the network consists of (𝑐) controllers

and (ℎ) hosts, so each controller manages
ℎ

𝑐
 switches and these

controllers can be in one of two modes.

• The first mode is a global view mode, all the controllers have

the same information about the whole network, and each

controller can process any received flow and send it directly

to its destination. So, for every controller, the average arrival

and processing rates for flows received by each controller are

illustrated in (5) and (6) respectively:

𝜆𝐷,𝐺𝑙𝑜𝑏𝑎𝑙 = 𝜆
ℎ(ℎ−1)

𝑐
 (5)

𝜇𝐷,𝐺𝑙𝑜𝑏𝑎𝑙 =
𝑃

ℎ2
 (6)

and the controller utilization is:

𝑈𝐷,𝐺𝑙𝑜𝑏𝑎𝑙 =
𝜆𝐷,𝐺𝑙𝑜𝑏𝑎𝑙

𝜇𝐷,𝐺𝑙𝑜𝑏𝑎𝑙
 (7)

18 CONTROL ENGINEERING AND APPLIED INFORMATICS

• The second mode is a local view mode. Every controller

knows only information about its local network. The flow

can be local flow if the source and destination belong to the

same local network; otherwise, it’s a global flow. When the

controller receives a local flow, the flow can be processed by

that controller simply, but when it’s a global view, i.e., the

controller has no idea about the destination node, the flow

will be divided into two sub-flows, one is a local for the

controller itself, and the other is global and will be passed to

the neighbor controller for further processing. The

neighboring controller will process that flow in the same way

until the flow reaches a controller that knows the destination.

In the end, the flow is processed by multiple controllers, and

we will have a flow hop (𝛾) that represents the number of

controllers needed to process the flow initiation request over

the path from the ith host to the jth host, so we can say that

each global flow is divided into (𝛾) local flows. The total

flows in the network where there are (𝑐) controllers and (ℎ)

hosts can be divided into
ℎ2

𝑐
− ℎ local flows and ℎ2 −

ℎ2

𝑐

global flows. So, the average arrival and processing rates for

flows received by each controller are illustrated in (8) and

(9) respectively:

𝜆𝐷,𝐿𝑜𝑐𝑎𝑙 =
𝜆

𝑐
[(

ℎ2

𝑐
− ℎ) + (ℎ2 −

ℎ2

𝑐
) ∗ 𝛾] (8)

𝜇𝐷,𝐿𝑜𝑐𝑎𝑙 =
𝑃

(ℎ 𝑐⁄)2
 (9)

In (8) we multiply the number of global flows by (𝛾) because

each global flow is processed by multiple controllers located

on the flow path from source to destination. So, the controller

utilization is:

𝑈𝐷,𝐿𝑜𝑐𝑎𝑙 =
𝜆𝐷,𝐿𝑜𝑐𝑎𝑙

𝑐∗𝜇𝐷,𝐿𝑜𝑐𝑎𝑙
 (10)

4.3 Hierarchical Design

In this architecture, two layers of controllers are introduced,

the leaf and the root controllers. Leaf controllers manage only

their local networks, and they are abstracted as logical nodes,

while the root controller has a global view of the network and

it manages the global flows received from leaf controllers.

Here we will distinguish between leaf and root controller in

terms of average processing rate. Each leaf controller is

managing (
ℎ

𝑐
) hosts, while the root controller manages a

network with (𝑐) nodes, so its processing rate is:

𝜇𝐻,𝑅𝑜𝑜𝑡 =
𝑃

𝑐2
 (11)

𝜇𝐻,𝐿𝑒𝑎𝑓 =
𝑃

(ℎ 𝑐⁄)2
 (12)

Similar to the decentralized local view, and because each leaf

controller can process both local and global flows whereas the

root controller only processes the global flows received by the

leaf controllers, the average arrival rates for flows received by

each leaf and root controller are illustrated in (13) and (14)

respectively:

𝜆𝐻,𝑅𝑜𝑜𝑡 = 𝜆 ∗ (ℎ2 −
ℎ2

𝑐
) (13)

𝜆𝐻,𝐿𝑒𝑎𝑓 =
𝜆

𝑐
[(

ℎ2

𝑐
− ℎ) + (ℎ2 −

ℎ2

𝑐
) ∗ 𝛾] (14)

5. RESULTS AND DISCUSSION

In this section, we will have numerical results and will

compare the different control plane structures under different

conditions. As in (Benson et al., 2010) each host can send

(𝜆=0.001 per second) flow requests to any other host. The

experiment was done in a computer with an Intel(R) Core

(TM) i5-2450M CPU with 6.00 GB of RAM, and that has a

computing power of 𝑃 =230 operations per second. The

experiment started with the number of hosts ℎ =1000 and

increased by 200 until ℎ=2000.

We omit the centralized structure analysis because the

controller utilization reaches 93% when the number of hosts is

only 1000, and after that, the controller becomes unstable. In

decentralized and hierarchal leaf architectures, the controller

utilization is directly proportional to the number of hosts but

inversely proportional to the number of controllers. The root

controller in hierarchal architecture is an exception, as the

controller utilization increases when the number of controllers

increases, but it is still directly proportional to the number of

hosts.

The controller utilization in different architectures is shown in

Fig. 2 as we set different controller numbers and different flow

hops γ. When 𝑐 =5 and 𝛾 =3, the maximum controller

utilization with 2000 hosts is (6%, 5.9%, and 60%) for

decentralized local, leaf, and decentralized global

architectures, respectively, whereas when 𝑐 =7 and 𝛾 =3, it is

(1.6%, 1.6%, and 30%). From Fig. 3, Fig. 4 and Fig. 5, when

𝛾 =4 and 𝑐 =5,7,9, the maximum controller utilization with

2000 hosts in both decentralized local view and hierarchal leaf

architectures is (8.1%, 2.2%, and 0.8%), whereas it is (60%,

30%, and 18%) in decentralized global architecture

respectively.

We conclude that controller utilization in decentralized local

view and hierarchal designs (leaf controllers) are almost the

same, and both are better than the global design, which has the

worst controller utilization. From Fig. 3 and Fig. 4, we can see

that the controller utilization is getting better as the number of

controllers is increasing, but for each number of controllers, it

is getting worse as γ is increasing due to the increasing number

of controllers involved in the flow processing. For example,

for decentralized local view architecture, when 𝑐 =5, the

maximum utilization with 2000 hosts is (1.15%, 1.68%, and

2.21%) when 𝛾 =2,3,4, respectively. Fig. 5 and Fig. 6 indicate

that the root controller has the best utilization, while the

decentralized global view design has the worst. In terms of task

execution time, the optimal utilization in hierarchical design

can directly be translated to efficient task execution time.

Within this design, tasks processed demonstrated faster

calculation times, reduced I/O delays and minimized

transmission times, while in contrast, poor decentralized

global design utilization leads to higher workload which

directly impacts task execution times and increases I/O delays

with slower transmission times. These findings underscore the

importance of selecting an appropriate control plane

architecture concerning the utilization and task execution

efficiency.

CONTROL ENGINEERING AND APPLIED INFORMATICS 19

 (a). 𝑐=5 and 𝛾=3

(b). 𝑐 =7 and 𝛾 =3

Fig. 2. Controller utilization in different architectures with

different controller and flow hops.

(a) 𝑐 =5

(b) 𝑐 =7

(c) 𝑐 =9

Fig. 3. Decentralized local controller utilization with different

controller and flow hops number.

(a) c =5

20 CONTROL ENGINEERING AND APPLIED INFORMATICS

(b) c =7

(c) c =9

Fig. 4. Leaf controller utilization with different numbers of

controllers and flow hops.

Fig. 5. Global view structure utilization with different

numbers of controllers.

Fig. 6. Root controller utilization with different number of

controllers.

6. CONCLUSION AND FUTURE WORKS

In this paper, we study the SDN scalability and focus on

control plan utilization in different control plane architectures

as a scalability metric. We propose a mathematical model to

define controller utilization in decentralized and hierarchal

architectures with an increasing number of controllers and

hosts. Then, a numerical experiment was done to verify the

method. We collect the results when (N=2000), and we

conclude that decentralized local and hierarchical leaf

controllers have almost the same utilization with (6%, 5.9%

when 𝑐=5, and 1.6% when 𝑐 =7) and both outperforming the

decentralized global architecture (60% when 𝑐 =5, and 30%

when 𝑐 =7), while the hierarchical root controller has the best

utilization (0.0075%, 0.016%, 0.027% when 𝑐 =5,7,9

respectively). These findings emphasize the need for careful

architectural considerations and have significant implications

for network designers and administrators in selecting

appropriate SDN architecture. Future works could involve

developing load-balancing mechanisms, resource allocation

algorithms or traffic engineering technique to improve the

scalability of SDN control planes and also, more scalability

metrics can be analyzed such as latency and throughput for

more understanding of the factors affecting scalability.

REFERENCES

Abdullah, M. Z., Al-Awad, N. A., and Hussein, F. W. (2018).

Performance Comparison and Evaluation of Different

Software Defined Networks Controllers. International

Journal of Computing and Network Technology, 6(2).
Alraawi, A. A. M., and Adam, S. A. N. (n.d.). Performance

Evaluation of Controller Based SDN Network Over

Non-controller Based Network in Data Center Network.

2020 International Conference on Computer, Control,

Electrical, and Electronics Engineering (ICCCEEE), 1–

4.

CONTROL ENGINEERING AND APPLIED INFORMATICS 21

Asadollahi, S., Goswami, B., and Sameer, M. (2018). Ryu

controller’s scalability experiment on software defined

networks. 2018 IEEE International Conference on

Current Trends in Advanced Computing (ICCTAC), 1–

5.

Badotra, S., and Panda, S. N. (2020). Experimental

comparison and evaluation of various OpenFlow

software defined networking controllers. International

Journal of Applied Science and Engineering, 17(4),

317–324.

Benson, T., Akella, A., and Maltz, D. A. (2010). Network

traffic characteristics of data centers in the wild.

Proceedings of the 10th ACM SIGCOMM Conference

on Internet Measurement, 267–280.

Cabarkapa, D., and Rancic, D. (2022). Software-Defined

Networking: The Impact of Scalability on Controller

Performance. 2022 IEEE Zooming Innovation in

Consumer Technologies Conference (ZINC), 17–21.

Hassas Yeganeh, S., and Ganjali, Y. (2012). Kandoo: a

framework for efficient and scalable offloading of

control applications. Proceedings of the First Workshop

on Hot Topics in Software Defined Networks, 19–24.

Islam, M. T., Islam, N., and Refat, M. Al. (2020). Node to node

performance evaluation through RYU SDN controller.

Wireless Personal Communications, 112, 555–570.

Islam, S., Khan, M. A. I., Shorno, S. T., Sarker, S., and Siddik,

M. A. (2019). Performance evaluation of SDN

controllers in wireless network. 2019 1st International

Conference on Advances in Science, Engineering and

Robotics Technology (ICASERT), 1–5.

Jogalekar, P., and Woodside, M. (2000). Evaluating the

scalability of distributed systems. IEEE Transactions on

Parallel and Distributed Systems, 11(6), 589–603.

Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski,

L., Zhu, M., Ramanathan, R., Iwata, Y., Inoue, H., and

Hama, T. (2010). Onix: A distributed control platform

for large-scale production networks. 9th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI 10).

Lunagariya, D., and Goswami, B. (2021). A comparative

performance analysis of stellar sdn controllers using

emulators. 2021 International Conference on Advances

in Electrical, Computing, Communication and

Sustainable Technologies (ICAECT), 1–9.

Othman, W. M., Chen, H., Al-Moalmi, A., and Hadi, A. N.

(2017). Implementation and performance analysis of

SDN firewall on POX controller. 2017 IEEE 9th

International Conference on Communication Software

and Networks (ICCSN), 1461–1466.

Ross, S. M. (2014). Introduction to probability models.

Academic press.

Satre, S. M., Patil, N. S., Khot, S. V, and Saroj, A. A. (2021).

Network performance evaluation in software-defined

networking. Information and Communication

Technology for Intelligent Systems: Proceedings of

ICTIS 2020, Volume 2, 633–645.

Schmid, S., and Suomela, J. (2013). Exploiting locality in

distributed SDN control. Proceedings of the Second

ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, 121–126.

Sezer, S., Scott-Hayward, S., Chouhan, P. K., Fraser, B., Lake,

D., Finnegan, J., Viljoen, N., Miller, M., and Rao, N.

(2013). Are we ready for SDN? Implementation

challenges for software-defined networks. IEEE

Communications Magazine, 51(7), 36–43.

Tootoonchian, A., and Ganjali, Y. (2010). Hyperflow: A

distributed control plane for openflow. Proceedings of

the 2010 Internet Network Management Conference on

Research on Enterprise Networking, 3, 10.5555.

Urrea, C., and Benítez, D. (2021). Software-defined

networking solutions, architecture and controllers for the

industrial internet of things: A review. Sensors, 21(19),

6585.

Yeganeh, S. H., Tootoonchian, A., and Ganjali, Y. (2013). On

scalability of software-defined networking. IEEE

Communications Magazine, 51(2), 136–141.

Yurekten, O., and Demirci, M. (2021). SDN-based cyber

defense: A survey. Future Generation Computer

Systems, 115, 126–149.

Zhou, Q., Zhao, T., Chen, X., Zhong, Y., and Luo, H. (2022).

A Fault-Tolerant Transmission Scheme in SDN-Based

Industrial IoT (IIoT) over Fiber-Wireless Networks.

Entropy, 24(2), 157.

