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Abstract: The recognition of oil-bearing formation is an important part in oil exploration, and
recognition technology influences the predictive accuracy and efficiency. Low rank representation
(LRR) has aroused much attention in the field of data mining. As a modified version, the low
rank representation with adaptive graph regularization (LRR-AGR) exploits the global and local
information of data for graph learning, and it simultaneously integrates distance regularization
term, non-negative constraint and a rank constraint into the framework of LRR. However,
how to balance these regularization terms according to the data greatly limits its clustering
performance. To adaptively balance these regularization terms according to the data and further
improve the clustering performance, we propose a novel model named low-rank representation
with adaptive parameters and graph regularization (LRR-APGR) in this paper. Firstly, a novel
parameter optimization model is formulated and designed based on the framework of LRR-AGR
and the feedback mechanism. Secondly, two global intelligent optimization algorithms, which
can effectively solve the parameter optimization problem are presented based on particle swarm
optimization (PSO) in multi-dimensional continuous space. Experimental results on the data
oilsk81, oilsk83 and oilsk85 wells of Jianghan oil fields in China show that the proposed method
can significantly improve the clustering performance and the predictive accuracy.

Keywords: Low rank representation, graph regularization, rank constraint, particle swarm
optimization .

1. INTRODUCTION

The recognition of oil-bearing formation is the process
of recognizing the characters of each layer in the well.
These characters include dry layer, water layer, inferior
oil layer, and oil layer (Guo et al., 2011). In the fields of
pattern recognition, based on whether label information
is used or not, data analysis technologies can be divided
into three groups, i.e., supervised learning, unsupervised
learning and semi-supervised learning (Jain., 2010). In
order to obtain a good predictive accuracy, which is the
main task in the recognition of oil-bearing formation, it is
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necessary to appropriately use the correlative information
of the data and data analysis technologies.

The multidimensionality and heterogeneity of well log data
is a very challenging problem in recognizing oil-bearing
formation. It is found that reservoirs expand over hundreds
to thousands of miles spatially in thin layers resulting in
huge multidimensional data collection at well locations
(Syed et al., 2022). In addition, unconventional reservoirs
are found to be complex and highly heterogeneous that are
commonly characterized by their ultra-tight permeability.
Finding an accurate model and designing an appropriate
control strategy constitute a challenging task (Mitrica et
al., 2021).Therefore, different well log features and rec-
ognizing models are selected to deal with well log data.
Self-organizing feature map neural network (SOM) model
and six feature parameters were selected to identify the
unconventional reservoir (Fu et al., 1999), i.e., resistiv-
ity (RT), porosity (POR), permeability (PERM), shale
content (Vsh), water saturation (Sw), and acoustic time



66 Control Engineering and Applied Informatics

(AC). Back propagation (BP) neural network model based
on fuzzy approach degree and four parameters i.e., POR,
Sw, AC and induction well log value (COND),were used
to identify the reservoir oil and gas properties (Feng.,
1999). Genetic algorithms (GA) and fuzzy c-means (FCM)
were used to reduce well log features, and construct a
model through BP neural network optimized by GA to
predict the value of optimal feature subset (Guo et al.,
2010; Li et al., 2012). Obviously, the acquisition of relevant
features and the establishment of appropriate models are
two critical steps in recognizing oil-bearing formation. It
can be known that it is meaningful and beneficial for label
information to construct predictive model and optimize
feature selection. However, it is difficult to obtain the
label information, and there are some issues to overcome,
such as the lack of logging analyst’s experience, and lower
efficiency in interpretation. How to automatically man-
age these well log data into different natural groups is a
challenging problem. Data clustering is the most favored
technique to deal with this challenge for discovering the
natural groups without any label information (Jain.,
2010).Clustering algorithms is the process of splitting the
dataset in smaller parts under a specific criterion, which
is involved in the optimal division of the dataset set by
appropriate optimization problem(s) (Borlea, et al,2022;
Pehlivan, et al,2021).It is necessary and beneficial to find
an accurate clustering model and design an appropriate
strategy to control parameters.

As a subspace clustering technology, low-rank representa-
tion (LRR),has attracted great interest in pattern analy-
sis and signal processing communities (Yin et al., 2015),
because of pleasing efficacy in exploring low-dimensional
subspace structures embedded in data. LRR can better
capture global structure of data and preserve the mem-
bership of the samples that belong to the same subspace,
simultaneously partition data into different clusters with
each cluster corresponding to a subspace (Liu et al., 2010;
Liu et al., 2012). Even if the data with noise and outlier
in dealing with high dimensional data, it is robust and
widely used in image classification and clustering (Wang
et al., 2018; Fu et al., 2021; Chen et al.,2022), data recovery
(Zhou et al., 2020), dimensionality reduction (Syed et al.,
2022), anomaly detection (Zhang et al., 2021; Miao et al.,
2020) and other fields. Non-negative and sparse constraints
added to the representation coefficient matrix in LRR,
a non-negative low-rank and sparse (NNLRS) model was
proposed (Zhuang et al., 2012), which can enhance physi-
cal interpretation for real data and capture the local dim
linear relationships of data. By introducing the hypergraph
Laplacian regularization term into the NNLRS model, the
non-negative sparse hyper-Laplacian regularized low-rank
representation (NSHLRR) model was proposed (Yin et al.,
2015), in which the intrinsic non-linear geometry infor-
mation in data is further captured. According to spectral
theory and prior cluster information, i.e., the number of
clusters embedded in data, rank constraint is imposed
on the Laplacian matrix in LRR model (Lu et al., 2018;
Feng et al., 2014), in which the learned graph is forced
to have exactly connected components corresponding to
clusters embedded in data. A non-negative weighted sparse
distance constraint and a rank constraint were integrated
into the framework of LRR model (Wen et al., 2018), low-
rank representation with adaptive graph regularization

(LRR-AGR) model was proposed. LRR-AGR not only
simultaneously captured the local structure and global
structure of data, but also learned an optimal graph with
clearly clustering structure. Two-moon synthetic dataset
and some real datasets, including four non-image datasets
from UCI machine repository and six image datasets, were
selected to prove the effectiveness of LRR-AGR. In fact,
it is essential to exploit the intrinsic structure of data for
data clustering task. And it can be an appropriate and
accurate model in the recognition of oil-bearing.

In real world applications, the clustering performance of
LRR-AGR model is dependent on these different regu-
larization terms, i.e., distance constraint term, low-rank
constraint term, and rank constraint term. These regu-
larization terms make the LRR-AGR model to learn an
ideal graph by capturing the intrinsic structure of data
(both local structure and global structure). The affect of
these regularization terms in the model are tuned by three
parameters. Actually, these parameters balance the above
terms in LRR-AGR model. How to adaptively balance
these regularization terms in LRR-AGR model is an open
problem (Wen et al., 2018). However, adaptively balance
these regularization terms, i.e., adaptively select optimal
parameters for a dataset, can reduce the sensitivity and
improve the clustering performance. Designing an appro-
priate control strategy and an optimization method is
the main task of tuning parameters to adaptively bal-
ance multiple reguarization terms for LRR-AGR. As a
result, aiming at well log data, a new approach which
can adaptively select optimal parameters for LRR-AGR
model to improve the clustering performance, is proposed
in this paper. Inspired by the reference (Lazzus et al.,
2020; He et al., 2007), i.e., heuristic algorithms optimize
the parameters in Lotka-Volterra system, we optimize
the parameters of LRR-AGR model based on particle
swarm optimization (PSO) algorithm. We propose a model
named low-rank representation with adaptive parameters
and graph regularization (LRR-APGR) in this paper. A
mathematic model about the optimization problem and
an effective method based on metaheuristic optimization
techniques are presented in this study. Firstly, parameter
estimation for LRR-AGR is modeled as a multidimen-
sion optimization problem based on the framework of
LRR-AGR model and the feedback mechanism between
parameter values and clustering performance evaluation.
Secondly, an effective searching strategy based on MPSO
algorithm is presented to solve the optimization problem in
multidimensional continuous space. The optimal parame-
ters searched by PSO algorithm, matching with LRR-AGR
model, are selected adaptively for each well log data. In
summary, designing an appropriate control strategy for
LRR-AGR by optimizing tuning parameters is the main
feature in this work, and our main contribution lies in the
following three aspects:

(1) A modified LRR-AGR model with optimal parameters
named LRR-APGR is proposed and applied successfully
in oil-bearing recognition.

(2) Instead of parameters of LRR-AGR model selected in
a candidate range set, we model the parameter estima-
tion as a multidimension continuous optimization problem
based on the framework of LRR-AGR model and the feed-
back mechanism between parameter values and clustering
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performance evaluation. Moreover, an effective algorithm
based on PSO algorithm for searching optimal solution in
multidimension continuous space is designed to solve the
optimization problem.To the best of our knowledge, few
contributions address the problem of designing optimal
tuning parameters for LRR-AGR.

(3) The proposed model has good interpretability and
adaptability, in which the recognition ability in oil-bearing
formation is mainly achieved by capturing various struc-
tures information through the combination of regulariza-
tion terms and their interactions tuned by these parame-
ters among various regularization terms.

The rest of this paper is organized as follows. In section 2,
we give a brief description to several related works. Sec-
tion 3 presents the proposed model about the parameter
estimation of LRR-AGR and the mechanism in solving the
optimization problem about this model. Section 4 analyzes
the result of experiment based on data oilsk81, oilsk83,
oilsk85, wells of Jianghan oil fields in China. Section 5
offers the conclusion of the paper and the next research
direction.

2. RELATED WORKS

2.1 LRR model

According to the assumption that data in a high-
dimensional space actually lie on the union of several linear
subspaces, LRR model is proposed, aiming at finding the
lowest-rank representation of all data for data clustering
(Liu et al., 2010; Liu et al., 2012). It has been shown that
LRR model is an effective tool for subspace clustering
because it is better at capturing the global structure of
data. For the given data X, the LRR model is defined
as rank minimization problem and solved by a following
convex optimization problem through a good surrogate for
rank function.

min
Z,E

∥Z∥∗ + λ∥E∥1
s.t.X = XZ + E

(1)

where ∥Z∥∗ is the nuclear norm of representation matrix

Z, calculated as ∥Z∥∗ =
n∑
i

δi. δi is the i-th singular value

of matrix Z, n is the number of samples in data, and E
is the error matrix term used to model different noises,
∥E∥1 is the l1 norm, defined as the sum of absolutes of
all entries, and λ is a penalty parameter for balancing the
rank function and the l1 norm.
Several methods have been proposed for solving the prob-
lem (1), such as augmented Lagrange multiplier method
(ALM) (Liu et al., 2010), and linearized alternating di-
rection method with adaptive penalty (LADMAP) (Lin et
al., 2011). After obtaining an optimal solution Z∗, each
column of Z∗ is normalizes as zi = zi/∥zi.∥∞. Then the
similarity graph matrix W = |Z|+ |ZT | is calculated.
Each element wij denotes the similarity degree between
samples xi and xj , and then applies the spectral clustering
algorithm to cluster data into different subspaces.

2.2 LRR-AGR model

LRR model is better at capturing the global data struc-
tures (such as multiple clusters and subspaces). However,
it may fail to discover the intrinsic geometric and dis-
criminating structures of data (Yin et al., 2015), which
is essential to actual application. A model which well pre-
serves the locality and similarity of data, has the potential
to convey more discriminative information. In addition,
if the representation coefficient value is negative, it will
lead to the lack of physical interpretation in the real-
world applications. By introducing the distance constraint,
low-rank constraint, non-negative constraint and a rank
constraint, LRR-AGR is proposed to learn an ideal graph
(Wen et al., 2018). The LRR-AGR model is formulated as
follows

min
Z,E

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1
s.t.X = XZ + E, diag(Z) = 0, Z ≥ 0,
rank(Lz) = n− c

(2)

where
n∑
i,j

∥xi − xj∥22 zij is the distance constraint, if Z is

non-negative, adaptively selecting a few nearest neighbor
samples for representation, which enables the model to
guarantee the locality and sparsity, and the non-negative
constraint on Z aims to guarantee that each data point is
in the middle of its neighbors, which can enhance physical
interpretation for real data and embody the dependency
among data points than otherwise, c is the number of
connected components in optimal graph corresponding to
the clusters embedded in data, rank constraint rank(Lz) =
n − c, as a prior information, is imposed on the Lapla-
cian matrix Lz which is defined as Lz = D − (Z + ZT )/2,
where D is a diagonal matrix and its i-th diagonal ele-
ment Dii =

∑
j (zij + zji)/2, λ1, λ2 are positive penalty

parameters for balancing the low-rank term, the weighted
distance regularization term and the error term.
As the Laplacian matrix Lz is positive semi-definite (Nie
et al., 2016) and the facilitation of Theorem (Fan., 1949),
the minimization optimization problem (2) is converted
into the following equivalent optimization problem:

min
Z,E

n∑
i,j

∥xi − xj∥22 zij + λ1∥Z∥∗ + λ2∥E∥1+

2λ3

c∑
i=1

Tr(FTLzF )

s.t.X = XZ + E, diag(Z) = 0, Z ≥ 0,
∑

j zij = 1,

FTF = I

(3)

where F = [fT
1 , fT

2 , · · · , fT
n ]T ∈ Rn×c is the set of c eigen-

vectors corresponding to the first the c smallest eigenvalues
of Lz, Tr(·) is the trace operator, and λ3 is also a positive
penalty parameter used to balance the regularization term
in the model. And the optimization problem (3) has been
solved by alternating direction method (ADM) through
constructing the augmented Lagrangian function (Wen et
al., 2018).

2.3 PSO algorithm and MPSO algorithm

PSO is an evolutionary computation technique (Eberhart
et al., 1995). Due to its simplicity of implementation and
its ability to quickly converge to a reasonably acceptable
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solution, PSO has been successfully applied to solve non-
convex or combinatorial optimization problems that arise
in many science and engineering domains (Lazzus et al.,
2020; He et al., 2007; Clerc et al., 2002; Shi et al., 1999). As
a swarm intelligent search algorithm, PSO aims to find the
optimal solution by interacting and sharing information
with neighbor particles. The information shared in PSO is
obtained by the best positions visited earlier by itself and
by any particle in the population so far, named as pbesti
and gbest, respectively. Each particle i of the swarm has
a current position in search space as xi and a velocity vi.
So, in the standard PSO algorithm, for each iteration t,
the velocity and position update equation are described as
follows.

vij(t+ 1) = wijvi(t) + c1r1(pbestij(t)− xij(t))+
c2r2(gbestij(t)− xij(t))
xij(t+ 1) = xij(t) + vij(t+ 1)

(4)

where wij is the inertial weight,c1 and c2 are acceleration
positive constants, r1, r2 are random numbers in the range
of [0,1] drawn from a uniform distribution, j is the j-th
dimension in solution space. To guarantee the search from
global to local, inertia weight starts with a value close to
1 and linearly decreases to 0.4.
To solve the local optimum or stagnation problem in
the standard PSO algorithm, a modified version of PSO
(MPSO), which adds another behavioral term to the
swarm, is implemented to solve the parameters optimiza-
tion problem of Lotka-Volterra system (Lazzus et al.,
2020; He et al., 2007). The formula of MPSO algorithm
is updated as follows.

vij(t+ 1) = wij(t)vi(t) + c1r1(pbestij(t)− xij(t))+
c2r2(gbestij(t)− xij(t)) + c3r3(prandij(t)− xij(t))
xij(t+ 1) = xij(t) + vij(t+ 1)

(5)

where c3 is also an acceleration positive constant, r3 is
the elements with random sequences in range [0,1]. prand
is a random position in swarm. To diversify and improve
the search capability in the swarm, a new random term
provided by prand is added. The random particle’s infor-
mation can weaken the attraction of the gbest position,
and move the particles to a better location.

3. LOW RANK REPRESENTATION WITH
ADAPTIVE GRAPH REGULARIZATION AND

ADAPTIVE PARAMETERS

LRR-AGR learned an ideal graph with intrinsic structure
of data because of integrating distance constraint, low-
rank constraint and rank constraint into the framework of
LRR. These constraints in LRR-AGR were balanced by
three parameters, i.e., λ1, λ2 and λ3. Depending on the
application and the characteristics of the problem, tuning
all these parameters properly may lead to better results.
It is necessary to balance these regularization terms adap-
tively in the recognition of oil-bearing formation. Thus,
a parameter optimization model is formulated based on
the framework of LRR-AGR and the feedback mechanism
aiming at different well log data. Meanwhile, an optimal
algorithm based on PSO and MPSO is implemented to
solve the optimization problem.

3.1 The model of parameter optimization for LRR-AGR

As mentioned in formula (3), assuming the optimal matrix
of Z∗ and E are given, there are three parameters, i.e.,
λ1, λ2 and λ3 affecting the performance of LRR-AGR.
To obtain the best clustering performance, we need to
optimize these parameters. In this paper, we introduce the
feedback theory of a system to precisely control these pa-
rameters and regularization terms for aimed well log data.
The LRR-AGR model is regarded as a recognition system.
Clustering performance is considered as a state under the
input of these parameters. The process of obtaining and
evaluating the optimal representation matrix Z is regarded
as the executing agency. Fig.1 is the schematic diagram of
obtaining optimal parameters to precisely control different
regularization terms for LRR-AGR model.

In the following, we describe quantitatively the model of
parameter optimization in mathematical form according
to above analysis, so as to achieve optimal parameters.
Denote c as the clusters of data, X0 is initial input matrix
calculated by data X, vector p is a parameter combination
of λ1, λ2, λ3. Actually, c,p and X0 are pre-programmed
or calculated in LRR-AGR model, for a given data X,
then the optimal representation matrix Z∗ is obtained
through solving the problem (3) by ADM in LRR-AGR
model. We denote this process as Z∗ = F (X,X0, c,p). To
evaluate the optimal graph Z∗ the two metrices function,
i.e., clustering accuracy (ACC) and normalized mutual
information (NMI) (Yin et al., 2022; Wen et al., 2018;Yin
et al., 2015), defined as following formula (8) and (9), are
selected to evaluate the clustering result achieved by spec-
tral clustering. We denote the evaluation and quantization
process as y = G(Z∗) where y is the evaluation value.
In a word, under a given initial input, after obtaining an
optimal graph Z∗, for a data X, the clustering evaluation
value y can be obtained and summarized as

y = G(F (X,X0, c,p)) (6)
Simultaneously, the parameter optimization problem is the
inverse problem of (6), i.e., the following formula

p∗ = argmax
p

(G(F (X,X0, c,p))) (7)

3.2 Solution of the model of parameter estimation

Parameter estimation is a process to obtain the parameter
values of a mathematical model using sample data of a
given system (Lazzus et al., 2020; He et al., 2007). As
an optimization method, the three parameters, i.e., λ1, λ2

and λ3 are chosen in a candidate parameter range set
of

{
10−5, 10−4, 10−3, 10−2, 10−1, 1, 101, 102

}
(Wen et al.,

2018). According to the sensitivity of parameters to the
clustering ACC, parameter λ3 is firstly fixed, and then
perform the LRR-AGR model to find the optimal λ1

and λ2 in a candidate domain. Then by similar strategy,
parameters λ1 and λ2 are fixed, and then perform LRR-
AGR method to find the optimal parameter λ3 in a
candidate domain. Lastly, the optimal combination of
these parameters can be obtained in the 3D candidate
space which is composed by the three candidate domains
of parameters.

In fact, the above method is a discretization method and
the optimal parameters may not exist in the 3D candidate
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space. It is targeted at specific dataset corresponding re-
search optimal method. In the recognition of oil-bearing
formation, we propose an effective method to optimal pa-
rameters in a multi-dimensional continuous space. At first,
we consider p as the variable and detection signal, and
change its value in 3-dimensional continuous space. Then,
the clustering evaluation value y is regarded as state feed-
back describing the state information of recognition system
under the detection signal of p. So, a feedback mechanism
between p and y is established, as shown in Fig.1, which
is an effective measure to utilize state information to tune
the detection signal p. As we know, under the above
assumptions, there exists a y value corresponding with p,
whichever the evaluation function is ACC or NMI.

PSO is a swarm intelligent search algorithm based on
particles’s historical information (i.e., pbest and gbest).
The information of its own individual extremum and global
extremum is shared among all particles and used to adjust
new particle’s position and velocity. Therefore, we explore
the standard PSO algorithm and the MPSO algorithm to
search optimal parameters. Fig.1 is a schematic diagram
of obtaining an optimal parameter for LRR-AGR model
based on the feedback mechanism and PSO algorithm.
Fig.2 shows the flowchart for MPSO algorithm in solving
the optimization problem. Here, the fitness function f(·)
is a composition function of F and G, formulated as (7),
c is the clusters of data X.

Fig. 1. A schematic diagram of obtaining an optimal
parameter for LRR-AGRmodel based on the feedback
mechanism and PSO search algorithm

4. THE APPLICATION OF THE PROPOSED MODEL
IN OIL-BEARING OF RESERVOIR RECOGNITION

In this section, we conduct several experiments on the real
data oilsk81, oilsk83, oilsk85 wells of Jianghan oil fields in
China, to evaluate the model of LRR-AGR with optimal
parameters. All experiments are performed on the software
Matlab R2016b and Windows 10 system, hardware Intel
Core i5-1135G7, 16GB ram.

4.1 Description of data and parameters setting in searching
algorithm

Experiments are performed on three well log data from
Jianghan oil fields in China. Table 1 shows the description
of the real used data. There are six well log features and
four class information when recognizing oil-bearing for-
mation, i.e. acoustic travel time (AC), compensated neu-
tron logging (CNL), resistivity (RT), porosity (POR), oil
saturation (SO), permeability (PERM). Class information
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Fig. 2. Flowchart of MPSO algorithm in solving the
parameter optimization problem

is dry layer, water layer, oil layer, and inferior oil layer.
The quality of data is good without any missing values.
In PSO and MPSO algorithm, we denote the population
size, initial weight, acceleration constants and maximum
iteration as m, w, (c1, c2, c3), tmax, respectively. Table 2
shows the parameters setting in PSO and MPSO algo-
rithm. Fig.2 shows the flowchart for MPSO algorithm in
solving parameter optimization problem.

Table 1. Statistic description on the well-
logging datasets

Dataset Variables Classes Total number of samples

oilsk81 6 4 31
oilsk83 6 4 50
oilsk85 6 4 34

Table 2. Parameter setting in PSO and MPSO
algorithms

Algorithm m w (c1, c2, c3) tmax

PSO 150 0.7 (0.5, 0.5, 0) 40
MPSO 150 0.7− 0.4t/tmax (0.5, 0.5, 0.6) 40

4.2 Evaluation metrics

In this paper, we use two metrics, i.e., clustering accuracy
(ACC) and normalized mutual information (NMI) to eval-
uate the clustering performance of different algorithms.
Moreover, ACC is also selected as fitness function in PSO
and MPSO, which can evaluate the match between the
three parameters and the LRR-AGR model. For a dataset
X with n samples, ACC is calculated as follows:

ACC =

n∑
i

δ(yi,map(ri))

n
(8)
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Table 3. Optimal parameters searched by PSO and MPSO for three oilsk data (Part)

oilsk81 oilsk83 oilsk85

PSO MPSO PSO MPSO PSO MPSO

λ1 0.3641415 0.0964888 0.2572347 0.5910087 0.4452192 0.9916791
λ2 0.1279067 0.0111202 0.1462713 0.3038111 0.3982446 0.5919352
λ3 0.0624397 0.0149865 0.1440339 0.1907449 0.2774069 0.3200301

where ri and yi denote the cluster label obtained by
clustering algorithm and the true label of sample xi, re-
spectively. Under the condition of x = y, then δ(x, y) = 1,
otherwise, δ(x, y) = 0. map(·) is a permutation mapping
function, used to map each prediction cluster label ri to
the equivalent label according to the distribution of the
true label (Yin et al., 2022; Wen et al., 2018;Yin et al.,
2015).
When the predicted cluster label K ′ is obtained and the
true label K is given, NMI is defined as follows (Yin et al.,
2022; Wen et al., 2018;Yin et al., 2015).

NMI(K,K ′) =
MI(K,K ′)

max(H(K), H(K ′))
(9)

where H(K), H(K ′) denote the entropy of labels K and
K ′, respectively. Mutual informationMI(·)is calculated as
follows

MI(K,K ′) =
∑
s∈K

∑
t∈K′

p(s, t)log2

(
p(s, t)

p(s)p(t)

)
(10)

where p(s, t) denotes the joint probability distribution of
s and t, p(s) and p(t) are the marginal probability of s
and t, respectively. Both ACC and NMI are in the range
of [0,1], and the larger value of ACC or NMI is, the better
the clustering performance is.

4.3 Optimal parameters and clustering result

Aiming at three well log data oilsk81, oilsk83 and oilsk85
wells of Jianghan oil fields in China (see Tables 9-11), op-
timal parameters in LRR-AGR model is searched by PSO
and MPSO, respectively. Since the recognizing accuracy
is strongly expected in recognizing oil-bearing formation
in PSO or MPSO algorithm, we select the ACC metric as
fitness function to search optimal parameters. To facilitate
statistical results, we reorder the well log data which
is listed in Tables 9-11, respectively. The samples which
belong to the same cluster are ordered in sequence. Mean-
while, the clusters are displayed as follows: dry layer, oil
layer, inferior oil layer, and water layer. Table 3 shows the
optimal parameters corresponding to each dataset. Table
4 shows the statistic result of clustering performance by
ACC metric with the model of LRR-APGR. Experiments
are performed 20 times. We observe the best, the average
and the worst result to compare their matching perfor-
mance. According to the matching results, we determine
the optimal parameters between the two sets of optimal
parameters searched by PSO and MPSO.

Firstly, from Table 3, we can find that different well log
data has different optimal parameters and each data can
have various optimal parameters. Simultaneously, it is
difficult to obtain optimal parameters for a dataset in a
given candidate parameter range set. It is meaningful and
necessary to adaptively select optimal parameters for a

Table 4. Comparison of clustering performance
(ACC) with different optimal parameters

MPSO PSO

Dataset Best Average Worst Best Average Worst

oilsk81 1 1 1 1 1 1
oilsk83 0.96 0.954 0.94 0.94 0.916 0.90
oilsk85 1 0.989 0.9705 1 0.9823 0.9705

given dataset. Secondly, from Table 4, we can find the
clustering performance is different for different optimal
parameters. The clustering performance with the opti-
mal parameters searched by MPSO is more significant.
MPSO algorithm has advantages over PSO algorithm in
searching global optimal solution due to adding random
particle information to the population. It is the reason
that it can move the particles to a better location and
weaken the attraction of the Pg position to local min-
ima in the search space. However, all results show that
MPSO or PSO algorithm can be a useful and powerful
technique for parameter optimization of LRR-AGR model
with an accurate performance, fast convergence process,
and very low deviations. Above all, adaptively balancing
these regularizations, i.e., global structure constraint, local
structure constraint, and prior structure constraint, can
significantly improve clustering performance in recognition
of oil-bearing formation.
To extensively demonstrate the effectiveness of the LRR-
APGR model in recognizing the oil-bearing formation, we
select some related clustering methods for comparison,
i.e. K-means (Kanungo et al., 2002), Normalized cut
clustering method (Ncut) (Shi et al., 2000),LRR (Liu et
al., 2010), NNLRS (Zhuang et al., 2012), latent low-rank
representation for subspace segmentation and feature ex-
traction (LatLRR) (Liu et al., 2011), Laplacian regularized
LRR(LapLRR) (Liu et al., 2014), NSHLRR (Yin et al.,
2015), LRR-AGR (Wen et al., 2018), LRR with adaptive
dictionary learning (ALRR) (Chen et al., 2021),and a hier-
archical weighted low-rank representation (HWLRR) (Fu
et al., 2021). The two metrics of clustering performance
are ACC and NMI. Parameters setting are listed in Table
5. In LRR-APGR, we mainly use two procedures to get
optimal parameters and perform LRR-AGR. To get the
optimal parameters, the maximum iteration is 4 in MPSO
algorithm. Besides, the optimal representation matrix is
calculated via solving the LRR-AGR model with alternat-
ing direction method (ADM), and the maximum iterations
are 80 times. The maximum iterations are adopted as same
as initial setting in others referred algorithms. The result
of recognition in oil-bearing for oilsk81, oilsk83, oilsk85
well-logging data are listed in Table 6 and 7, respectively.

From Table 6, we can firstly find that LRR and its
improved version have a better clustering performance
than Ncut in most cases. It is inappropriate to cluster



Control Engineering and Applied Informatics 71

Table 5. Parameters setting in related algo-
rithms

Algorithm Symbols Meaning Value

Ncut σ scale parameter 0.5
LRR λ Penalty parameter 0.31
LatLRR λ Penalty parameter 0.5
NNLRS λ1 Regularized parameter 10

λ2 Regularized parameter 0.2
LapLRR λ1 Penalty parameter 0.7

λ2 Penalty parameter 1.26
NSHLRR λ Penalty parameter 0.01

β Penalty parameter 0.001
γ Penalty parameter 0.1

ALRR λ Penalty parameter 15
α Penalty parameter 3

HWLRR β1 Balance parameter 0.5
β2 Balance parameter 0.5

LRR-AGR λ1 Penalty parameter 0.7
λ2 Penalty parameter 0.7
λ3 Penalty parameter 0.7

original data directly because it contains many redundant
features even noises. It is beneficial to capture the intrinsic
structure relationships of data for improving the clustering
performance. Then, LapLRR, NSHLRR can obtain better
clustering performance than LRR, LatLRR. By integrat-
ing Laplacian term into LRR model, the local structure
of data is captured, which can guide model to learn a
better graph. It is the reason that local structure contains
sufficient discriminative information for data clustering.
As another local structure constraint, distance constraint
is added into the LRR-AGR model. Experiment results
show that it is more effective than Laplacian term. By inte-
grating distance constraint, non-negative constraint, rank
constraint into the LRR model, the LRR-AGR model has
potential to learn an ideal graph. Meanwhile, the results
show that the intrinsic geometric structure of data and the
prior connected structure are more suitable and necessary
for the clustering task. In brief, LRR-AGR is an accurate
model to recognize the oil-bearing formation.As shown
in Table 7, the proposed method LRR-APGR is much
better than LRR-AGR. This clearly demonstrates that
optimal parameters adaptively balance these constraints
according to the data which are exploited in LRR-AGR
model helpful for recognizing the oil-bearing formation.
Therefore, the proposed mathematic model is appropriate
and search strategy is effective. An accurate model with
an appropriate control strategy is beneficial to perform the
perform the task of recognizing oil-bearing formation.

Fig.3 is the visualization of optimal matrices obtained from
LRR-APGR. As shown in Fig.3, we can see the optimal
matrix obtained by LRR-APGR model has a relatively
distinct block-diagonal structure, which is helpful for data
clustering. The illustration of optimal matrices, (a) and
(c) in Fig.3 are permuted according to the order of four
true clusters as shown in Table 9 and Table 11. Meanwhile,
only two samples which belong to inferior oil are wrongly
clustered into the water layer, as shown in (b), while the
remaining data are exactly consistent with true clusters as
shown in Table 10.
Besides, we compare the LRR-APGR method with the
previous work which is a classification model (Guo et al.,
2011). In that work, AC and SO are two optimal features
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Fig. 3. Illustration of optimal matrix produced by LRR-
APGR for different well log data.

selected by genetic algorithm (GA) and fuzzy c-means
algorithm (FCM). Then some classification algorithms
are used to evaluate the accuracy of recognition in oil-
bearing, such as FCM, K-means, Support vector machine
(SVM), self-organizing maps (SOM). Accuracy (ACC), as
a common evaluation metric, is selected to distinguish the
difference. The comparison results are displayed in the
following Table 8. Compared with the published work, the
LRR-APGR has at least as good as previous work.

As above analysis, it is critical and useful to use the
prior structure and capture the intrinsic structure of data,
i.e., both local and global structure in recognizing the
oil-bearing formation task. Meanwhile, we find that it is
necessary to adaptively adjust parameters which are used
to balance these regularizations describing corresponding
structure information in real world applications. There-
fore, the mechanism of parametric modeling and the op-
timization method are applicable and effective, and the
proposed method LRR-APGR is more suitable for recog-
nizing the oil-bearing formation.

5. CONCLUSIONS

The recognition of oil-bearing in reservoir is a process that
restores well log data to geological information about the
reservoir category. It is a stage to reflect the achievements
of logging interpretation, and it can improve recovery
efficiency significantly and minimize uncertainties. A novel
model LRR-APGR is proposed based on MPSO for high-
dimensional and low-rank logging data, which is an im-
proved version of LRR-AGR with optimal parameters.
The parameters in the model of LRR-AGR is optimized
by MPSO in continuous space for the well log data of
oilsk81, oilsk83, and oilsk85. Experimental results on well
log data show that the model of LRR-APGR has a higher
accuracy in recognition and a stronger robustness than
other models.
Although the results presented here are extremely encour-
aging, there is an issue that deserves in-depth study in the
future. The optimal parameters used here only are found
by MPSO according to different well log data. Therefore,
the rules of the optimal parameter distribution are worth
of studying. A mechanism that obtains the optimal pa-
rameters automatically should be investigated.
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Table 9. Log explanation of oilsk81 well

Layer AC CNL RT POR SO PERM Conclusion

1 195 7.5 13.0 6.0 0 0 Dry
2 225 10.0 7.3 11.0 0 0 Water
3 230 14.0 5.5 12.0 0 0 Water
4 220 9.0 25.0 9.0 56 1.3 Oil
5 225 8.0 30.0 9.0 58 2.3 Oil
6 210 7.0 26.0 6.0 0 0 Dry
7 220 8.0 26.0 10.0 60 2.4 Oil
8 225 9.0 30.0 10.0 62 2.5 Oil
9 195 4.0 36.0 5.5 0 0 Dry
10 220 9.0 30.0 9.0 61 1.7 Oil
11 217 7.5 50.0 8.0 55 1.1 Oil
12 210 6.0 130.0 7.0 48 0.7 Inferior oil
13 195 4.0 100.0 5.0 0 0 Dry
14 195 4.0 70.0 5.0 0 0 Dry
15 200 6.0 90.0 6.0 0 0 Dry
16 200 4.0 130.0 6.0 0 0 Dry
17 200 4.0 90.0 5.0 0 0 Dry
18 215 9.0 25.0 9.0 54 1.6 Oil
19 195 4.0 70.0 4.0 0 0 Dry
20 200 6.0 55.0 6.0 0 0 Dry
21 200 4.0 100.0 5.0 0 0 Dry
22 240 13.5 12.0 12.0 40 2.4 Oil
23 212 8.0 36.0 8.0 60 1.5 Oil
24 197 6.0 50.0 6.0 0 0 Dry
25 202 6.0 55.0 7.0 52 0.8 Inferior oil
26 195 4.5 50.0 6.0 0 0 Dry
27 203 5.0 45.0 7.0 46 0.6 Inferior oil
28 195 6.0 50.0 6.0 0 0 Dry
29 210 7.5 20.0 8.0 57 1.2 Oil
30 201 6.0 16.0 7.0 40 0.4 Inferior oil
31 213 9.5 12.0 9.0 61 2 Oil
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Table 10. Log explanation of oilsk83
well

Layer AC CNL RT POR SO PERM Conclusion

1 225 10 4 10 0 0 Water
2 226 10 5 10.5 0 0 Water
3 220 8.5 6.6 9.5 0 0 Water
4 235 12 8.8 10 32 0.4 Inferior oil
5 226 13 8 9 35 0.2 Inferior oil
6 202 10 11 7 0 0 Dry
7 209 12 30 3 0 0 Dry
8 198 8 46 4 0 0 Dry
9 178 0.8 600 1.5 0 0 Dry
10 220 9 35 10 52 1.8 Oil
11 205 6 58 8 36 0.5 Inferior oil
12 216 8.3 40 10 55 2.6 Oil
13 197 3.5 120 4 0 0 Dry
14 236 11 17 9 51 1.2 Oil
15 213 6 40 5 0 0 Dry
16 235 10 30 9.5 52 2.5 Oil
17 202 6 60 5 0 0 Dry
18 206 7 40 8 50 1.6 Oil
19 192 4 130 3 0 0 Dry
20 210 8 40 7.6 53 2.2 Oil
21 205 7.5 50 7 36 0.7 Inferior oil
22 208 5 18 7 35 0.8 Inferior oil
23 225 7 15 9 50 1.2 Oil
24 190 2 53 3 0 0 Dry
25 212 5 30 7 30 0.5 Inferior oil
26 200 4 40 2 0 0 Dry
27 201 4 46 2.9 0 0 Dry
28 195 3.5 100 3 0 0 Dry
29 199 11 40 1 0 0 Dry
30 188 3.8 400 2 0 0 Dry
31 197 6 280 3 0 0 Dry
32 200 6 105 5 0 0 Dry
33 196 6 190 3 0 0 Dry
34 210 11 60 8.5 62 2.6 Oil
35 209 9 48 8 52 1.6 Oil
36 185 1.6 70 1 0 0 Dry
37 188 4 70 2 0 0 Dry
38 203 8 27 7 40 0.8 Inferior oil
39 192 5.5 98 3 0 0 Dry
40 190 4 100 2 0 0 Dry
41 191 4.3 105 3 0 0 Dry
42 188 5 70 2 0 0 Dry
43 210 8.3 30 8 60 4 Oil
44 185 3.9 85 1 0 0 Dry
45 190 5 23 4 0 0 Dry
46 211 9.5 10 7.5 61 4.3 Oil
47 199 5.2 14 2 0 0 Dry
48 205 8 12 4 0 0 Dry
49 200 5 18 3 0 0 Dry
50 211 8.5 9 7.5 50 5 Oil

Table 11. Log explanation of oilsk85
well

Layer AC CNL RT POR SO PERM Conclusion

1 225 15.1 10.5 10.7 0 3.2 Water
2 224 13.4 16 10.5 0 2.9 Water
3 200 11.9 23 4.8 0 0 Dry
4 230 13 8.5 11.3 0 3.5 Water
5 245 15.7 12 14.8 48 8.1 Inferior oil
6 230 17.5 0 11.3 0 3.8 Water
7 203 7.2 18 5.2 0 0 Dry
8 201 8.1 20 4.8 0 0 Dry
9 208 6.6 16 6.8 35 1 Inferior oil
10 205 9 36 6.1 39 0.9 Inferior oil
11 200 8.1 33 5 0 0 Dry
12 195 9.8 34 3.8 0 0 Dry
13 175 12.4 360 0.1 0 0 Dry
14 190 11.1 100 0.3 0 0 Dry
15 200 14 50 5 0 0 Dry
16 195 12.9 90 3.8 0 0 Dry
17 199 11.5 100 4.7 0 0 Dry
18 190 16.6 100 2.7 0 0 Dry
19 180 8.9 300 0.5 0 0 Dry
20 230 13 40 11.8 59 3.5 Oil
21 200 14.6 160 4.9 0 0 Dry
22 215 12.1 80 8.4 60 2.2 Oil
23 188 8.6 90 2.3 0 0 Dry
24 188 11.3 150 2.3 0 0 Dry
25 200 11.5 165 5 0 0 Dry
26 190 9.5 180 2.7 0 0 Dry
27 198 10.8 60 4.5 0 0 Dry
28 195 9.8 90 3.8 0 0 Dry
29 193 9.4 35 3.4 0 0 Dry
30 195 10 32 3.8 0 0 Dry
31 195 11.6 390 3.8 0 0 Dry
32 197 8.8 100 4.3 0 0 Dry
33 207 8.6 60 6.6 46 1.8 Inferior oil
34 185 10.3 100 1.6 0 0 Dry


