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Abstract: The increasing number of users on internet, clouds, and data centers should be followed by more 

efforts to change the behavior of traditional networks. Software-defined networks give more flexibility to 

the network, but the scalability of SDN is still a problem for network designers and administrators about 

which architecture is suitable to be applied in their network. As more studies study the scalability problem, 

controller utilization as a scalability metric for different SDN control planes still doesn’t have a deep 

analysis which is the novelty of this work. In this paper, we propose a mathematical model for SDN control 

plane scalability evaluation based on controller utilization as a metric. This paper employs mathematical 

techniques to examine and contrast various architectures. The numerical results conclude that the 

decentralized global view has the worst utilization, while the hierarchical root controller has the best, and 

the local decentralized control plan has almost the same utilization as the hierarchal leaf controller. These 

findings have significant implications for network designers and administrators as they suggest that 

implementing a hierarchical control plane can optimize the network scalability, ensuring efficient network 

management and resource utilization. This paper not only presents a mathematical model for evaluating 

SDN scalability, but also provides valuable insights into the implications of the findings. Network 

professionals can leverage this knowledge to make informed decisions and design more efficient and 

scalable SDN. The validity of the findings presented in this study is further substantiated through numerical 

assessments and achieved by proposing a novel method. 
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1. INTRODUCTION 

With the increasing development of networks, internet, and 

cloud services, traditional networks start to show their 

limitations when they move to new concepts like 5G networks, 

mobility, server virtualization, or IoT. Because of the huge 

number of users as well as their needs related to the quality-of-

service speed, researchers have started to rethink today’s 

network architecture. The traditional architecture we know 

nowadays suffers from complexity and difficulties when it 

comes to configuring, device installation, and vendor 

compatibilities. Adding or removing a switch or a router in a 

network is a wasted time job as the administrator should deal 

with hundreds and maybe thousands of network devices (Sezer 

et al., 2013). Software Defined Network (SDN) is a new 

paradigm of modern network architectures that creates an 

operative relation and communication between network 

devices, clouds, mobile phones, internet of things, and data 

centers (Yurekten and Demirci, 2021). In SDN, the control 

layer is decoupled from the physical layer, and the network 

device is abstracted from the upper layer, which is called 

“controller.” This abstraction brings many advantages to the 

new architecture as it starts to be more flexible, and 

programmable, and gives the ability to centralized network 

monitoring. Three layers compose an SDN architecture: the 

application, control plane, and data plane. The main part of the 

SDN is the control plane (controller) which has the core 

responsibility of managing the data plane and flow control. In 

the data plane, network devices such as switches and routers 

are responsible for executing the controller instructions about 

packet forwarding and data flows from the source to their 

destination. As a new paradigm, SDN are facing multiple 

challenges that should be addressed during its implementation. 

Scalability is one of the most important challenges that should 

be focused on to ensure the effectiveness of processing the 

increasing demands on network resources. Decoupling data 

and control planes may need more efforts to secure the 

controller from unauthorized access to ensure the privacy of 

sensitive data. Moreover, SDN deployments often involve a 

mix of vendors and protocols, so the interoperability can be 

challenging and therefore, it’s essential to establish 

standardization protocols to facilitate the deployment of 

heterogeneous environments. Also, the transition from 

traditional network to SDN can affect the recent network 

infrastructure and add more costs to deploy new hardware, 

software and training. Addressing the previous challenges 

requires ongoing researches to ensure a successful adoption of 

SDN. Thus, most researchers and studies are focusing on 

controller-related issues as the controller is the key part of 

SDN. These issues vary from choosing the suitable controller 

for the network to evaluating the controller's performance 

under many conditions. Control plane scalability is one of the 

most important issues that researchers should focus on. In 

general, three classifications of control plane are introduced: 
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centralized, decentralized, and hierarchal design (Schmid and 

Suomela, 2013). Only one controller is implemented in 

centralized architecture, and it’s responsible for all the data 

flow management and has a global view of the whole network. 

However, this design is appropriate for some small-sized 

networks, but as the incoming flows increase and the number 

of network devices grows, the controller will become a 

bottleneck and a single point of failure as, at some point, it will 

not be able to handle all the requests (Benson et al., 2010). In 

decentralized architecture, some multi-controllers are 

distributed in a flat design. The hierarchal architecture also 

uses multi-controllers but in tree distribution. That is, the 

network is divided into several clusters, and each cluster is 

controlled by only one leaf controller, which has a local view 

of its network. The leaf controllers at the end are managed by 

an upper-layer root controller that has a global view of the 

whole network. Our study aims to mathematically model and 

evaluate the control plane utilization in these three basic SDN 

architectures to further address their scalability behavior. The 

mathematical model for SDN controller utilization, while 

primarily designed to assess scalability, can indeed be used to 

analyze the task execution time including calculation time, I/O 

time and transmission time and therefor impact service 

response time. Interpreting the controller utilization data is 

important to understand how the workload on SDN controllers 

can impact the time it takes to perform computational tasks, 

handle I/O operations, and transmit data across the network. 

As the controller utilization increases, the time taken to 

perform calculations may also increase, and that may indicate 

a resource contention (CPU, memory) between different tasks, 

so the high utilization controller needs to be allocated by more 

resources to process calculations faster. Also, the workload on 

a controller can directly affect tasks involving input/output 

operations such as reading or writing data to storage devices. 

Moreover, controller utilization can directly affect the 

transmission time and network latency. As the high controller 

utilization might lead to network congestion due to an 

increased number of control messages being transmitted. This 

congestion can significantly impact the time taken for 

messages to travel across the network, so it’s very important 

for network administrators to analyze how congestion during 

peak utilization affects transmission time and, consequently, 

task execution time. This evaluation is necessary for network 

operators and designers before building their network 

topology and choosing the most suitable network architecture. 

Controller performance evaluation has been studied in many 

researches. A comparison between SDN and non-controller 

networks was made in(Alraawi & Adam, n.d.) in terms of 

throughput and delay, while seven controllers are evaluated 

against several performance metrics (Lunagariya and 

Goswami, 2021). Controller performance in special network 

designs such as wireless and IoT are evaluated in scholars (S. 

Islam et al., 2019; Urrea and Benítez, 2021; Zhou et al., 2022). 

The main goal of the above studies is to help the network 

administrator to choose the most suitable controller for the 

network. Before controller deployment, the operator must 

know in advance the controller’s ability to be scaled and can 

handle the increasing number of flows and network devices. In 

this scenario, the distributed controller is much better than the 

centralized one as this architecture provides high throughput 

and low delay without being a bottleneck (Othman et al., 

2017). 

The novelty and contributions of this study are as follows: 

1. The proposed mathematical model for evaluating SDN 

control plane scalability is based on controller utilization 

as a metric. 

2. The use of mathematical techniques to examine and 

contrast various SDN control plane architectures. 

3. The conclusion is that the hierarchical root controller has 

the best utilization, while the decentralized global view has 

the worst utilization, and the local decentralized control 

plan has almost the same utilization as the hierarchal leaf 

controller. 

4. The numerical assessments further substantiate the validity 

of the findings presented in this study. 

2. RELATED WORKS 

Scalability measurement is not a new idea. Several works have 

been done to measure the scalability of different systems, and 

most of them focused on scalability measurement in 

distributed systems and algorithms as well, but scalability 

evaluation in terms of control plane utilization is still widely 

unexplored. An experiment was conducted on the popular Ryu 

controller, a Python-based controller, to measure scalability 

metrics (Asadollahi et al., 2018). The experiment involved a 

test bed with 6 switches arranged in a mesh topology, and the 

host was able to support up to 300 nodes. The experiment 

measured the throughput performance, and it was found to be 

stable. However, when compared to scenarios with 100 and 

200 nodes, the results were negative, indicating that the 

performance degraded as the number of nodes increased. 

These findings suggest that implementing the Python-based 

controller over Ryu may not be optimal for a larger network. 

A study was conducted in (Satre et al., 2021) to analyze the 

performance of firewall applications, using a custom topology 

and firewall scripts written with the aid of another firewall 

script. The objective was to filter traffic based on their parsed 

headers, and TCP/UDP traffic was tested to be blocked using 

POX as a reference. Round trip time (RTT) was evaluated, 

with no significant variation observed when the firewall switch 

application was not used. However, when testing throughput 

with and without the firewall application, variation in results 

was noted. Latency variation and jitter time were also found to 

be higher when compared to the default switch application. 

The purpose of this experiment was to examine the 

performance impact of running a switch application with an 

embedded firewall script to filter traffic based on rules. 

The purpose of the study (M. T. Islam et al., 2020) is to assess 

the performance of the Ryu controller in terms of bandwidth, 

throughput, round trip time (RTT), jitter, and packet loss. To 

evaluate the Ryu controller's bandwidth, iPerf3 tool is used to 

generate TCP traffic and analyze the bandwidth between three 

hosts arranged in a single topology. Throughput was measured 

between nodes acting as client and server, and a graph was 

created to depict the highest and lowest values of TCP traffic. 

The minimum, maximum, and average RTT times between 

hosts were also calculated. The study found no fluctuations in 

jitter results, which is important for maintaining connection 
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reliability, as high jitter can disrupt the connection. 

Additionally, the packet loss did not exceed 1%, as exceeding 

this threshold can lead to TCP re-transmission, which 

negatively impacts bandwidth. 

A performance evaluation of five controllers, namely Libfluid, 

ONOS, OpenDaylight, POX, and Ryu, was carried out in 

(Abdullah et al., 2018) to assess their end-to-end delay and 

throughput. The evaluation was conducted using a linear 

topology with a varying number of switches, ranging from 8 

to 64. In this topology, one host was designated as a server, 

and the other as a client to test throughput. It is worth noting 

that no protocol can ensure 100% throughput to bandwidth, 

and delay, generally referred to as round-trip time (RTT), starts 

to increase as the number of switches load increases. Among 

the five controllers tested, ONOS had the lowest delay value, 

while Libfluid had the highest delay value. Libfluid and POX 

exhibited the highest throughput but stopped responding at 

1024 hosts, whereas the other controllers stopped at 512. The 

performance analysis concluded that the throughput and delay 

increased with an increased number of switches in the linear 

topology. 

Experimental comparison and evaluation in (Badotra and 

Panda, 2020) were conducted on Mininet using four different 

topologies, including single, linear, tree, and custom with 

varying numbers of hosts, ranging from 10 to 1000, to assess 

the performance of seven different controllers, namely Terna, 

Floodlight, POX, Ryu, OpenDaylight, and ONOS. The 

primary objective was to determine the controller's 

performance by analyzing whether it took less time with an 

increased number of nodes, which is generally considered 

indicative of good performance. OpenDaylight outperformed 

the other controllers in terms of bandwidth transmission and 

jitter delay. The analysis showed that OpenDaylight took less 

time with minimum RTT analysis for both 10 hosts and 1000 

hosts in a single topology and even in a custom topology, 

indicating that OpenDaylight performs better based on the 

minimum time analysis. 

Because of the increasing number of users and network 

devices, the scalability of the control plane is a very important 

topic that should be studied by literature and researchers. RYU 

controller scalability is addressed by implementing different 

topologies (Cabarkapa and Rancic, 2022). It is concluded that 

distributed controllers offer high throughput and the future of 

SDN relies on distributed control plans. The proposal 

(Yeganeh et al., 2013) was to design a control plane with more 

than one controller and make these controllers communicate 

and cooperate to process incoming and outgoing data flows. 

This approach doesn’t need a special network device. 

Hyperflow (Tootoonchian and Ganjali, 2010), Kandoo 

(Hassas Yeganeh and Ganjali, 2012), and Onix (Koponen et 

al., 2010) are three major distributed controllers, each with a 

different distribution strategy. Hyperflow uses a decentralized 

controller architecture with only one layer containing all the 

controllers that share the same view of the whole network 

topology, and they know everything about all the events that 

happened in that network. This design has the advantage of 

decreasing the processing time for the controller and in-

creasing the throughput, but its disadvantage is resource 

consuming as the controller may process and store 

unnecessary information. Onix architecture consists of many 

clusters on which multiple Onix instances are running. The 

network state is distributed among these multiple instances. 

An Onix instance is responsible for distributing the network 

state to other instances within the same cluster. In Onix, each 

controller with its managed network is introduced as one 

logical node. The third controller distribution architecture is 

the hierarchal architecture, and Kandoo is the major controller 

that is adopting this design. In Kandoo, the multiple controllers 

are distributed in two layers, leaf controllers and root 

controllers. Leaf controllers communicate directly with 

network devices and know only about their network and 

nothing about network-wide information, whereas root 

controller has a global view of the network and can manage 

the local controllers. 

The works mentioned above have a general view of SDN 

scalability and were only studied in experiments, not as 

mathematical modeling. Furthermore, all of the previous 

studies discussed the performance evaluation of a limited 

number of SDN controllers and didn’t mention the control 

plane itself, while in our work, we mathematically evaluate the 

controller utilization as a scalability metric in different control 

plane architectures. 

3. PROBLEM MODELING 

3.1 SDN Controller Scalability 

We can consider SDN as a distributed system, and most 

distributed systems should be scalable. They should be 

deployable in a wide range of scales, and scalability here 

means not just to operate well but also to operate efficiently 

over any range of configurations (Jogalekar and Woodside, 

2000). One of the important scalability metrics is the controller 

utilization, the probability that the controller is busy, and the 

ability of the controller to handle the increasing number of 

incoming flows from network devices and process it 

efficiently. We use distributing system utilization as the 

controller utilization (𝑈) which is defined as: 

𝑈 =
𝜆(ℎ)

𝜇(ℎ)
                 (1) 

where (ℎ) is the number of hosts, 𝜆(ℎ) is the mean arrival rate 

of the controller, and 𝜇(ℎ) is the mean processing rate of the 

controller. As λ and µ have the same unit of flows per unit time 

(e.g., flows per second), therefore, the controller utility is a 

dimensionless value because it presents the utilization as a 

ratio or percentage indicating the efficiency or utilization level 

of the controller in handling incoming flows.  

Since the flow initiation request arriving at the controller 

follows a Poisson distribution with the average 𝜆 (Ross, 2014), 

we can consider each SDN controller as a queue with a 

notation of M/M/1 as both the interarrival time and service 

time are exponentially distributed. In distributed systems, if 

𝑈 ≥ 1, the queue becomes unstable, the wait time in the queue 

will be infinite, and the system needs additional servers to get 

back to stability. In SDN, different flows can pass the network 

from the network devices to the controller and vice versa, such 

as network view, packet-In messages, and network failure 

messages. The most important flow is the initiation flow 

request shown in Fig. 1. When the network device receives a 
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new flow with a new source or new destination, it is unknown 

how to deal with this flow because there is no flow entry 

matching in the flow tables, so it sends a flow initiation request 

to the controller which process that flow and installs it on the 

flow table and broadcast that flow entry to the network devices 

under its control simultaneously. In this case, each flow can 

generate one flow initiation request to the controller. For this 

reason, we will focus on controller utilization during the 

initiation requests processing level. 

 

Fig. 1. Flow Initiation Request. 

3.2 Controller Computation Process 

When the controller receives a flow request from a switch, it 

processes that request to compute a network path for it and 

sends that new path as a flow entry to the corresponding 

network devices. Three parameters are involved in the path 

computing process; controller CPU power (𝑃 ), the routing 

algorithm used by the controller, and the number of network 

nodes (𝑉). The CPU power reflects how many operations the 

controller can handle per second. The routing algorithm affects 

the processing time due to its complexity. Each routing 

algorithm has a time complexity related to the network node 

number (𝑉) and the connections between these nodes (E), and 

it is represented as 𝑔(𝑉, 𝐸). In this paper, we will assume that 

Dijkstra algorithm is used to find the best route between two 

hosts. In general, this algorithm has a complexity of 𝑂(𝑉2) 
and for simplicity, we will consider 𝑔(𝑉, 𝐸) = 𝑉2 . The 

processing time follows the exponential distribution with an 

average of 
𝑔(𝑉,𝐸)

𝑃
. Because the average controller processing 

rate (𝜇) is inversely proportional to the processing time, so: 

𝜇 =
𝑃

𝑔(𝑉,𝐸)
              (2) 

3.3 Control Plane Architecture 

SDN has three main architectural designs: centralized, 

decentralized, and hierarchical. Centralized architecture is the 

initial proposal for the SDN control plane where only one 

controller is used and stores all the network information. This 

structure is very simple, but the controller will be a single point 

of failure when the network devices and hosts are increasing. 

The decentralized design uses multiple controllers that work 

together to process the network flows. In this category, we will 

study two cases: 

• Decentralized control plane with a global view: where all 

the controllers have the same information, and they know 

everything about the network. This can be useful in 

reducing the traffic load between controllers but also is 

resource-consuming (CPU and memory). 

• Decentralized control plane with a local view: in this 

category, each controller has only information about its 

local network, manages it, and doesn’t know about other 

networks. This design needs more communication between 

controllers. 

A hierarchical structure is a type of decentralized design, but 

the control plane has two layers, leaf, and root. The leaf 

controller has a local view and manages its network, whereas 

the root controller is located in the upper layer, and it manages 

all the leaf controllers and has a global view of the whole 

network. This hierarchy allows for both centralized control at 

the top levels and distributed control at the lower levels, so the 

combination of centralized and distributed control aspects 

aligns with the fundamental characteristics of hybrid 

architectures. In the hierarchical model, legacy distributed 

control mechanism can coexist with SDN controllers, allowing 

for a smooth transition and integration process. This 

integration aspect is also a characteristic trait of hybrid 

architecture. Moreover, the hierarchy model allows for such 

adaptability and flexibility by enabling different levels of 

control based on the specific needs of different network 

segments. This dynamic allocation of control functionalities is 

a hallmark of hybrid architectures also and asserts that the 

hierarchical architecture proposed in our study indeed falls 

within the category of hybrid SDN control plane architecture. 

4. CONTROLLER UTILIZATION EVALUATION 

4.1 Centralized Design 

When there are (ℎ ) hosts in the network, each host can 

communicate with any other host, so there are ℎ(ℎ − 1) flows 

can pass the network and be processed by the controller. Thus, 

the average arrival and processing rates for flows received by 

each controller are illustrated in (3) and (4) respectively: 

𝜆𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝜆ℎ(ℎ − 1)             (3) 

𝜇𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑃

ℎ2
                                        (4) 

4.2 Decentralized Design 

In decentralized design, the network consists of (𝑐) controllers 

and (ℎ) hosts, so each controller manages 
ℎ

𝑐
 switches and these 

controllers can be in one of two modes. 

• The first mode is a global view mode, all the controllers have 

the same information about the whole network, and each 

controller can process any received flow and send it directly 

to its destination. So, for every controller, the average arrival 

and processing rates for flows received by each controller are 

illustrated in (5) and (6) respectively: 

𝜆𝐷,𝐺𝑙𝑜𝑏𝑎𝑙 = 𝜆
ℎ(ℎ−1)

𝑐
             (5) 

𝜇𝐷,𝐺𝑙𝑜𝑏𝑎𝑙 =
𝑃

ℎ2
              (6) 

and the controller utilization is: 

𝑈𝐷,𝐺𝑙𝑜𝑏𝑎𝑙 =
𝜆𝐷,𝐺𝑙𝑜𝑏𝑎𝑙

𝜇𝐷,𝐺𝑙𝑜𝑏𝑎𝑙
             (7) 
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• The second mode is a local view mode. Every controller 

knows only information about its local network. The flow 

can be local flow if the source and destination belong to the 

same local network; otherwise, it’s a global flow. When the 

controller receives a local flow, the flow can be processed by 

that controller simply, but when it’s a global view, i.e., the 

controller has no idea about the destination node, the flow 

will be divided into two sub-flows, one is a local for the 

controller itself, and the other is global and will be passed to 

the neighbor controller for further processing. The 

neighboring controller will process that flow in the same way 

until the flow reaches a controller that knows the destination. 

In the end, the flow is processed by multiple controllers, and 

we will have a flow hop (𝛾) that represents the number of 

controllers needed to process the flow initiation request over 

the path from the ith host to the jth host, so we can say that 

each global flow is divided into (𝛾) local flows. The total 

flows in the network where there are (𝑐) controllers and (ℎ) 

hosts can be divided into 
ℎ2

𝑐
− ℎ  local flows and ℎ2 −

ℎ2

𝑐
  

global flows. So, the average arrival and processing rates for 

flows received by each controller are illustrated in (8) and 

(9) respectively: 

𝜆𝐷,𝐿𝑜𝑐𝑎𝑙 =
𝜆

𝑐
[(

ℎ2

𝑐
− ℎ) + (ℎ2 −

ℎ2

𝑐
) ∗ 𝛾]           (8) 

𝜇𝐷,𝐿𝑜𝑐𝑎𝑙 =
𝑃

(ℎ 𝑐⁄ )2
                            (9) 

In (8) we multiply the number of global flows by (𝛾) because 

each global flow is processed by multiple controllers located 

on the flow path from source to destination. So, the controller 

utilization is: 

𝑈𝐷,𝐿𝑜𝑐𝑎𝑙 =
𝜆𝐷,𝐿𝑜𝑐𝑎𝑙

𝑐∗𝜇𝐷,𝐿𝑜𝑐𝑎𝑙
           (10) 

4.3 Hierarchical Design 

In this architecture, two layers of controllers are introduced, 

the leaf and the root controllers. Leaf controllers manage only 

their local networks, and they are abstracted as logical nodes, 

while the root controller has a global view of the network and 

it manages the global flows received from leaf controllers. 

Here we will distinguish between leaf and root controller in 

terms of average processing rate. Each leaf controller is 

managing (
ℎ

𝑐
) hosts, while the root controller manages a 

network with (𝑐) nodes, so its processing rate is: 

𝜇𝐻,𝑅𝑜𝑜𝑡 =
𝑃

𝑐2
            (11) 

𝜇𝐻,𝐿𝑒𝑎𝑓 =
𝑃

(ℎ 𝑐⁄ )2
            (12) 

Similar to the decentralized local view, and because each leaf 

controller can process both local and global flows whereas the 

root controller only processes the global flows received by the 

leaf controllers, the average arrival rates for flows received by 

each leaf and root controller are illustrated in (13) and (14) 

respectively: 

𝜆𝐻,𝑅𝑜𝑜𝑡 = 𝜆 ∗ (ℎ2 −
ℎ2

𝑐
)           (13) 

𝜆𝐻,𝐿𝑒𝑎𝑓 =
𝜆

𝑐
[(

ℎ2

𝑐
− ℎ) + (ℎ2 −

ℎ2

𝑐
) ∗ 𝛾]         (14) 

5. RESULTS AND DISCUSSION 

In this section, we will have numerical results and will 

compare the different control plane structures under different 

conditions. As in (Benson et al., 2010) each host can send 

(𝜆=0.001 per second) flow requests to any other host. The 

experiment was done in a computer with an Intel(R) Core 

(TM) i5-2450M CPU with 6.00 GB of RAM, and that has a 

computing power of 𝑃 =230 operations per second. The 

experiment started with the number of hosts ℎ  =1000 and 

increased by 200 until ℎ=2000. 

We omit the centralized structure analysis because the 

controller utilization reaches 93% when the number of hosts is 

only 1000, and after that, the controller becomes unstable. In 

decentralized and hierarchal leaf architectures, the controller 

utilization is directly proportional to the number of hosts but 

inversely proportional to the number of controllers. The root 

controller in hierarchal architecture is an exception, as the 

controller utilization increases when the number of controllers 

increases, but it is still directly proportional to the number of 

hosts. 

The controller utilization in different architectures is shown in 

Fig. 2 as we set different controller numbers and different flow 

hops γ. When 𝑐 =5 and 𝛾 =3, the maximum controller 

utilization with 2000 hosts is (6%, 5.9%, and 60%) for 

decentralized local, leaf, and decentralized global 

architectures, respectively, whereas when 𝑐 =7 and 𝛾 =3, it is 

(1.6%, 1.6%, and 30%). From Fig. 3, Fig. 4 and Fig. 5, when 

𝛾  =4 and 𝑐  =5,7,9, the maximum controller utilization with 

2000 hosts in both decentralized local view and hierarchal leaf 

architectures is (8.1%, 2.2%, and 0.8%), whereas it is (60%, 

30%, and 18%) in decentralized global architecture 

respectively.  

We conclude that controller utilization in decentralized local 

view and hierarchal designs (leaf controllers) are almost the 

same, and both are better than the global design, which has the 

worst controller utilization. From Fig. 3 and Fig. 4, we can see 

that the controller utilization is getting better as the number of 

controllers is increasing, but for each number of controllers, it 

is getting worse as γ is increasing due to the increasing number 

of controllers involved in the flow processing. For example, 

for decentralized local view architecture, when 𝑐  =5, the 

maximum utilization with 2000 hosts is (1.15%, 1.68%, and 

2.21%) when 𝛾 =2,3,4, respectively. Fig. 5 and Fig. 6 indicate 

that the root controller has the best utilization, while the 

decentralized global view design has the worst. In terms of task 

execution time, the optimal utilization in hierarchical design 

can directly be translated to efficient task execution time. 

Within this design, tasks processed demonstrated faster 

calculation times, reduced I/O delays and minimized 

transmission times, while in contrast, poor decentralized 

global design utilization leads to higher workload which 

directly impacts task execution times and increases I/O delays 

with slower transmission times. These findings underscore the 

importance of selecting an appropriate control plane 

architecture concerning the utilization and task execution 

efficiency. 
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 (a). 𝑐=5 and 𝛾=3 

 

(b). 𝑐 =7 and 𝛾 =3 

Fig. 2. Controller utilization in different architectures with 

different controller and flow hops. 

 

(a) 𝑐 =5 

 

(b) 𝑐 =7 

 

(c) 𝑐 =9 

Fig. 3. Decentralized local controller utilization with different 

controller and flow hops number. 

 

(a) c =5 
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(b) c =7 

 

(c) c =9 

Fig. 4. Leaf controller utilization with different numbers of 

controllers and flow hops. 

 

Fig. 5. Global view structure utilization with different 

numbers of controllers. 

 

Fig. 6. Root controller utilization with different number of 

controllers. 

6. CONCLUSION AND FUTURE WORKS 

In this paper, we study the SDN scalability and focus on 

control plan utilization in different control plane architectures 

as a scalability metric. We propose a mathematical model to 

define controller utilization in decentralized and hierarchal 

architectures with an increasing number of controllers and 

hosts. Then, a numerical experiment was done to verify the 

method. We collect the results when (N=2000), and we 

conclude that decentralized local and hierarchical leaf 

controllers have almost the same utilization with (6%, 5.9% 

when 𝑐=5, and 1.6% when 𝑐 =7) and both outperforming the 

decentralized global architecture (60% when 𝑐 =5, and 30% 

when 𝑐 =7), while the hierarchical root controller has the best 

utilization (0.0075%, 0.016%, 0.027% when 𝑐 =5,7,9 

respectively). These findings emphasize the need for careful 

architectural considerations and have significant implications 

for network designers and administrators in selecting 

appropriate SDN architecture. Future works could involve 

developing load-balancing mechanisms, resource allocation 

algorithms or traffic engineering technique to improve the 

scalability of SDN control planes and also, more scalability 

metrics can be analyzed such as latency and throughput for 

more understanding of the factors affecting scalability. 
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