
CEAI, Vol.25, No.4, pp. 59-72, 2023                                                                                                                    Printed in Romania 

 

Design a Rate-Hysteresis Reduction Task-space Control on a Stewart 

Robotic Platform  
 

Yung Ting, Tho Van Nguyen, Mohammad Yaseen Joo, Ping Che Lu 

 

Department of Mechanical Engineering, Chung Yuan Christian University, No.200, Chung Pei Rd’ 

Chung Li, 32023, Taiwan (Tel: +886 03-2654319; e-mail: yung@cycu.org.tw ) 

Abstract:  A task-space control scheme is established by a derived dynamic model on the end effector 

associated with a few sensors employed on the specific location mounted on top of the piezo-driven 6DOF 

Stewart robotic platform. As piezoelectric actuators are used on the legs to manipulate the platform 

following an assigned trajectory, various manipulating speeds in operating frequencies may appear, making 

it more challenging to deal with the rate-dependent hysteresis effect. Despite the development of an Inverse 

Preisach model, building a large amount of information to identify the hysteresis loop at the different 

operating frequencies is complex and time-consuming. In an experiment, a nearly linear relation between 

the displacement of the leg actuator and input voltage is found. Thus, a run-to-run (RtR) adaptation 

procedure embedded on an internal model control (IMC) incorporated with the exponentially weighted 

moving average (EWMA) method called RtR_EWMA, is proposed. By means of the derived discrete-time 

formation that automatically adjusts the variant relation between the input driving voltage and the output 

displacement of the leg actuators, an easy and efficient control scheme is achieved. Time saving in 

computation is also an imperative advantage on performing on-line control of a complex 6DOF Stewart 

robot. In an experiment, free-space manipulation and machining of various work parts with different 

stiffness are carried out. The proposed feedforward controller, which consists of the Inverse Preisach model 

and the RtR_EWMA, is demonstrated to be effective by the findings. The task-space computed torque 

control approach works noticeably better when combined with the feedforward controller than when used 

alone. 
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1. INTRODUCTION 

High-precision positioning system providing spatial 

manipulation becomes essential for miscellaneous 

applications in semiconductor, optics, biomedical sciences, etc. 

A piezoelectric actuator-driven 6DOF Stewart-type robotic 

platform employed on each leg is thus built (Ting et al., 2007). 

Kinematic and dynamic equations are derived by combining 

the Newton-Euler method and the Lagrange formulation 

(Lebret et al., 1993; Dasgupta; Mruthyunjaya, 1998). The task-

space control method is proposed via the dynamic modeling of 
the robotic platform's end effector in conjunction with an 

online assessment of the end effector's pose by deploying six 

high-quality sensors in a specific area; As a result, the end 

effector can be controlled directly, thereby improving 

precision and efficiency. The piezoelectric actuator has an 

intrinsic nonlinearity called hysteresis. This can lead to 

significant positioning errors while manipulating protracted 

displacement ( Jiles et al., 1984). An inverse Preisach model is 

a well-known method for dealing with nonlinear hysteresis 

(Ge et al., 1997; Yu et al., 2002; Novak et al., 2018). In an 

experiment, the weighting function 𝜇(𝛼, 𝛽)  is determined 

from the measurement of hysteresis loop and as computation 

by the first order reversal curve method. Complex data 

processing and measurement errors due to insufficient 

saturation and calculated negative values of the weighting 

function will degrade accuracy  (Novak et al.,  2018).Moreover, 

temperature rise, creep effect, and operating frequency will 

affect the hysteresis and complicate the problem of 

establishing a hysteresis controller. A few of research works 

proposed similar ways of derivation of inverse model to deal 

with. However, mathematical modeling is complex and needs 

numerous experiments to identify the weighting function or 

parameters etc. Hence, it becomes difficult and time-

consuming in practical use (Senjyu et al., 1998; Jung et al., 

2000; Li, et al., 2019; Al Janaideh et al., 2020). 

How to overcome the problem of rate-dependent hysteresis 

characteristics and executing online adaptation is demanding. 

EWMA is a statistical control approach and Run-to-Run (RtR) 

feedback controller widely used in semiconductor production 

processes due to its stability, simplicity, and robustness. This 

control approach may automatically optimize the connection 

between the recipe's input and output target resultant from 

process drift and environmental disturbance, ensuring that the 

target is reached (Ingolfsson and Sachs, 1993; Chen et al., 

1999).  An extended EWMA, the PCC (Predictor Corrector 

Control), with two terms of adaptation algorithm can further 

reduce the drifting error (Butler and Stefani1994).  

A modified discrete-time adaptive feedforward controller that 

combines the inverse Preisach model with the EWMA 

(Exponentially Weighted Moving Average) method mapped 

into an RtR-IMC (run-to-run Internal Model Control) structure 

is proposed. The computed-torque method has been popularly 

used in robot control, which needs no references addressed 

here. Based upon a planned trajectory, the computed torque 

was formed in the 6DOF Stewart robotic platform's task-space 

model, including the stiffness model in combination with a 
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PID error state feedback control is designed. Further 

combination of the feedforward and the computed-torque-

based model reference control is proposed and carried out free-

space manipulation and machining on various work parts such 

as glass, and aluminum to verify and evaluate its performance.   

2. KINEMATIC AND DYNAMIC MODELING 

The 6-DOF Stewart platform is a parallel mechanism depicted 

in Figure 1. In this manipulator, the spatial motion of the 

movable platform is generated by five pieces of stack-type 

PZT actuators connected in series employed on each of the six 

legs, which provides about 60µm stoke in each leg. Each leg 

connects to the base of the platform and the mobile platform 

by flexural joints at points Bi and Pi, i=1, 2..., 6, respectively. 
In order to examine the kinematics of the manipulator, frame 

{B} and frame {P} are fastened to the stationary and mobile 

platforms at points BC and PC, respectively. Coordinate 

systems of frame {B} anframe [P} are chosen so that the x-

axis is perpendicular to the vectors B1B6 and P1P6, respectively. 

The vector Bi describes the position of each joint located at the 

regular hexagon's apex concerning the frame {B}. Vector Pi 

describes the position of each joint concerning the frame {P}. 

The circumscribed lower and upper circles' radii are given by 

rB and rP, respectively. The structural angles on the fixed 

platform and the movable platform are represented as 𝛼𝐵 and 

𝛼𝑃  that gives 𝛼 = 𝛼𝐵 = 𝛼𝑃 = 0.012𝜋  subsequently. The 

angle 𝜆𝑖 between BCBi and axis xB, and the angle Λ𝑖  between 

PCPi and axis, xP is defined as 

𝜆𝑖 = [
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The position of the point PC concerning frame {B} is defined 

as  𝑃 = [𝑃𝑥 𝑃𝑦 𝑃𝑧]𝑇 , and The movable platform's 

orientation is defined by the rotation matrix RP presented in 

Appendix I. Employing each of the six capacity sensors on the 

assigned location of a sensor holder shown in Figure 2, 

measurement of the pose of the center point on the moving 

platform is achieved. Using the measure on the end effector, 

calibration and error compensation is carried out, which can 

also support the control of the end effector (Ting et al., 2007). 

The dynamic equation on the end effector is described by 

(ℎ)ℎ̈ + 𝐶(ℎ, ℎ̇)ℎ̇ + 𝐺(ℎ) + ℱ𝑒𝑥𝑡 = ℱ            (3) 

where ℎ = [𝑥, 𝑦, 𝑥, 𝜃𝑥, 𝜃𝑦 , 𝜃𝑧]
𝑇
denotes the platform's nominal 

centre of mass stance; 𝑀(ℎ), 𝐶(ℎ, ℎ̇), 𝐺(ℎ)  signifies the 

inertial, Coriolis and centrifugal, and gravity terms, 

respectively; ℱ implies the vector of generalized forces of the 

robotic platform. The terms of 𝑀(ℎ), 𝐶(ℎ, ℎ̇), 𝐺(ℎ)  are the 

combination of the dynamic equation of the platform and the 

six legs in a closed form given by  

𝑀(ℎ) = 𝑀𝑚𝑝 + ∑ �̅�𝑖
6
𝑖=6 ; 𝐶(ℎ, ℎ̇) = 𝐶𝑚𝑝 + ∑ 𝐶�̅�

6
𝑖=1 ; 𝐺(ℎ) = 𝐺𝑚𝑝 + ∑ �̅�𝑖  

6
𝑖=1     

          (4) 

 

Fig. 1. Geometric drawing of Stewart-type platform.  

 

Fig. 2. Measure of end-effector with 6 sensors on sensor holder 

where the platform is associated by. 

 

Movable Platform

Y

Z

X
Vertical view

Lateral view
PC #2 #3#1

Sensor

#1

#2 #3

#4 #5

#6

Cuboid

D

D

Sensor 

Holder

#6,#4 #5

y

z

x

y
z

x



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                                                                61        

𝑀𝑚𝑝 = [
𝑚𝐼3×3 03×3
03×3 𝐼𝑚𝑝

]
6×6

; 𝐶𝑚𝑝 = [
03×3 03×3
03×3 𝜔 × 𝐼𝑚𝑝

]
6×6

; 𝐺𝑚𝑝 = [
−𝑚𝑔
03×1

]
6×1

 

and 𝜔B: angular velocity of legs; IB: moment of inertia. 

Where the legs are associated by 

�̅�𝑖 = 𝐽𝑖
𝑇𝑀𝑖𝐽𝑖;   𝐶�̅� = 𝐽𝑖

𝑇𝑀𝑖𝐽�̇� + 𝐽𝑖
𝑇𝐶𝑖𝐽𝑖 ;   �̅�𝑖 = 𝐽𝑖

𝑇𝐺𝑖, ℱ̅𝑖 = 𝐽𝑖
𝑇ℱ𝑖 

and 𝐽 is the Jacobian. 

Considering the robotic platform executing machining on the 

solid work parts presumed as in interaction with a stiff 

environment. Under the condition that the robot stiffness is 

higher than that of the material parts, the work parts would 

experience deformation in translation and orientation. 

Assuming the equivalent interaction force behaves as a linear 

spring, it can be estimated by (Salisbury, J. K. (1980). 

ℱ𝑒𝑥𝑡 = 𝐾𝑒(ℎ − ℎ𝑒)                (5) 

where 𝐾𝑒 is matrix with diagonal elements that describes the 

stiffness of the work parts; ℎ𝑒 denotes the undeformed pose of 

the work parts while in contact with the cutting tool.  

A brief derivation of the kinematic and dynamic model is 

described in Appendix I. 

3. HYSTERESIS FEEDFORWARD CONTROLLER 

Hysteresis is a natural characteristic of nonlinearity existing in 

piezoelectric materials. The PZT actuator has the disadvantage 

of rate-dependent hysteresis caused by temperature and creep 

(Jung and Gweon, 2000; Ting et al., 2011). The temperature 

effect is negligible, for the temperature is maintained at room 

temperature during the experiment in this study. The hysteresis 

loop is variable and rounder when the rate of input driving 

voltage is increased. In Figure 3, the hysteresis of a leg actuator 

of the robotic platform is variant for different manipulating 

speeds in terms of operating frequency (Hz) or sampling 

intervals.  The dynamic Preisach model was created using the 

conventional Preisach model provided by 

𝑞(𝑡) =∬ 𝜇0(𝛼, 𝛽)
𝛼≥𝛽

𝛾𝛼𝛽[𝑢(𝑡)]𝑑𝛼𝑑𝛽

+∬
𝑑𝑢

𝑑𝑡𝛼≥𝛽

𝜇1(𝛼, 𝛽)𝛾𝛼𝛽[𝑢(𝑡)]𝑑𝛼𝑑𝛽 

= 𝑞(𝑡)𝐶𝑃𝑀 +∬
𝑑𝑢

𝑑𝑡𝛼≥𝛽

𝜇1(𝛼, 𝛽)𝛾𝛼𝛽[𝑢(𝑡)]𝑑𝛼𝑑𝛽                                

 (6) 

where 𝜇0(𝛼, 𝛽)  and 𝜇1(𝛼, 𝛽)  represents the static and 

dynamic components of hysteresis of the weighting function; 

𝛾𝛼𝛽 is defined as having a value of either 0 or 1; the superscript 

“CPM” denotes the outcomes calculated using the traditional 

Preisach model. Additionally, the ability to eliminate is used 

to lessen errors brought on by incorrect local extreme points. 

Without further description in this article, an inverse algorithm 

using the numerical method for the dynamic Preisach model 

was developed in our previous research work (Ting et al., 

2011). While building an Inverse Preisach model represented 

with an operator Г-1, the input voltage and output displacement 

would appear to have a nearly linear relation. However, a 

slight deviation exists from the actual value; an approximately 

linear relation is found and shown in Figure 4 for the chosen 

examples of (0.1, 1.0, 10, 20, 40, 50) Hz, respectively. As 

observed, the input/output relation is variant for different 

operating frequencies. That is, measurement of the hysteresis 

loop to search for the weighting function 𝜇(𝛼, 𝛽)  under 

numerous operating frequencies is necessary; however, it is 

very time-consuming and infeasible in practical use.  Hence, 

an approach such as the EWMA method to cope with a varying 

linear connection between the output and input is proposed. 

The linear relation that an equation can express 𝑌𝑛 =
𝜌𝑛𝑋𝑛 + 𝛿𝑛 + 𝑑𝑛, where 𝜌𝑛 is the system gain or slope; 𝛿𝑛 is 

the system biased or offset; d is the disturbance or noise. 

Assuming no disruption is involved, the corresponding 

coefficients of the found linear relation for different operating 

frequencies are shown in Figure 4 and are listed in Table 1.  

 

Fig. 3. Rate-dependent hysteresis. 

 

Fig. 4. Displacement vs input voltage. 

Table 1. Coefficients of a linear relationship. 

Frequency Hz Bias α Gain slope β 

0.1 0.682 0.1282 

1 0.5694 0.1262 

10 0.6035 0.1256 

20 0.5440 0.1253 

40 0.5580 0.1248 

50 0.5530 0.1244 

The hysteresis feedforward Control Scheme is illustrated in 

Figure 5. Using the inverse Preisach model denoted by Γ−1 

considerably reduces the PZT actuator's nonlinear hysteresis. 

EWMA and its extended PCC methods are designed to deal 

with the inconsistent relation between the leg’s displacement 

and the driving voltage due to variant operating frequencies. 
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Fig. 5. Hysteresis Feedforward Control Scheme. 

The EWMA or PCC controller GE is integrated into an Internal 

Model Control (IMC) structure, where 𝑟𝑣  is the input driving 

voltage and �̂�𝑑  is the estimated actuator’s leg displacement 

corresponding to the 𝑋𝑛 and  𝑌𝑛 respectively in the linear form. 

Via the adaptively tuned gain represented by the transfer 

function �̂�𝑝  approaching the actual gain GP, an appropriate 

driving voltage is applied to obtain the actual output 

displacement 𝑞𝑑 reaching the target value T. 

Appendix II presents the developed discrete-time EWMA and 

PCC controller and their performance verification of dealing 

with step and ramp disturbance d. 

To examine the performance of a feedforward controller on a 

leg actuator, an assigned trajectory example with arbitrarily 

chosen manipulation speed in terms of operating frequencies 

(0.1, 1.0, 10) Hz, which is usually practicable in nanoscale 

manipulating rate, is given below.  

{
𝑞(𝑡) = 1.95 ∗ 𝑡 ∗ 𝑡𝑓 𝑤ℎ𝑒𝑛 0 ≤ 𝑡 ≤ 2/𝑡𝑓

𝑞(𝑡) = 24 + 20 sin(2𝜋𝑓𝑐𝑡 −
8𝜋

9⁄ ), 𝑤ℎ𝑒𝑛 2/𝑡𝑓 < 𝑡 ≤ 22/𝑡𝑓
 

Note that to manipulate the same trajectory, the auxiliary 

factor is assigned by 𝑡𝑓 = 1, 10, 100 for the case of operating 

frequency (0.1, 1.0, 10) Hz, respectively. Thus, the period (22, 

2.2, 0.22) seconds differs for each case (0.1, 1.0, 10) Hz. 

MATLAB is used to run the inverse Preisach hysteresis 

algorithm with EWMA or PCC method embedded in the 

LabVIEW. Optimal weighting factors for EWMA and PCC 

controllers are selected to be 𝜔1 = 0.252  and 𝜔1 = 0.252 , 

𝜔2 = 0.011, respectively, in reference to (Ingolfsson & Sachs 

1993; Hunter 1986).  Considering the desired trajectory with a 

chosen frequency is fc=0.1 Hz as the reference-based operation 

frequency in search of the weighting function of the inverse 

Preisach model, the gain �̂�  of the estimated model �̂�𝑝  is 

determined as  �̂� = 0.1262 . The inverse Preisach hysteresis 

(invhys) model, the inverse Preisach hysteresis model + 

EWMA (invhys-EWMA), and the inverse Preisach hysteresis 

model + PCC (invhys-PCC), three types of control methods 

are applied in experiment respectively. The measured results 

are shown in Figures 6~8, and the tracking error calculated by 

Root-Mean-Square Error (RMSE) and is listed in Table 2.  

Table 2. Tracking error (nm) vs operating frequency. 

Controls 
frequency 

0.1 Hz 1 Hz 10 Hz 

Invhys 127.039 232.143 504.539 

Invhys+EWMA 103.086 117.305 191.409 

Invhys+PCC 80.5 81.783 156.25 

 

Fig. 6. Tracking performance and tracking error – 0.1 Hz. 

 

Fig. 7. Tracking performance and tracking error – 1.0 Hz. 

  

 

Fig. 8. Tracking performance & error – 10 Hz. 

As expected, the EWMA method helps reduce error, and the 

PCC is superior to the others because the PCC acts as an 

integrator plus a double integrator that can effectively decrease 

error. Also, the error in the cases of 1.0Hz and 10Hz is 

deficient because 0.1Hz is the reference-based operation 

frequency to determine the inverse Preisach model's weighting 

scheme.  

4. TASK-SPACE CONTROL SCHEME 

The task-space control with a feedforward controller is 

illustrated in Figure 9. The 6DOF Stewart-type platform's 

dynamic equation involves the interaction force ℱ𝑒𝑥𝑡  from the 

environment stiffness described in (5).  The generalized forces 
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of the robotic platform with the task-space stiffness controller 

constructed with a computer torque method and an error state 

feedback PID with gains (𝑘𝑝, 𝑘𝐼, 𝑘𝑣), named position tracking 

P controller, is given by 

ℱ = 𝑀(ℎ)ℎ̈𝑑 + 𝐶(ℎ, ℎ̇)ℎ̇ + 𝐺(ℎ) + 𝑘𝑣 ℎ̇̃ + 𝑘𝑝ℎ̃ + 𝑘𝐼∫ ℎ̃ +

𝐾𝑒(ℎ𝑑 − ℎ𝑒)                                                                             (7) 

where  ℎ̃ = ℎ𝑑 − ℎ is the tracking error. 

Substituting (7) into (3) yields 

𝑀(ℎ)ℎ̈̃ + 𝑘𝑣 ℎ̇̃ + (𝑘𝑝+𝐾𝑒)ℎ̃ + 𝑘𝐼∫ ℎ̃ = 0                            (8)                                      

 

Fig. 9. The task-space stiffness control with feedforward 

controller. 

The additional integrator 𝑘𝐼 is helpful to reduce errors caused 

by model inaccuracy and disturbance, ideally achieving zero 

tracking position error. Gains in PID are attained using the 

Ziegler-Nichols method while searching out the ultimate time 

Tu as well as  ultimate gain Ku via the Relay feedback test 

method (Astrom 1995). The found gains can be used as an 

initial trial to search for optimal gain in the later process of 

utilizing a genetic algorithm based on the minimization of 

ITAE (Integral-Time Absolute Error) error criteria, defined as 

𝐹𝑐𝑜𝑠𝑡 = ∫ (𝑎1𝑡|ℎ̃| + 𝑎2𝜂𝑐
2)𝑑𝑡

𝑡𝑠𝑝𝑎𝑛

0
                                         (9)                        

where a1 and a2 are the weights chosen by the method 

described in reference (Zamani et al., 2009; Maiti et al., (2008)  

𝜂𝑐 = 𝑘𝑣 ℎ̇̃ + 𝑘𝑝ℎ̃ + 𝑘𝐼∫ ℎ̃ . Table 3 provides the allocated 

genetic algorithm parameters. The gains are found and 

expressed with matrix form as diag(kV) = [(9.4017, 9.1688, 

9.7290, 6.5998, 7.4715, 8.9556) x 10-6}], diag(kI)=[(2.4727, 

2.4114, 2.5587, 1.7358, 1.9650, 2.3553) x10-6], and 

diag(kI)=[(0.0261, 0.0254, 0.027, 0.0183, 0.0207, 0.0248) x10-

6]. diag(kP)=[(2.4727, 2.4114, 2.5587, 1.7358, 1.9650, 2.3553) 

x10-6], and diag(kI)=[(0.0261, 0.0254, 0.027, 0.0183, 0.0207, 

0.0248) x10-6]. Since the robotic platform works on a rigid 

surface with large stiffness, it is assumed diag(𝐾𝑒) = diag(kP) 

and with the integrator kI, the steady force exerted on the work 

parts is reduced ( Lewis et al., 2003). Besides the robotic 

platform, There are two power amplifiers with three channels. 

(Piezomechanik, SVR-500/3) for PZT stack actuators 

(AE0505D18F, 6.5mm x 6.5mm x 18mm package, 150V), Lion 

precision capacity displacement sensors (Probe model: C6-D, 

Driver Model: DMT22, for large-stroke the sensitivity of 

50µm is 2.2µm and the sensitivity for fine-stroke of 10µm is 

0.4nm, Analog Output: ±10V), OptoForce 6-axis force/torque 

sensor (HEX-70-CE-2000N, Nominal capacity: 𝐹𝑥𝑦 =

±300 𝑁, 𝐹𝑧 = 2000 𝑁 , 𝑇𝑥𝑦 = 15 𝑁𝑚, 𝑇𝑧 = 10 𝑁𝑚), A PC-

based control system, NI DAQ cards (NI PCI 6229, four 16-

bit analogue outputs, 833 kS/s), and a diamond cutting tool 

(Rockwell diamond hardness indentor). As shown in Figure 10, 

the diamond tool is attached to the xyz flexural stage to make 

surface contact with the sample work parts. Coarse adjustment 

is made manually first, and then a fine adjustment is carried 

out by controlling the xyz stage until a small pulse appears on 

the force sensor.  

Table 3. Genetic algorithm Parameters. 

 

Table 4. Material properties of the robotic platform. 

 

Before executing the machining case study, a fundamental 

free-space manipulation with the position tracking controller 

given in (7) ~(9), which neglects the environment stiffness (Ke) 

and the interaction force ℱ𝑒𝑥𝑡 , are examined first with the 

associated Inverse Preisach model, EWMA, and PCC method 

employed with the same (gain and weighting factor) 

coefficients in the leg actuator described above. 

 

Fig. 10 Experimental Setup. 

To ascertain the function of the proposed feedforward 

controller, including the Inverse Preisach model and the 

EWMA (PCC), experimental results are shown in Figures 

11~16, 17~22, and listed in Tables 5~6 and 7~8 for operating 

different frequencies (0.1, 1.0, 10) Hz on the following 

arbitrarily chosen trajectory, case I and case II, respectively. 

Similarly, to manipulate the same trajectory, the auxiliary 

factor is assigned by 𝑡𝑓  = 1, 10, 100 for the operating 
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frequency (0.1, 1.0, 10) Hz, respectively, and the 

corresponding time span is (25, 2.5, 0.25) seconds.  

  

 

Fig. 11. Tracking performance & error –translation (0.1 Hz). 

    

 

Fig. 12. Tracking performance & error – rotation (0.1 Hz). 

  

 

Fig. 13. Tracking performance & error – translation (1 Hz). 

 

Fig. 14. Tracking performance & error – rotation (1 Hz). 
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Fig. 15. Tracking performance & error – translation (10 Hz). 

 

 

  

 

Fig. 16. Tracking performance & error – rotation (10 Hz).

Table 5. Translation tracking error (nm) vs operating frequency – X, Y, Z-axis. 

 

  Controls 
frequency --- X frequency --- Y frequency --- Z 

0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 

Invhys 282.595 660.4 786.138 281.976 544.273 768.052 1730.732 2560.3 3149.452 

Invhys+EWMA 245.074 332.574 390.431 279.067 330.510 392.128 1093.873 838.412 998.552 

Invhys+PCC 189.004 237.211 270.949 214.04 268.265 284.321 100.149 531.8 631.13 

Table 6. Rotation tracking error (nrad) vs operating frequency – θx, θy, θz -axis. 

Controls 
frequency --- θx frequency --- θy frequency --- θz 

0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 

Invhys 0.229 0.546 0.58 0.622 0.675 1.384 0.426 1.365 0.783 

Invhys+EWMA 0.211 0.307 0.369 0.453 0.430 0.524 0.369 0.430 0.597 

Invhys+PCC 0.201 0.241 0.287 0.369 0.397 0.429 0.259 0.298 0.325 
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Case 1) Moving along X, Y, and Z axes without rotation. 

𝑥(𝑡) = 0.5𝑡 ∗ 𝑡𝑓  , 0 ≤ 𝑡 < 5/𝑡𝑓   ;  𝑥(𝑡) = [−4.5 + (5 +
2𝑡 ∗ 𝑡𝑓

5
) sin(2𝜋𝑓𝑐𝑡 −

𝜋

2
)] , 5/𝑡𝑓 ≤ 𝑡 < 25/𝑡𝑓

𝑦(𝑡) = 0.5𝑡 ∗ 𝑡𝑓  , 0 ≤ 𝑡 < 5/𝑡𝑓   ; 𝑦(𝑡) = [(5 +
2𝑡 ∗ 𝑡𝑓

5
)sin (2𝜋𝑓𝑐(𝑡 − 1.918666) +

𝜋

2
)] , 5/𝑡𝑓 ≤ 𝑡 < 25/𝑡𝑓

𝑧(𝑡) =
8

5
𝑡 ∗ 𝑡𝑓 , 0 ≤ 𝑡 < 5/𝑡𝑓;  𝑧(𝑡) = [8 +

8

5
(𝑡 − 5)], 5/𝑡𝑓 ≤ 𝑡 < 25/𝑡𝑓

 

and       𝜃𝑥(𝑡) = 𝜃𝑦(𝑡) = 𝜃𝑧(𝑡) = 0. 

Case 2) Moving along the Z axis and rotating around X and Y 

axis  

𝑥(𝑡) = 0, 𝑦(𝑡) = 0, 𝑧(𝑡) = (8/7) ∗ 𝑡 ,   

0 ≤ 𝑡 < 5/𝑡𝑓;    𝑧(𝑡) = [8 + 8/7(𝑡 ∗ 𝑡𝑓 − 5)], 5/𝑡𝑓 ≤ 𝑡

< 25/𝑡𝑓 

and

{

𝜃𝑥(𝑡) = 0, 0 ≤ 𝑡 < 5/𝑡𝑓 ;        𝜃𝑥(𝑡) = [(𝜋 72⁄ ) sin(2𝜋𝑓𝑐𝑡)] ,                  5/𝑡𝑓 ≤ 𝑡 < 25/𝑡𝑓
𝜃𝑦(𝑡) = 0, 0 ≤ 𝑡 < 5/𝑡𝑓;              𝜃𝑦(𝑡) = [0.0436 + (𝜋 72⁄ ) cos(2𝜋𝑓𝑐𝑡)] ,    5/𝑡𝑓 ≤ 𝑡 < 25/𝑡𝑓
𝜃𝑧(𝑡) = 0,

 

 

 

Fig. 17. Tracking performance & error –translation (0.1 Hz). 

   

 

Fig. 18. Tracking performance & error – rotation (0.1 Hz). 
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Fig. 19 Tracking performance & error –translation (1.0 Hz) 

 

 

Fig. 20. Tracking performance & error – rotation (1.0 Hz). 

 

 

Fig. 21. Tracking performance & error –translation (10 Hz). 

    
Fig. 22. Tracking performance & error – rotation (10 Hz). 

Same outcomes as the above leg actuator case study are found. 

Combining the inverse Preisach model with the PCC yields the 

smallest RMSE error, which is superior to the others at the 

variant operating frequency. Since the inverse Preisach model 

with the PCC controller can achieve the best tracking 

performance, combining the position tracking (P) controller 

defined in (7) with the feedforward controller, named P/F 

controller, will be used for stiffness control. Therefore, the 

general task-space position tracking controller (P) alone will 

compare with the combined P/F controller. Also, to further  
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Table 7. Translation tracking error (nm) vs operating frequency – X, Y, Z-axis. 

Controls 
frequency --- X frequency --- Y frequency --- Z 

0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 

Invhys 85.281 128.905 140.329 278.405 304.039 418.17 1537.291 2486.483 2888.631 

Invhys+EWMA 75.235 85.442 128.691 149.682 183.826 224.769 991.101 1623.527 1812.541 

Invhys+PCC 68.236 75.146 102.296 122.484 150.953 183.944 812.071 1366.833 1389.31 

Table 8. Rotation tracking error (nrad) vs operating frequency – θx, θy, θz -axis. 

Controls 
frequency --- θx frequency --- θy frequency --- θz 

0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 0.1 Hz 1 Hz 10 Hz 

Invhys 1.867 3.007 3.475 1.522 3.049 3.661 1.424 1.637 2.147 

Invhys+EWMA 1.687 1.823 2.771 1.484 2.047 2.578 0.576 0.828 0.865 

Invhys+PCC 0.791 0.917 1.351 1.398 1.431 2.101 0.513 0.54 0.689 

 

verify the function capability of feedforward control, the 

operation frequency is chosen 1.0Hz on purpose, which is 

different from the reference-based frequency fc=0.1 Hz. An 

arbitrarily chosen spiral trajectory for machining the work parts, 

including the selected glass (Gls) and aluminum (Al), is divided 

into three segments. The robotic platform moves along the X, Y, 

and Z-axis in the first segment, respectively. The second 

segment moves upward along the Z-axis and simultaneously 

moves sinusoidally along the X and Y-axes. The third segment 

returns to (origin) home position along the X, Y, and Z-axis. The 

trajectory in both translation and orientation is given below.  

𝑥(𝑡)

=

{
 
 

 
 5𝑡 ∗ 𝑡𝑓 , 0 < 𝑡 ≤ 0.5/𝑡𝑓

[−3.3 + (5 +
8𝑡 ∗ 𝑡𝑓

5
) sin (2𝜋𝑓𝑐𝑡 −

𝜋

2
)] , 0.5/𝑡𝑓 < 𝑡 ≤ 2.5/𝑡𝑓

[5.7 − 5.7(𝑡 ∗ 𝑡𝑓 − 2.5)] , 2.5/𝑡𝑓 < 𝑡 ≤ 3.5/𝑡𝑓

   

𝑦(𝑡) =

{
 
 

 
 5𝑡 ∗ 𝑡𝑓 , 0 < 𝑡 ≤ 0.5/𝑡𝑓

[2.5 + (5 +
8𝑡 ∗ 𝑡𝑓

5
) cos (2𝜋𝑓𝑐𝑡 −

𝜋

2
)] , 0.5/𝑡𝑓 < 𝑡 ≤ 2.5/𝑡𝑓

[2.5 − 2.5(𝑡 ∗ 𝑡𝑓 − 2.5)] , 2.5/𝑡𝑓 < 𝑡 ≤ 3.5/𝑡𝑓

  

 𝑧(𝑡) = {
12𝑡 ∗ 𝑡𝑓 , 0 < 𝑡 ≤ 2.5/𝑡𝑓

[30 − 30(𝑡 ∗ 𝑡𝑓 − 2.5)] , 2.5/𝑡𝑓 < 𝑡 ≤ 3.5/𝑡𝑓
  

𝜃𝑥(𝑡) = {[

0 , 0 < 𝑡/𝑡𝑓 ≤ 0.5/𝑡𝑓

(
𝜋

72
) sin(2𝜋𝑓𝑐𝑡)] , 0.5/𝑡𝑓 < 𝑡 ≤ 2.5/𝑡𝑓

0 , 2.5/𝑡𝑓 < 𝑡 ≤ 3.5/𝑡𝑓

   

𝜃𝑦(𝑡) = {

0 , 0 < 𝑡 ≤ 0.5/𝑡𝑓

[0.0436 + (
𝜋

72
) cos(2𝜋𝑓𝑐𝑡)] , 0.5/𝑡𝑓 < 𝑡 ≤ 2.5/𝑡𝑓

0 , 2.5/𝑡𝑓 < 𝑡 ≤ 3.5/𝑡𝑓

  

𝜃𝑧(𝑡) = {

0 , 0 < 𝑡 ≤ 0.5/𝑡𝑓

[(
𝜋

144
) sin (2𝜋𝑓𝑐𝑡)] , 0.5/𝑡𝑓 < 𝑡 ≤ 2.5/𝑡𝑓

0 , 2.5/𝑡𝑓 < 𝑡 ≤ 3.5/𝑡𝑓

  

Similarly, manipulating the same trajectory, the auxiliary factor 

is assigned by 𝑡𝑓 = 1, 10, 100 for frequency (0.1, 1.0, 10)Hz, 

respectively, and the time span is (35, 3.5, 0.35) seconds. 

 

 

 

 

The OptoForce 6-axis force/torque sensor mounted between the 

work parts and the robotic platform can quantify the interaction 

force and torque on the X, Y, and Z axes, respectively.  Figures 

23~24, and 26~27 show the tracking performance and tracking 

error of displacement and rotation, and Figures 25 and 28 show 

the measured interaction force/torque for each glass, and 

aluminum case, respectively. The average translation and 

orientation error norm for both controllers is listed in Table 9. 

As seen, the P/F controller, with support from the feedforward 

control to overcome variant manipulating speed, performs much 

better for machining all various work parts.  

    

 

Fig. 23. Tracking performance & error on X, Y, Z axis – Gls. 
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Fig. 24. Rotation tracking performance on θx, θy, θz – Gls. 

 

 

Fig. 25. Interaction force/torque on X, Y, Z axis – Gls. 

Table 9. Tracking error – P controller & P/F controller. 

work parts glass aluminum 

P controller translation 

error norm 

5.702 µm 3.024 µm 

orientation 

error norm 

0.028 µrad 0.014 µrad 

P/F 

controller 

translation 

error norm 

0.988 µm 0.615 µm 

orientation 

error norm 

0.0016 µrad 0.0069 µrad 

 

 

 

 

 

Fig. 26. Tracking performance & error X, Y, Z axis - Al. 

   

 

Fig. 27. Tracking performance & error on θx, θy, θz – Al. 

  

Fig. 28. Interaction force/torque on X, Y, Z axis – Al. 

5. CONCLUSION 

A 6DOF Stewart robotic platform with six piezo-driven leg 

actuators is established. With the derived dynamic modelling 

and the measurement method on the end effector, a task-space  
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control strategy that can reach the purpose of control on the end 

effector is practicable. The fundamental position tracking 

controller (P controller) is a computed-torque-based method 

associated with a PID. To deal with the hysteresis nonlinear 

effect of leg actuator is necessary to improve accuracy. As found, 

the hysteresis is variant to operating frequency and there exists 

an approximate linear relation between the leg displacement and 

the applied input voltage. Therefore, an attempt of using run-to-

run adaptation scheme embedded on an internal model control 

associated with EWMA method is developed. The inverse 

Preisach hysteresis, the inverse Preisach model + EWMA, and 

the inverse Preisach model + PCC combined with the P 

controller are examined first on free space manipulation. As a 

result, the inverse Preisach model + PCC as a feedforward 

controller, combined with the position tracking controller, 

named P/F controller, achieves better performance. A further 

investigation is carried out on machining different work parts to 

include the stiffness control in the P and P/F controller. From 

experiment results, the P/F controller combines the position 

tracking control with the feedforward controller, notably 

outperforming the P controller. Using the P controller alone may 

not keep the target of nanoscale positioning at a low 

manipulating speed. The feedforward control is constructed with 

the Inverse Preisach model and an EWMA or PCC method 

integrated in a system of internal model control (IMC). The run-

to-run IMC (RtR-IMC) discrete-time control scheme can 

adaptively tune the input/output relation, effectively dealing 

with the rate hysteresis effect. The proposed feedforward 

controller is simple and timesaving can integrate with a general 

position-tracking controller to significantly enhance 

performance and very instrumental to reduce the effort of 

building as well as executing an on-line control of a complex 

6DOF Stewart platform. 
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Appendix A. KINEMATICS AND DYNAMIC MODELLING  

Kinematic formulation of a leg 

The rotation matrix RP of the centre point PC concerning frame 

{B} is defined by using Euler angle representation: firstly, 

rotating the moving frame {P} w.r.t. the axis xB of the fixed 

frame by an angle 𝜃𝑥; secondly, rotating w.r.t. the axis yB by an 

angle 𝜃𝑦; and finally, rotating w.r.t. the axis zB by an angle 𝜃𝑧. 

Thus, the orientation transformation matrix can be derived as 

𝑅𝑃 = [

𝐶𝜃𝑦𝐶𝜃𝑦 𝐶𝜃𝑦𝐶𝜃𝑦𝐶𝜃𝑦 − 𝐶𝜃𝑦𝐶𝜃𝑦 𝐶𝜃𝑦𝐶𝜃𝑦𝐶𝜃𝑦 + 𝐶𝜃𝑦𝐶𝜃𝑦
𝐶𝜃𝑦𝐶𝜃𝑦 𝐶𝜃𝑦𝐶𝜃𝑦𝐶𝜃𝑦 + 𝐶𝜃𝑦𝐶𝜃𝑦 𝐶𝜃𝑦𝐶𝜃𝑦𝐶𝜃𝑦 − 𝐶𝜃𝑦𝐶𝜃𝑦
−𝐶𝜃𝑦 𝐶𝜃𝑦𝐶𝜃𝑦 𝐶𝜃𝑦𝐶𝜃𝑦

] =  [

𝑢𝑥 𝑣𝑥 𝜔𝑥
𝑢𝑦 𝑣𝑦 𝜔𝑦
𝑢𝑧 𝑣𝑧 𝜔𝑧

]  (AI.1) (AI.1) 

The close loop equation for each leg is defined by  

 ℓ𝑖�̂�𝑖 = 𝑃 + 𝑅𝑃𝑃𝑖 − 𝐵𝑖   ;  𝑖 = 1,2, … ,6                        (AI.2)          

where �̂�𝑖 is the unit vector of the leg I defined as 

 
[
𝐵
𝑟𝐵𝑖
𝑃𝑖]/𝑙𝑖 = [𝑝𝑥𝑖

𝐵𝑖 𝑝𝑦𝑖
𝐵𝑖 𝑝𝑧𝑖

𝐵𝑖]
𝑇
/𝑙𝑖 = [�̂�𝑥𝑖 �̂�𝑦𝑖 �̂�𝑧𝑖]

𝑇 . and    

𝐵𝑖 = [𝑟𝐵cos (𝜆𝑖) 𝑟𝐵sin (𝜆𝑖) 0]𝑇.                                   (AI.3)  

𝑃𝑖 = [𝑟𝑃cos (Λ𝑖) 𝑟𝑃sin (Λ𝑖) 0]𝑇 ,                                  (AI.4) 

Differentiating (AI.2), the linear velocity of the leg is 

[𝐵  �̇�𝐵𝑖
𝑃𝑖] = [𝐵  �̇�𝐵𝐶

𝑃𝐶] + �̇�𝑃[
𝑃𝑟𝑃𝐶

𝑃𝑖] + 𝑅𝑃[
𝑃�̇�𝑃𝐶

𝑃𝑖] − [𝐵  �̇�𝐵𝐶
𝐵𝑖] =

[𝐵  �̇�𝐵𝐶
𝑃𝐶] + [𝐵𝜔𝑖

×]𝑅𝑃[
𝑃𝑟𝑃𝐶

𝑃𝑖]                                                  (AI.5) 

where [𝐵 �̇�𝐵𝐶
𝐵𝑖] = [𝑃�̇�𝑃𝐶

𝑃𝑖] = 0 , and [𝐵𝜔𝑖
×]  is a skew-symmetric 

matrix describing the leg’s angular velocity w.r.t. the frame {B}  

 [𝐵𝜔𝑖
×] = [

0 −ω𝑧 ω𝑦
ω𝑧 0 −ω𝑥
−ω𝑦 ω𝑥 0

] 
(AI.6) 

 

Differentiate (AI.5), the linear acceleration of the leg i is  

[𝐵  �̈�𝐵𝑖
𝑃𝑖]   = [𝐵 �̈�𝐵𝐶

𝑃𝐶] + [𝐵�̇�𝑖
×]𝑅𝑃[

𝑃𝑟𝑃𝐶
𝑃𝑖]   +

[𝐵ωi
×]([𝐵ωi

×]𝑅𝑃[
𝑃𝑟𝑃𝐶

𝑃𝑖])                                                    (AI.7) 

where �̇�𝑖 , describes the instantaneous change of the angular 

velocity of the leg w.r.t. the frame {B} given by 

 [𝐵ω̇i] =
𝑑𝜔𝑖
𝑑𝑡

=
�̇̂�𝑖×[

𝐵 �̇�𝐵𝑖
𝑃𝑖] + �̂�𝑖×[

𝐵 �̈�𝐵𝑖
𝑃𝑖]

𝑙𝑖
 (AI.8) 

A dynamic formulation of a leg 

The kinetic energy of each leg with the summation of 

the fixed part and the extensible function is defined as 

 

 

 

 

 

 

 
𝐾𝑖 =

1

2
[𝐵�̇�𝐵𝑖

𝑃𝑖]𝑇𝑀𝑖[
𝐵�̇�𝐵𝑖

𝑃𝑖] = 
1

2
𝑣𝑠𝑖
𝑇𝑚𝑠𝑖

𝑣𝑠𝑖 +
1

2
𝜔𝑖
𝑇𝐼𝑠𝑖𝜔𝑖 +

1

2
𝑣𝑒𝑖
𝑇𝑚𝑒𝑖

𝑣𝑒𝑖 +
1

2
𝜔𝑖
𝑇𝐼𝑒𝑖𝜔𝑖 

(AI.9) 

where 𝑣𝑠𝑖  and 𝑣𝑒𝑖  are the linear velocities of the fixed and 

extensible parts, respectively, given by  

𝑣𝑠𝑖 = −
𝑙𝑠𝑖

𝑙𝑖
�̂�𝑖×
2 [𝐵�̇�𝐵𝑖

𝑃𝑖] ; 𝑣𝑒𝑖 = −
𝑙𝑒𝑖

𝑙𝑖
�̂�𝑖×
2 [𝐵�̇�𝐵𝑖

𝑃𝑖] + �̂�𝑖 �̂�𝑖
𝑇�̂�𝑖×

2 [𝐵�̇�𝐵𝑖
𝑃𝑖]               (AI.10) 

and  �̂�𝑖× = [

0 −�̂�𝑧𝑖 �̂�𝑦𝑖
�̂�𝑧𝑖 0 −�̂�𝑥𝑖
−�̂�𝑦𝑖 �̂�𝑥𝑖 0

] (AI.11) 

Summation of the inertia of fixed and extensible parts yields  

𝐼𝑒𝑞 = 𝐼𝑠𝑖 + 𝐼𝑒𝑖 = 𝑑𝑖𝑎𝑔([𝐼𝑠 + 𝐼𝑖 , 𝐼𝑠 + 𝐼𝑖 , 0 ])                 (AI.12) 

The kinetic energy of each leg is given by  

𝐾𝑖 =
1

2
[𝐵�̇�𝐵𝑖

𝑃𝑖]𝑇 (
1

𝑙𝑖
2𝑚𝑒𝑖[

𝐵𝑟𝐵𝑖
𝑃𝑖]𝑇[𝐵𝑟𝐵𝑖

𝑃𝑖] + 𝑚𝑐𝑒�̂�𝑖×
2 −

1

𝑙𝑖
2 𝐼𝑒𝑞�̂�𝑖×

2 ) [𝐵�̇�𝐵𝑖
𝑃𝑖] 

 

(AI.12) 

where 𝑚𝑐𝑒 = (𝑚𝑠𝑖
𝑙𝑠𝑖
2 +𝑚𝑒𝑖

𝑙𝑒𝑖
2 )/𝑙𝑖

2. 

The mass matrix of each leg is derived as 

 𝑀𝑖 =
1

𝑙𝑖
2 (𝑚𝑒𝑖[

𝐵𝑟𝐵𝑖
𝑃𝑖]𝑇[𝐵𝑟𝐵𝑖

𝑃𝑖] + (𝑚𝑠𝑖𝑙𝑠𝑖
2 +𝑚𝑒𝑖𝑙𝑒𝑖

2 )�̂�𝑖×
2 − 𝐼𝑒𝑞�̂�𝑖×

2 ) (AI.13) 

The potential energy of each leg is determined as 

 𝑃𝑖 = −[0 0 𝑔]𝑇[𝑚𝑠𝑖𝑙𝑠𝑖 �̂�𝑖 +𝑚𝑒𝑖(𝑙𝑖 − 𝑙𝑒𝑖)�̂�𝑖] (AI.14) 

Using the Lagrange method, the relative derivative terms are 

described below. 

The gravity vector 𝐺𝑖  is determined by differentiating the 

potential energy w.r.t. The generalized coordinate is given by 

Gi =
∂Pi

∂[BrBi

Pi]
= (

1

li
(msilsiŝi +mei(li − lei)) ŝi×

2 −mei ŝiŝi
T)

T
[0 0 g]         (AI.15) 

The Coriolis and centrifugal vector is given by 

𝐶𝑖([
𝐵𝑟𝐵𝑖

𝑃𝑖], [𝐵�̇�𝐵𝑖
𝑃𝑖])=�̇�𝑖[

𝐵�̇�𝐵𝑖
𝑃𝑖] −

1

2

𝜕

𝜕[𝐵𝑖𝑟𝐵𝑖

𝑃𝑖]
([𝐵𝑟𝐵𝑖

𝑃𝑖]𝑇𝑀𝑖[
𝐵𝑟𝐵𝑖

𝑃𝑖])= −
1

𝑙𝑖
2 {𝑚𝑒𝑖𝑙𝑒𝑖[

𝐵�̇�𝐵𝑖
𝑃𝑖]𝑇�̂�𝑖×

2 [𝐵�̇�𝐵𝑖
𝑃𝑖] − 2𝑙𝑖𝑚𝑏𝑖𝑙�̇� �̂�𝑖×

2 } where 

𝑚𝑏𝑖 =
1

𝑙𝑖
𝑚𝑒𝑖𝑙𝑒𝑖 −

1

𝑙𝑖
2 (𝐼𝑒𝑞𝑖 + 𝑙𝑖

2𝑚𝑐𝑒𝑖)                                                   (AI.16)                                  

  

The dynamic equation of each leg is derived as   

𝑀𝑖[
𝐵�̈�𝐵𝑖

𝑃𝑖] + 𝐶𝑖 ([
𝐵𝑟𝐵𝑖

𝑃𝑖], [𝐵�̇�𝐵𝑖
𝑃𝑖]) + 𝐺𝑖 = ℱ𝑖       (AI.17)   

Appendix B. EWMA AND PCC CONTROLLERS 

The predictive model of a linear relation is defined by 

 �̂�𝑛+1 = �̂�𝑛 + �̂�𝑛+1𝑋𝑛+1 (AII.1) 

where �̂�𝑛+1 is the predictive output, whose value is expected to 

reach the target T after n runs nearly; parameters �̂�  and �̂� 

Represent the estimated values of the actual δ and ρ in 𝑌𝑛 =
𝜌𝑛𝑋𝑛 + 𝛿𝑛 + 𝑑𝑛   respectively. Following (AII.1), the input 

variable is defined as [17,18] 
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 𝑋𝑛+1 =
𝑇 − �̂�𝑛
�̂�𝑛+1

 (AII.2) 

The estimated parameter can be adapted by using the following 

EWMA algorithm. 

 �̂�𝑛 = 𝜔(𝑌𝑛 − �̂�𝑛𝑋𝑛) + (1 − 𝜔)�̂�𝑛−1 (AII.3) 

Where ω is the weighting factor in the range of [0,1]. 

The estimated parameter can be adapted by using the following 

PCC algorithm 

 𝑋𝑛+1 =
𝑇 − �̂�𝑛 − �̂�𝑛

�̂�𝑛+1
 (AII.4) 

where the two parameters �̂� and �̂� is defined as 

 �̂�𝑛 = 𝜔1(𝑌𝑛 − �̂�𝑛𝑋𝑛) + (1 − 𝜔1)�̂�𝑛−1 (AII.5) 

 �̂� = 𝜔2(𝑌𝑛 − �̂�𝑛𝑋𝑛 − �̂�𝑛−1) + (1 − 𝜔2)�̂�𝑛−1 (AII.6) 

𝜔1  and 𝜔2  (0 < 𝜔1, 𝜔2 < 1) are the weights for (AII.5) and 

(AII.6), respectively, and �̂�𝑛 is used to compensate for the error 

incurred by �̂�𝑛. 

For two successive runs expressed by (AII.3) in EWMA as well 

as (AII.5) and (AII.6) in PCC with the T replaced by Y in (AII.2) 

and (AII.4) for assumption not reaching the target yet, the 

estimated parameter is rewritten as 

EWMA: 

 
�̂�𝑛 = 𝜔(𝑒𝑛−1 + �̂�𝑛 − �̂�𝑛𝑋𝑛) + (1 − 𝜔)�̂�𝑛−1  

=  𝜔(𝑒𝑛−1 + �̂�𝑛−1) + (1 − 𝜔)�̂�𝑛−1 = 𝜔𝑒𝑛−1 + �̂�𝑛−1 
 (AII.7) 

Where en-1 is defined as the error between the actual output Yn 

and the expected output �̂�𝑛. 

A discrete-time expression for (AII.7) is derived as 

 �̂�(𝑧) = [𝜔
𝑧−1

1−𝑧−1
] 𝑒(𝑧) =  𝐺𝐸  𝑒(𝑧) (AII.8) 

PCC:  

 
�̂�𝑛 = 𝜔1(𝑒𝑛−1 + �̂�𝑛 − �̂�𝑛𝑋𝑛) + (1 − 𝜔1)�̂�𝑛−1 

= 𝜔1𝑒𝑛−1 +𝜔1�̂�𝑛−1 + �̂�𝑛−1                    
(AII.9) 

�̂�𝑛 = 𝜔2(𝑒𝑛−1 + �̂�𝑛 − �̂�𝑛𝑋𝑛 − 𝛿𝑛−1) + (1 − 𝜔2)�̂�𝑛−1 

= 𝜔2𝑒𝑛−1 + �̂�𝑛−1                                                       
           (AII.10) 

A discrete-time expression for (AII.9) and (AII.10) is derived, 

respectively as 

 �̂�(𝑧) =
𝑧−1

1 − 𝑧−1
[𝑒(𝑧) + �̂�(𝑧)]𝜔1 (AII.11) 

�̂�(𝑧) =
𝜔2𝑧

−1

1 − 𝑧−1
𝑒(𝑧)             (AII.12) 

 

 

 

 

 

 

 

From (AII.11) and (AII.12), yields 

�̂�(𝑧) + �̂�(𝑧) = [𝜔Σ (
𝑧−1

1 − 𝑧−1
) + 𝜔Π  (

𝑧−1

1 − 𝑧−1
)

2

] 𝑒(𝑧)  =  𝐺𝐸  𝑒(𝑧) 

where 𝜔Σ= 𝜔1 + 𝜔2 and 𝜔Π = 𝜔1𝜔2.   (AII.13) 

In Figure 5, the EWMA and PCC controllers can be defined in 

a discrete-time controller 𝐺𝐸. The tracking error checking to the 

input and disturbance, respectively, is defined as  

EWMA: 

 
𝑒𝑑(𝑧)

𝑟𝑣(𝑧)
|
𝑑=0

=
(𝐺𝑃−�̂�𝑝)(𝑧−1)

�̂�𝑝(𝑧−1)+𝜔𝐺𝑝
  = 

(𝜌−�̂�)(𝑧−1)

�̂�(𝑧−1)+𝜔𝜌
 (AII.14) 

 
𝑒𝑑(𝑧)

𝑑(𝑧)
|
𝑟𝑑=0

=
�̂�𝑝(𝑧 − 1)

�̂�𝑝(𝑧 − 1) + 𝜔𝐺𝑝
 (AII.15) 

PCC: 

𝑒𝑑(𝑧)

𝑟𝜈(𝑧)
|
𝑑=0

=
(𝜁 − 1)(𝑧 − 1)2

𝑧2 + (𝜔Σ − 2)𝑧 + (𝜔Π −𝜔Σ) + 1
 

(AII.16) 

𝑒𝑑(𝑧)

𝑑(𝑧)
|
𝑟𝜈=0

=
(𝑧 − 1)2

𝑧2 + (𝜔Σ − 2)𝑧 + (𝜔Π − 𝜔Σ) + 1
 (AII.17) 

where  is the ratio of 𝜌/�̂�. The EWMA contains an integrator 

1/ (1 − 𝑧−1) ; the PCC includes an integrator plus a double 

integrator that would be useful to adjust the parameter δ. Both 

can reach the target in case of no disturbance. The EWMA 

controller can overcome a step disturbance; however, the PCC 

controller can overcome both step and ramp disturbances. 

According to the characteristic equations of (AII.14) and 

(AII.16), as well as the weights (0 < 𝜔1, 𝜔2 < 1) and ratio  >

0,  the stability of both EWMA and PCC controllers is defined 

by means of Jury stability test respectively as (Astrom 1995) 

              0 <  =
𝜌

�̂�
< 2                       for  EWMA     (AII.18) 

           {

|(𝜔1𝜔2 −𝜔1 −𝜔2) + 1| < 1
 𝜔1𝜔2 > 0  

4 + (𝜔1𝜔2 − 2𝜔1 − 2𝜔2) > 0 
  for  PCC  (AII.19) 

Figure 29 shows the acceptable region of adaptation ratio  

corresponding to the weights 𝜔1 and 𝜔2 . As seen, if the 

estimated �̂� is far from the actual 𝜌, i.e.,  becomes large, need to 

assign very small 𝜔1and 𝜔2 to maintain stability.  

 

      

Fig. 29. Adaptation ratio  vs. weights  𝜔1 and 𝜔2. 

 

  


