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Abstract: A modified integral sliding mode control-based adaptation algorithm (MISMCA) is described to 

enhance performance of sensorless rotor flux based model reference adaptive system (RF-MRAS) induction 

motor drive (IMD). At low speed regions, performance of RF-MRAS is not guaranteed due to conventional 

PI-based adaptation algorithm (PIA) and parameter uncertainties, especially rotor time constant. In order 

to improve performance of RF-MRAS, the PIA is replaced by an algorithm based on integral sliding mode 

control (ISMC). In the ISMC design, the term that contains rotor time constant is considered as noise, and 

a reference model-based approximation is employed to adapt rotor time constant. Moreover, bipolar 

sigmoid function is utilized to reduce chattering-phenomenon. Simulations with sensorless RF-MRAS 

direct torque control IMD confirm the advantages of the MISMCA compared with the PIA in terms of 

maximum value and ITAE index of estimated speed error. 
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1. INTRODUCTION 

Sensorless methods provide some advantages such as 

reduction of installation and maintainance cost, complexity of 

hardware, increases of mechanical robustness, working 

capability in hostile environments (Vas, 1998). The term 

“sensorless” means that induction motor drive (IMD) does not 

own the speed or position sensor in its control structure, and 

the concept of sensorless control is to utilize estimation 

algorithms to get rotor speed or rotor position or flux from 
motor terminals currents and voltages (Bose, 2002). 

Sensorless control techniques have increased reliability of 

IMD systems based on vector control or direct torque control 

(DTC) (Holtz, 2002). Various techniques such as model 

reference adaptive system (MRAS) (Schauder, 1992), 

Luenberger observer (Luenberger, 1971), sliding mode 

observer (SMO) (Lascu et al., 2004), extended Kalman filter 

(Kim et al., 1994), artificial neural network method (Maiti et 

al., 2012) were widely utilized. Several listed techniques were 

combined together or modified to improve IMD systems’ 

performance (Holakooie et al., 2016; Zhang et al., 2020).  

Among listed techniques, MRAS variations were also 

developed (Benlaloui et al., 2015; Das et al., 2019; Özdemir, 

2020) or enhanced by other techniques (Gadoue et al., 2010; 

Kavuran et al., 2017; Tarchała and Orłowska-Kowalska, 2018; 

Reddy et al., 2020; Vo et al., 2020). The MRAS based on 

electromagnetic torque and rotor flux was developed from 

conventional MRAS or rotor flux-based MRAS (RF-MRAS) 

(Benlaloui et al., 2015). Sensorless control using difference 

between the stator d- and q-circuits’ effective working was 

presented (Das et al., 2019). Output voltage of q-axis current 

regulator and its estimate were considered reference model and 
adaptive model respectively (Özdemir, 2020). Conventional 

PIA in RF-MRAS was replaced by two adaptation algorithms 

(Gadoue et al., 2010). The MRAS was combined with 

modified fractional order integrator to enhance tracking 

performance (Kavuran et al., 2017). Equivalent signal 

technique was utilized to reduce chattering-phenomenon in 

stator current-based MRAS (SC-MRAS) with sliding mode 

control (SMC) (Tarchała and Orłowska-Kowalska, 2018). 
Stator currents were compensated to decrease speed error 

tracking in reference model of the SC-MRAS (Reddy et al., 

2020). Parameters of the PIA in the SC-MRAS were updated 

by fuzzy logic in sensorless IMD utilizing pulse width 

modulation-DTC (PWM-DTC) (Vo et al., 2020). 

In MRAS variations above, the RF-MRAS provided poor 

performance in comparison to others, for example presence of 

parameter sensitivity, and bad performance at low speed area 

(Özdemir, 2020). The SMC has been a commonly-used 

method in design of robust controllers or observers. For 

improvement, the conventional PIA in the RF-MRAS is 
replaced by integral SMC (ISMC) (Gadoue et al., 2010; Pan et 

al., 2018; Tarchała and Orłowska-Kowalska, 2018; Ullah et 

al., 2019; Zhang et al., 2020; Ahmadi et al., 2022; Sharma et 

al., 2022; Lumertz et al., 2023). Switching function (SF) 

candidate of this RF-MRAS is a function of signal error 

calculated from rotor fluxes (Gadoue et al., 2010) instead of 

stator currents (Zhang et al., 2020), or both rotor fluxes and 

stator currents (Tarchała and Orłowska-Kowalska, 2018). 

Global asymptotic stability was guaranteed in ISMC design, 

and the ISMC controlled both the dynamics of the nonlinear 

system and the disturbances (Ullah et al., 2019). However, 

utilization of sign function brought high frequency chattering-
phenomenon (Gadoue et al., 2010) and it is necessary to 

redesign for reduction. In order to lower chattering, low-pass 

filter (LPF) and an integral sliding variable were employed 

(Pan et al., 2018). Parameter of the LPF must be properly 

chosen to reduce chattering-phenomenon and not present 

delay of speed estimation (Tarchała and Orłowska-Kowalska, 

2018). Another solution was utilization of a term that adapted 
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to SF variation and system states (Zhang et al., 2020). The 

ISMC design utilized the super-twisting approach to decrease 

the chattering (Ahmadi et al., 2022). The combination between 

the ISMC and the state observer provided the avoidance of 

using large gain for switching function (Sharma et al., 2022). 

The switching function was replaced by smooth functions to 

reduce the chattering (Lumertz et al., 2023). Along with the 

reduction of the chattering-phenomenon, it is necessary to 

estimate or approximate rotor time constant (Toliyat et al., 

2003) because its accuracy heavily affects the performance of 
the RF-MRAS. Many functional candidates such as rotor 

fluxes, stator voltages, active power, reactive power were 

utilized to estimate rotor time constant based on MRAS (Cao 

et al., 2017).  

Section 2 describes sensorless PWM-DTC IMD using RF-

MRAS. With the aim of performance improvement of 

sensorless RF-MRAS IMD at low speed region in operations 

including starting (ST), forward motoring (FM), forward 

braking (FB), reverse motoring (RM), reverse braking (RB), 

unloading (UL), design of proposed ISMC adaptation 

algorithm is presented. In this design, sign function is replaced 
with bipolar sigmoid one for decreasing high-frequency ripple 

of numerator of speed estimate, and an approximation function 

based on stator current and rotor flux of reference model 

instead of adaptive model is utilized to obtain rotor time 

constant. Section 3 shows simulation results. Conclusions are 

carried out in final section.  

LIST OF SYMBOLS 

𝑓𝑠 switching frequency of the inverter 

𝑖𝑠𝑎 , 𝑖𝑠𝑏  phase-a, phase-b stator currents 

𝑖𝑠𝛼 , 𝑖𝑠𝛽 stator current components in stator frame 

𝐢𝑠 = 𝑖𝑠𝛼 + 𝑗𝑖𝑠𝛽 stator current vector 

𝐽𝑚 moment of inertia 

𝐿𝑚 magnetizing inductance 

𝐿𝑠 , 𝐿𝑟 stator and rotor inductances 

𝑝 number of pole pairs 

𝑅𝑠 , 𝑅𝑟 stator and rotor resistances 

𝑇𝑒  motor torque 

𝑇𝐿  load torque 

𝑇𝑟 =
𝐿𝑟
𝑅𝑟
⁄   nominal rotor time constant 

𝑇̃𝑟  real rotor time constant 

𝑇̂𝑟  estimated rotor time constant 

𝑡𝑠=
1
𝑓𝑠
⁄  switching period of the inverter 

𝑡0 fundamental sample time used for 

numerical methods in simulation 

software 

𝑢𝑠𝛼 , 𝑢𝑠𝛽 stator voltage components in stator 

frame 

𝐮𝑠 = 𝑢𝑠𝛼 + 𝑗𝑢𝑠𝛽 stator voltage vector 

𝑢𝑠𝑥
∗ , 𝑢𝑠𝑦

∗  reference stator voltage components in 

stator flux frame 

𝑢𝑠𝛼
∗ , 𝑢𝑠𝛽

∗  reference values of 𝑢𝑠𝛼 , 𝑢𝑠𝛽 

𝐮𝑠
∗ = 𝑢𝑠𝛼

∗ + 𝑗𝑢𝑠𝛽
∗  reference stator voltage vector 

𝛾 orienting angle 

𝜂 coefficient designed for desired 

chattering region of the switching 

function 

𝜉 adaptive signal 

𝜓𝑠𝛼 , 𝜓𝑠𝛽 stator flux components in stator frame 

𝛙𝑠 = 𝜓𝑠𝛼 + 𝑗𝜓𝑠𝛽 stator flux vector 

𝜓𝑠 stator flux vector magnitude 

𝜓𝑠
∗ reference stator flux magnitude 

𝜓𝑟𝛼 , 𝜓𝑟𝛽 rotor flux components in stator frame 

𝛙𝑟 = 𝜓𝑟𝛼 + 𝑗𝜓𝑟𝛽 rotor flux vector 

𝜓̂𝑟𝛼 , 𝜓̂𝑟𝛽 estimated values of 𝜓𝑟𝛼 , 𝜓𝑟𝛽 

𝛙̂𝑟 = 𝜓̂𝑟𝛼 + 𝑗𝜓̂𝑟𝛽 estimate of 𝛙𝑟 

𝜔𝑚 mechanical rotor speed 

𝜔𝑚,𝑟𝑒𝑓 reference mechanical rotor speed 

𝜔̂𝑚 estimated mechanical rotor speed 

𝜔𝑟 = 𝑝𝜔𝑚 electrical rotor speed 

𝜔̂𝑟  estimated electrical rotor speed 

2. PROPOSED ISMC ADAPTATION ALGORITHM FOR 

SENSORLESS RF-MRAS IMD 

Figure 1 shows sensorless PWM-DTC IMD associated with 

RF-MRAS speed estimator. Signal Calculation block provides 

three important signals of PWM-DTC according to (1)-(5) 

(Brandstetter et al., 2017): 

𝑑𝜓𝑠𝛼
𝑑𝑡

= 𝑢𝑠𝛼 − 𝑅𝑠𝑖𝑠𝛼                                                                    (1)  

𝑑𝜓𝑠𝛽

𝑑𝑡
= 𝑢𝑠𝛽 − 𝑅𝑠𝑖𝑠𝛽                                                                     (2) 

𝜓𝑠 = √𝜓𝑠𝛼
2 +𝜓𝑠𝛽

2                                                                         (3) 

𝛾 = 𝑠𝑖𝑛−1 (
𝜓𝑠𝛽

𝜓𝑠
)                                                                          (4) 

𝑇𝑒 = 1.5𝑝(𝑖𝑠𝛽𝜓𝑠𝛼 − 𝑖𝑠𝛼𝜓𝑠𝛽)                                                     (5) 

Flux and torque controllers that are PI controllers, utilize errors 

of stator flux ∆𝜓𝑠 and motor torque ∆𝑇𝑒 to respectively output 

reference stator voltage components in stator flux frame 𝑢𝑠𝑥
∗  

and 𝑢𝑠𝑦
∗ . Vector Rotation block employs these components and 

orienting angle 𝛾 to obtain reference values 𝑢𝑠𝛼
∗ , 𝑢𝑠𝛽

∗  of stator 

voltage components in stator frame. 
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Fig. 1. Sensorless IMD utilizing RF-MRAS speed estimator. 

The PWM block calculates switch-on and switch-off durations 

of solid-state devices of the inverter in one switching period. 

Estimated electrical rotor speed-feedback signal of controlled 

system, is computed by RF-MRAS estimator with PIA or 

proposed MISMCA (see Figure 2). For the RF-MRAS, 

reference model and adaptive model which are voltage model 

and current model are utilized to calculate rotor flux 
components and their estimates, according to (6)-(7) and (8)-

(9) respectively (Bose, 2002): 

𝜓𝑟𝛼 =
𝐿𝑟
𝐿𝑚
[∫(𝑢𝑠𝛼 −𝑅𝑠𝑖𝑠𝛼)𝑑𝑡 − (

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2

𝐿𝑟
) 𝑖𝑠𝛼]            (6) 

𝜓𝑟𝛽 =
𝐿𝑟
𝐿𝑚
[∫(𝑢𝑠𝛽 − 𝑅𝑠𝑖𝑠𝛽)𝑑𝑡 − (

𝐿𝑠𝐿𝑟 − 𝐿𝑚
2

𝐿𝑟
) 𝑖𝑠𝛽]           (7) 

𝜓̂𝑟𝛼 = ∫(−
1

𝑇𝑟
𝜓̂𝑟𝛼 − 𝜔̂𝑟𝜓̂𝑟𝛽 +

𝐿𝑚
𝑇𝑟
𝑖𝑠𝛼)𝑑𝑡                            (8) 

𝜓̂𝑟𝛽 = ∫(𝜔̂𝑟𝜓̂𝑟𝛼 −
1

𝑇𝑟
𝜓̂𝑟𝛽 +

𝐿𝑚
𝑇𝑟
𝑖𝑠𝛽)𝑑𝑡                                (9) 

In case of the PIA (see Figure 2a), adaptive signal  is 

computed by (10), and according to Appendix C, it is 

minimized thanks to Popov’s theorem for getting the estimated 

electrical rotor speed by (11): 

𝜉 = 𝜓𝑟𝛽𝜓̂𝑟𝛼−𝜓𝑟𝛼𝜓̂𝑟𝛽                                                                (10) 

𝜔̂𝑟 = 𝑘𝑝,𝑒𝑠𝑡 (𝜉 +
1

𝑇𝑖,𝑒𝑠𝑡
∫ 𝜉𝑑𝑡
𝑡

0

)                                              (11) 

where 𝑘𝑝,𝑒𝑠𝑡 > 0,𝑇𝑖,𝑒𝑠𝑡 > 0 are proportional gain and integral 

constant time.  

For the MISMCA (see Figure 2b), there are three 

modifications including utilization of ISMC to minimize the 

adaptive signal, application of bipolar sigmoid function to 

reduce the chattering-phenomenon, and approximation of 

rotor time constant to provide exact information for the RF-

MRAS. 

Switching function S which is utilized to switch the adaptive 

signal 𝜉 and its time derivative, are expressed by (12)-(13) 

(Gadoue et al., 2010): 

𝑆 = 𝜉 + 𝑘𝑠𝑠∫ 𝜉𝑑𝑡
𝑡

0

                                                                    (12) 

 

Fig. 2. RF-MRAS speed estimator (a) with the PIA (b) with 

the MISMCA. 

𝑆̇ = 𝜉̇ + 𝑘𝑠𝑠𝜉                                                                               (13) 

where 𝑘𝑠𝑠 > 0. From (10), the time derivative of the adaptive 

signal is computed as follows: 

𝜉̇ = 𝜓𝑟𝛽 𝜓̇̂𝑟𝛼 + 𝜓̂𝑟𝛼𝜓̇𝑟𝛽−𝜓𝑟𝛼𝜓̇̂𝑟𝛽 − 𝜓̂𝑟𝛽𝜓̇𝑟𝛼                       (14) 

Estimated rotor flux components in (8)-(9) are differentiated,  

and substituted into (14) to get (15): 

𝜉̇ = −(𝜓𝑟𝛼𝜓̂𝑟𝛼 +𝜓𝑟𝛽𝜓̂𝑟𝛽)𝜔̂𝑟                                                

+(𝜓̂𝑟𝛼𝜓̇𝑟𝛽 − 𝜓̂𝑟𝛽𝜓̇𝑟𝛼)                                                    

−
1

𝑇𝑟
(𝜓𝑟𝛽𝜓̂𝑟𝛼−𝜓𝑟𝛼𝜓̂𝑟𝛽) +

𝐿𝑚
𝑇𝑟
(𝜓𝑟𝛽𝑖𝑠𝛼 −𝜓𝑟𝛼𝑖𝑠𝛽) (15)

 

Next, Lyapunov theory is employed to derive the estimated 

electrical rotor speed. At first, Lyapunov function candidate is 

defined by (16): 

𝑉 =
1

2
𝑆2                                                                                       (16) 

Its time derivative is expressed by (17):  

𝑉̇ = 𝑆𝑆̇                                                                                          (17) 

The estimator is stable when the candidate function 

approaches 0. This will be achieved if the function 𝑉̇ is 

negative definite. In order to guarantee the negative definition 

of the function 𝑉̇, the function 𝑆̇ must satisfy following 

condition:  

𝑆̇ < 0 𝑓𝑜𝑟 𝑆 > 0                                                                        

𝑆̇ > 0 𝑓𝑜𝑟 𝑆 < 0                                                                        

𝑆̇ = 0 𝑓𝑜𝑟 𝑆 = 0                                                                        (18)
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An imposition is carried out: 

𝑆̇ = −𝑘𝑓𝜎(𝑆) + 𝑓𝑛                                                                      (19) 

where: 

𝜎(𝑆) = tanh (
𝜂𝑆

2
)                                                                     (20) 

𝜂 = −
𝑙𝑛

𝑆0
2 − 𝑆0
𝑆0

                                                                         (21) 

𝑘𝑓 and 𝑓𝑛 are quantities to be calculated, S0 is small positive, 

and [−𝑆0, 𝑆0] is desired chattering region of the switching 

function. 

By replacing (10), (15) and (19) into (13), the estimated 

electrical rotor speed is simplified as follows: 

𝜔̂𝑟 =
𝑓𝑐 + 𝑓𝑜 − 𝑓𝑛

𝑓𝑑
                                                                      (22) 

where: 

𝑓𝑐 = 𝑘𝑓𝜎(𝑆) + (𝜓̂𝑟𝛼𝜓̇𝑟𝛽 − 𝜓̂𝑟𝛽𝜓̇𝑟𝛼)                                     (23) 

𝑓𝑜 =
(𝑘𝑠𝑠𝑇𝑟 − 1)𝜉 + 𝐿𝑚(𝜓𝑟𝛽𝑖𝑠𝛼 − 𝜓𝑟𝛼𝑖𝑠𝛽)

𝑇𝑟
                       (24) 

𝑓𝑑 = 𝜓𝑟𝛼𝜓̂𝑟𝛼 +𝜓𝑟𝛽𝜓̂𝑟𝛽                                                            (25) 

We adopt: 

𝑓𝑛 = 𝑓𝑜                                                                                           (26) 

From equations (22) and (26), the desired formula (27) is 

obtained: 

𝜔̂𝑟 =
𝑓𝑐
𝑓𝑑
                                                                                        (27) 

Equations (18) and (19) lead to: 

𝑘𝑓 =

{
 
 

 
 

𝑓𝑜
𝜎(𝑆)

+ 𝜀 𝑓𝑜𝑟 𝜎(𝑆) > 0

𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑓𝑜𝑟 𝜎(𝑆) = 0
𝑓𝑜
𝜎(𝑆)

− 𝜀 𝑓𝑜𝑟 𝜎(𝑆) < 0

                                        (28) 

These conditions indicate that the switching function will go 

to sliding line 𝑆 = 0 and stay on it if both the adaptive signal 

and the motor torque are zero.  

Rotor time constant Tr needs to be approximated because of 

changes of IM’s working condition. In Figure 2, Rotor Time 

Constant Approximation (RTCA) block online estimates Tr to 

provide Adaptive Model and ISMC-Based Estimation blocks 

(see Figure 2). Differentiating (8)-(9), and converting yield: 

𝜓̇̂𝑟𝛼 =
𝐿𝑚𝑖𝑠𝛼 − 𝜓̂𝑟𝛼

𝑇𝑟
− 𝜔̂𝑟𝜓̂𝑟𝛽                                                  (29) 

𝜓̇̂𝑟𝛽 =
𝐿𝑚𝑖𝑠𝛽 − 𝜓̂𝑟𝛽

𝑇𝑟
+ 𝜔̂𝑟𝜓̂𝑟𝛼                                                 (30) 

In order to eliminate the 𝜔̂𝑟 , multiplying (32), (33) by 𝜓̂𝑟𝛼 , 𝜓̂𝑟𝛽 

respectively, adding them together, and then converting the 

sum yields: 

𝑇𝑟 =
(𝐿𝑚𝑖𝑠𝛼 − 𝜓̂𝑟𝛼)𝜓̂𝑟𝛼 + (𝐿𝑚𝑖𝑠𝛽 − 𝜓̂𝑟𝛽)𝜓̂𝑟𝛽

𝜓̂𝑟𝛼𝜓̇̂𝑟𝛼 + 𝜓̂𝑟𝛽 𝜓̇̂𝑟𝛽
                 (31) 

Utilizing (34) makes Tr approximation incorrect because the 

adaptive model contains Tr (see (8) and (9)). Assume that the 

adaptive model goes to the reference model with the designed 

control law, rotor time constant is approximated by (35): 

𝑇̂𝑟 =
(𝐿𝑚𝑖𝑠𝛼 − 𝜓𝑟𝛼)𝜓𝑟𝛼 + (𝐿𝑚𝑖𝑠𝛽 − 𝜓𝑟𝛽)𝜓𝑟𝛽

𝜓𝑟𝛼𝜓̇𝑟𝛼 + 𝜓𝑟𝛽𝜓̇𝑟𝛽
                  (32) 

Equation (32) can cause a sudden change in the Tr 

approximation, which leads to a sudden one in 𝜓̂𝑟𝛼 , 𝜓̂𝑟𝛽 , 𝜉̇ (see 

(8), (9), (15) respectively) and then a spike in the estimated 

electrical rotor speed ((23), (25) and (27)) as Tr changes from 
initialized nominal value to real value. The LPF (33) is utilized 

to overcome this problem: 

𝐺𝐿𝑃𝐹(𝑠) =
1

𝜏𝑠 + 1
                                                                      (33) 

where 𝜏 is time constant of the filter, and 𝑇̂𝑟(0) = 𝑇𝑟. 
Implemenations of the RTCA and ISMC-Based Estimation 

blocks are shown in Figures 3 and 4. Note that the equations 

(24), (26) and (28) use 𝑇̂𝑟 instead of 𝑇𝑟, and the 𝑧−1 block in 

Figure 4 works with discretization step of 𝑡𝑠 = 5 × 10
−5(𝑠) −

 switching period of the inverter to ensure the calculation 

precision. Depending on capability of hardware used for 

simulation or realistic implementation, it must be chosen as 

small as possible to minimize the chattering phenomenon. 

 

Fig. 3. Implementation of the RTCA block. 

 

Fig. 4. Implementation of the ISMC-Based Estimation block. 

3. SIMULATION RESULTS 

Sensorless DTC drives utilizing the RF-MRAS with the PIA 

and the MISCMA are simulated in case of 𝑘𝑠𝑠 = 0.7143, 

parameters listed in Appendix B. In case of the SVPWM 

technique, 𝑡0 = 𝑡𝑠 20 ⁄ is fundamental sample time used for 

numerical methods in simulation software. Simulations are 

implemented at load torque diagram with the jump of 5Nm 

and reference mechanical rotor speeds of 10𝜋/3(𝑟𝑎𝑑/𝑠) and 

𝜋/3(𝑟𝑎𝑑/𝑠) which respectively represent for low-speed 

region (LSR) and very-low-speed region (VLSR). The PI 

rψ

si

 

𝐿𝑚𝑖𝑠𝛼 − 𝜓𝑟𝛼 𝜓𝑟𝛼 + 𝐿𝑚𝑖𝑠𝛽 − 𝜓𝑟𝛽 𝜓𝑟𝛽

𝜓𝑟𝛼𝜓̇𝑟𝛼 + 𝜓𝑟𝛽𝜓̇𝑟𝛽

ˆ
rT1

𝜏 + 1

rψ

ˆ
rψ

𝜓𝑟𝛼𝜓̂𝑟𝛼 + 𝜓𝑟𝛽𝜓̂𝑟𝛽

ˆ
rT

si

1 − 𝑒−  

1 + 𝑒−  
 1  ⁄ +

+
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𝑘𝑠𝑠𝑇̂𝑟 − 1 𝜉 + 𝐿𝑚 𝜓𝑟𝛽𝑖𝑠𝛼 − 𝜓𝑟𝛼𝑖𝑠𝛽

𝑇̂𝑟

𝑓𝑜
𝜎 𝑆

+ 𝜀  𝑖𝑓 𝜎 𝑆 > 0

𝑓𝑜
𝜎 𝑆

− 𝜀  𝑖𝑓 𝜎 𝑆 < 0

𝑘𝑓1  𝑖𝑓 𝜎 𝑆 = 0

𝑓𝑜

𝜎 𝑆𝑆

𝛙̇𝑟

𝜀

×

+ +

𝑓𝑑 ×
 

ˆ
r

𝑧−1
𝑘𝑓1

𝑘𝑓

𝑓𝑐
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controllers including the PIA, torque, flux, speed controllers, 

are anti windup PI ones. In all simulations, initial value of rotor 

time constant is the nominal one. 

In order to evaluate each operation of the sensorless drives, 

maximum absolute of difference between mechanical rotor 

speed and its estimate 𝑀𝑒𝑠𝑡,𝑛 is normalized as follows: 

𝑀𝑒𝑠𝑡,𝑛 =
𝑚𝑎𝑥|𝑒𝑒𝑠𝑡|

𝑚𝑎𝑥|𝜔𝑚,𝑟𝑒𝑓|
                                                             (34) 

where 

𝑒𝑒𝑠𝑡 = 𝜔𝑚 − 𝜔̂𝑚                                                                         (35) 

And for the evaluation of all IM operations, normalized 

integral of time multiply by absolute error (ITAE) index is 

proposed as follows: 

𝐼𝑇𝐴𝐸𝑒𝑠𝑡,𝑛 =
∫ 𝑡|𝑒𝑒𝑠𝑡|𝑑𝑡
2

0

𝑚𝑎𝑥|𝜔𝑚,𝑟𝑒𝑓|
                                                       (36) 

In case of 𝑇̃𝑟 = 𝑇𝑟, mechanical rotor speed, motor torque,  

difference between mechanical rotor speed and its estimate, 

adaptive signal for low-speed and very-low-speed regions are 

respectively shown in Figures 5-8. In the figures, there are 

drive operations including ST (0.0s-0.4s), FM (0.4s-0.7s), FB 

(0.7s-1.0s), RM (1.0s-1.4s), RB (1.4s-1.7s), UL (1.7s-2.0s). 

Values of 𝑀𝑒𝑠𝑡,𝑛 listed in Table 1 show that MISMCA brings 

higher estimation accuracy than PIA, reducing on average 93% 

at value for both LSR and VLSR. Table 2 indicates that 

MISMCA respectively dedicates 18.5 times and 25 times 

smaller 𝐼𝑇𝐴𝐸𝑒𝑠𝑡,𝑛 than PIA at LSR and VLSR. The reason for 

this is the MISMCA brings the switching function very close 

to zero and low chattering, leading to the adaptive signal for 

MISMCA (see Figure 9) closer to zero than the adaptive signal 
for PIA (see Figure 8). However, chattering problem has not 

been eliminated (see Figure 7). 

The smaller estimate indices 𝑀𝑒𝑠𝑡,𝑛 and 𝐼𝑇𝐴𝐸𝑒𝑠𝑡,𝑛 are 

associated lower overshoot/undershoot (see Table 3) and 

shorter settling time (see Table 4) of mechanical rotor speed 

response for MISMCA, decreasing on average 27% and 36% 

in overshoot/undershoot compared to PIA at LSR and VLSR, 

respectively. Torque responses (Figure 6) for MISCMA 

contain much less oscillations than for PIA. Reason for this is 

responses of difference between mechanical rotor speed and 

its estimate (Figure 7), and of adaptive signal (Figure 8) for 

PIA have higher magnitudes than for MISMCA, especially at 

times of change of IM operations.  

Figures 10-11 show rotor time constant estimation processes 

with and without the LPF, and speed responses in cases of  

𝑇̃𝑟 = 1.5𝑇𝑟 and 𝑇̃𝑟 = 0.5𝑇𝑟. It is easy to see that there are 

fluctuations in starting operation, especially at case of 𝑇̃𝑟 =
0.5𝑇𝑟 (see Figure 11). Without the LPF in the RTCA block, 

estimate of rotor time constant is changed suddenly. This 

makes the time derivative of the adaptive signal greater, and 

the estimated speed more fluctuated than compared to the case 

with the LPF (see Figure 12). 

 

 

Fig. 5. Mechanical rotor speed responses at LSR (left), and 

VLSR (right). 

 

Fig. 6. Torques at LSR (left), and VLSR (right). 

 

Fig. 7. Speed differences at LSR (left), and VLSR (right). 

 

Fig. 8. Adaptive signals at LSR (left), and VLSR (right). 

 

Fig. 9. Switching function and adaptive signal at LSR (left), 

and VLSR (right). 



50                                                                                                                    CONTROL ENGINEERING AND APPLIED INFORMATICS      

 

Fig. 10. Rotor time constant estimation and mechanical rotor 

speed responses at LSR (left), and VLSR (right), 𝑇̃𝑟 = 1.5𝑇𝑟. 

 

Fig. 11. Rotor time constant estimation and mechanical rotor 

speed responses at LSR (left), and VLSR (right), 𝑇̃𝑟 = 0.5𝑇𝑟. 

 

Fig. 12. Adaptive signal and estimated mechanical rotor  

speeds at LSR (left), and VLSR (right), 𝑇̃𝑟 = 0.5𝑇𝑟. 

Table 1. Mest,n (%) at LSR and VLSR. 

IM  

operation 

LSR VLSR 

PIA MISMCA PIA MISMCA 

ST 7.2 0.26 88.8 3.0 

FM 1.9 0.23 18.6 2.2 

FB 3.8 0.24 37.6 2.2 

RM 3.2 0.25 43.6 2.5 

RB 3.8 0.23 37.5 2.5 

UL 1.9 0.21 18.8 2.3 

 

Table 2. ITAEest,n [×10-3s2] at LSR and VLSR. 

Region PIA MISMCA 

LSR 5.8 0.32 

VLSR 53.8 2.1 

Table 3. Overshoot/Undershoot (%) at LSR and VLSR. 

IM 

operation 

LSR VLSR 

PIA MISMCA PIA MISMCA 

ST 2.5 0.5 53.2 4.6 

FM 3.5 2.9 35.2 29.2 

FB 7.1 5.8 70.6 58.1 

RM 1.6 0.3 17.2 2.9 

RB 7.1 5.9 70.6 58.1 

UL 3.5 2.9 35.2 28.9 

Table 4. Settling time (s) at LSR and VLSR. 

IM 

operation 

LSR VLSR 

PIA MISMCA PIA MISMCA 

ST 0.096 0.068 0.186 0.095 

FM 0.437 0.431 0.539 0.537 

FB 0.766 0.763 0.868 0.868 

RM 1.118 1.111 1.136 1.049 

RB 1.466 1.463 1.568 1.568 

UL 1.736 1.731 1.837 1.838 

4. CONCLUSIONS 

The adaptation algorithm using ISMC with bipolar sigmoid 

function was presented to replace the one using PI controller 

in RF-MRAS speed estimator of sensorless induction drive. 

Proposed adaptive algorithm guaranteed Lyapunov stability of 

RF-MRAS estimator, dedicated chattering-phenomenon 

reduction and high adaptation to large uncertainty up to  50% 

of nominal rotor time constant. The algorithm excellently 

improves the poor performance of the RF-MRAS based on 

conventional PI one. It brought significantly lower normalized 
estimated speed error and ITAE than the conventional adaptive 

algorithm, especially at VLSR with normalized ITAE indice 

reduced by 96% compared to conventional one. Due to its 

simple computation, proposed sensorless control structure can 

be implemented on real control systems with digital signal 

processors at switching frequency greater than or equal to 

3kHz (Tarchała and Orłowska-Kowalska, 2018; Das et al., 

2019; Vo et al., 2020; Bărbulescu et al., 2023). SMC 

techniques such as high order method or super-twisting 

algorithm can be utilized to get more accurate estimated 

electrical rotor speed. Adaptive methods can be employed to  
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update the parameter  of the low-pass filter in the rotor time 

constant estimation. 
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Appendix A. ACRONYMS 

DTC direct torque control 

FB forward braking 

FM forward motoring 

IM induction motor 

IMD induction motor drive 

ISMC integral SMC 

ITAE integral of time multiply by absolute error 

LPF low-pass filter 

LSR low-speed region 

MISMCA modified integral sliding mode control-based 

adaptation algorithm 

MRAS model reference adaptive system 

PI proportional-integral 

PIA PI-based adaptation algorithm 

PWM pulse width modulation 

RB reverse braking 

RF-MRAS rotor flux-based MRAS  

RM reverse motoring 

RTCA Rotor Time Constant Approximation 

SC-MRAS  stator current-based MRAS 

SF switching function 

SMC sliding mode control 

SMO sliding mode observer 

ST  starting 

SVPWM space vector PWM 

UL unloading 

VLSR very-low-speed region 

Appendix B. PWM-DTC DRIVE AND IM PARAMETERS 

IM 

Parameter Value 

Rated power 2.2kW 

Rated speed 1420rpm 

Rated voltage 230V/400V 

Rated torque  14.8Nm 

Number of pole 

pairs 
𝑝 = 2 

Moment of inertia 𝐽𝑚 = 0.0047𝑘𝑔 ∙ 𝑚
2 

Stator resistance 𝑅𝑠 = 3.179Ω 

Stator inductance 𝐿𝑠 = 0.209𝐻 

Mutual inductance 𝐿𝑚 = 0.192𝐻 

Rotor resistance 𝑅𝑟 =2.118Ω 

Rotor inductance 𝐿𝑟 = 0.209𝐻 

Nominal rotor time 

constant 
𝑇𝑟 = 0.0987𝑠 

Voltage 

source 

inverter 

DC link voltage  540V 

Switching 

frequency 
20kHz 

PWM technique SVPWM 

PI speed 

controller 

Gain 1.5 

Integral time 

constant 
0.05s 

Limits of output 14Nm 

PI flux 

controller 

Gain 100 

Integral time 

constant 
0.01s 

PI torque 

controller 

Gain 5 

Integral time 

constant 
0.05s 

Appendix C. APPLICATION OF POPOV’S THEOREM FOR  

MINIMIZING THE ADAPTIVE SIGNAL 

Deriving (8)-(9) and writing the resulting equations in vector 

form:  

𝑑𝛙̂𝑟
𝑑𝑡

= (𝑗𝜔̂𝑟 −
1

𝑇𝑟
) 𝛙̂𝑟 +

𝐿𝑚
𝑇𝑟
𝐢𝑠                                              (C. 1) 

Assume that the reference model of the rotor flux vector is 

given by (C.2): 

𝑑𝛙𝑟
𝑑𝑡

= (𝑗𝜔𝑟 −
1

𝑇𝑟
)𝛙𝑟 +

𝐿𝑚
𝑇𝑟
𝐢𝑠                                              (C. 2) 

Subtract (C.1) from (C.2), and convert the resulting equation 

to obtain (C.3): 

𝑑𝐱

𝑑𝑡
= (𝑗𝜔𝑟 −

1

𝑇𝑟
)𝐱 + 𝑗(𝜔𝑟 − 𝜔̂𝑟)𝛙̂𝑟                                   (C. 3) 

where: 𝐱 = 𝛙𝑟 − 𝛙̂𝑟. The equation (C.3) is expressed in stator 

frame: 

𝑑𝑥𝛼
𝑑𝑡

= −
1

𝑇𝑟
𝑥𝛼 −𝜔𝑟𝑥𝛽 − (𝜔𝑟 − 𝜔̂𝑟)𝜓̂𝑟𝛽                            (C. 4) 

𝑑𝑥𝛽

𝑑𝑡
= 𝜔𝑟𝑥𝛼 −

1

𝑇𝑟
𝑥𝛽 + (𝜔𝑟 − 𝜔̂𝑟)𝜓̂𝑟𝛼                                (C. 5) 

where: 𝐱 = 𝑥𝛼 + 𝑗𝑥𝛽.  

Consider system formed by (C.6)-(C.9): 

𝑑𝐱

𝑑𝑡
= 𝐀𝑠𝐱+ 𝐁𝑠𝐮                                                                      (C. 6) 

𝐲 = 𝐂𝑠𝐱                                                                                      (C. 7) 

𝐮 = −𝐰(𝑡)                                                                                (C. 8) 

𝐰(𝑡) = 𝐟(𝐲(𝜏), 𝑡), 𝑓𝑜𝑟 0 ≤ 𝜏 ≤ 𝑡                                        (C. 9) 

where:  
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𝐱 = [
𝑥𝛼
𝑥𝛽
] = [

𝜓𝑟𝛼 − 𝜓̂𝑟𝛼
𝜓𝑟𝛽 − 𝜓̂𝑟𝛽

],                                                    

𝐮 = [
𝑢𝛼
𝑢𝛽
] = [

−(𝜔𝑟 − 𝜔̂𝑟)𝜓̂𝑟𝛽

(𝜔𝑟 − 𝜔̂𝑟)𝜓̂𝑟𝛼
] , 𝐲 = [

𝑦𝛼
𝑦𝛽
],                       

𝐀𝑠 =

[
 
 
 −
1

𝑇𝑟
−𝜔𝑟

𝜔𝑟 −
1

𝑇𝑟 ]
 
 
 

, 𝐁𝑠 = [
1 0
0 1

] , 𝐂𝑠 = [
1 0
0 1

]           (C. 10)

 

If the system is proved to be asymptotically hyperstable, the 
estimated electrical rotor speed will approach the electrical 

rotor speed. Because the dynamics of the motor’s electrical 

quantities are much faster than the dynamics of rotations, the 

electrical rotor speed is assumed to be constant. The system is 

a nonlinear system which is represented as a feedback 

connection of two subsystems: 1st subsystem - a linear t-

invariant system is formed by (C.6)-(C.7), 2nd subsystem - a 

non-linear t-variant system is given by (C.8)-(C.9). The system 

will be asymptotically hyperstable when the 1st subsytem has 

strictly positive real transfer function matrix (Popov, 1973; 

Landau, 1979; Khalil, 2002). Due to 𝐁𝑠 and 𝐂𝑠 the 1st 
subsystem is both controllable and observable, the system is 

said to be hyperstable if conditions (C.11)-(C.12) are satisfied: 

∀𝑡 > 0, 𝑓𝑜𝑟 𝛿(‖𝐱(0)‖) ≥ 0,                                               

∫ 𝐰𝑇(𝑡)
𝑡

0

𝐲(𝑡)𝑑𝑡 ≥ −𝛿(‖𝐱(0)‖)  up
0≤𝜏≤𝑡

‖𝐱(𝜏)‖                (C. 11)
 

∀𝐱(0), ∃𝐾 > 0, ∀𝑡 > 0,                                                        

‖𝐱(𝑡)‖ ≤ 𝐾[𝛿(‖𝐱(0)‖) + ‖𝐱(0)‖]                                   (C. 12)
 

Additionally, if condition (C.13) is satisfied 

lim
𝑡→∞

𝐱(𝑡) = 𝟎                                                                           (C. 13) 

, the system is asymptotically hyperstable (Popov, 1973; 

Landau, 1979; Khalil, 2002). And thereby, 

lim
𝑡→∞

𝜔̂𝑟(𝑡) = 𝜔𝑟                                                                       (C. 14) 

The next part is to prove that the transfer function matrix of 

the 1st subsytem is strictly positive real and to select an 

electrical rotor speed estimation formula satisfying the 

inequality (C.11). 

The 1st subsystem has transfer function matrix given by (C.15): 

𝐆(𝑠) = 𝐂𝑠(𝑠𝐈 − 𝐀𝑠)
−1𝐁𝑠 =                                                

1

𝑠2 +
2
𝑇𝑟
𝑠 + (

1
𝑇𝑟
)
2

+ 𝜔𝑟
2

[
 
 
 𝑠 +

1

𝑇𝑟
−𝜔𝑟

𝜔𝑟 𝑠 +
1

𝑇𝑟]
 
 
 

                       (C. 15)
 

Auxiliary matrix 𝐇(𝑠) and its determinant of the transfer 

function matrix are calculated as follows: 

𝐇(𝑠) = 𝐆(𝑠) + 𝐆𝑇(−𝑠) =                                                  
2𝑇𝑟

[(𝑇𝑟𝑠 + 1)
2 + (𝑇𝑟𝜔𝑟)

2][(𝑇𝑟𝑠 − 1)
2 + (𝑇𝑟𝜔𝑟)

2]
×        

[
−𝑇𝑟

2𝑠2 + 𝑇𝑟
2𝜔𝑟

2 + 1 2𝑇𝑟
2𝜔𝑟𝑠

−2𝑇𝑟
2𝜔𝑟𝑠 −𝑇𝑟

2𝑠2 + 𝑇𝑟
2𝜔𝑟

2 + 1
]                  (C. 16)

 

det(𝐇(𝑠)) = 2𝑇𝑟                                                                   (C. 17) 

The assumption of the lemma of strictly positive real transfer 

function matrix (Popov, 1973; Khalil, 2002) is satisfied 

because the determinant is different from zero. The 1st 

condition of the lemma is also satisfied because all elements 

of 𝐆(𝑠) have poles in region 𝑅𝑒{𝑠} < 0 (due to 𝑇𝑟 > 0). 

Determinants of the 1st and 2nd principal minors of the 𝐇(𝑗𝜔) 
are given by (C.18) and (C.19): 

det(𝐇11(𝑗𝜔)) =                                                                    

2𝑇𝑟(𝑇𝑟
2𝜔2 + 𝑇𝑟

2𝜔𝑟
2 + 1)

[−(𝑇𝑟𝜔)
2 + (𝑇𝑟𝜔𝑟)

2 + 1]2 + 4(𝑇𝑟𝜔)
2
                           (C. 18)

 

 

det(𝐇22(𝑗𝜔)) = det(𝐇(𝑗𝜔)) = 2𝑇𝑟                                 (C. 19) 

Equations (C.18) and (C.19) indicate that the determinants are 

positive definite, resulting in the 𝐇(𝑗𝜔) being positive definite 

for any real 𝜔. This means that the 2nd condition of the lemma 

(Popov, 1973; Khalil, 2002) is also fullfilled (according to 

Sylvestre’s criteria). Matrix [𝐆(∞)+ 𝐆𝑇(∞)] can be 

considered a positive semidefinite matrix because it is equal to 

zero. There exists such a matrix 𝐌 = 𝐈 that the 

lim
𝜔→∞

𝜔2𝐌𝑇[𝐆(𝑗𝜔) + 𝐆𝑇(−𝑗𝜔)]𝐌 is positive definite as 

shown in (C.20):  

lim
𝜔→∞

𝜔2𝐌𝑇[𝐆(𝑗𝜔) + 𝐆𝑇(−𝑗𝜔)]𝐌 = lim
𝜔→∞

{                  

2𝑇𝑟𝜔
2

[(𝑗𝑇𝑟𝜔 + 1)
2 + (𝑇𝑟𝜔𝑟)

2][(𝑗𝑇𝑟𝜔 − 1)
2 + (𝑇𝑟𝜔𝑟)

2]
×

[
𝑇𝑟
2𝜔2 + 𝑇𝑟

2𝜔𝑟
2 + 1 𝑗2𝑇𝑟

2𝜔𝑟𝜔

−𝑗2𝑇𝑟
2𝜔𝑟𝜔 𝑇𝑟

2𝜔2 + 𝑇𝑟
2𝜔𝑟

2 + 1
]} =

[
 
 
 
2

𝑇𝑟
0

0
2

𝑇𝑟]
 
 
 

(C. 20)

 

Hence, the 3rd condition of the lemma is also fulfilled, and the 

transfer function matrix 𝐆(𝑠) is strictly positive, resulting in 

the 1st subsystem (C.6)-(C.7) being asymptotically 

hyperstable. The rest is to choose a formula of speed 

estimation that satisfies the condition (C.11). 

The left term of the inequality in (C.11) is given by: 

∫ 𝐰𝑇(𝑡)
𝑡

0

𝐲(𝑡)𝑑𝑡 =                                                                

∫ ((𝜓𝑟𝛼𝜓̂𝑟𝛽 −𝜓𝑟𝛽𝜓̂𝑟𝛼)(𝜔𝑟 − 𝜔̂𝑟))
𝑡

0

𝑑𝑡                          (C. 21)

 

In order to satisfy the condition (C.11), the estimated electrical 

rotor speed is selected as follows: 

𝜔̂𝑟 = Φ1(𝐱) +∫ Φ2(𝐱)𝑑𝑡
𝑡

0

                                                 (C. 22) 

where: 

Φ1(𝐱) = 𝑘𝑝,𝑒𝑠𝑡𝜉                                                                     (C. 23) 

Φ2(𝐱) =
𝑘𝑝,𝑒𝑠𝑡
𝑇𝑖,𝑒𝑠𝑡

𝜉                                                                    (C. 24) 
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𝜉 = −(𝜓𝑟𝛼𝜓̂𝑟𝛽 −𝜓𝑟𝛽𝜓̂𝑟𝛼) = 𝜓𝑟𝛽𝜓̂𝑟𝛼−𝜓𝑟𝛼𝜓̂𝑟𝛽            (C. 25) 

𝑘𝑝,𝑒𝑠𝑡 > 0, 𝑇𝑖,𝑒𝑠𝑡 > 0. Substituting equations (C.22)-(C.25) 

into (C.21) leads to (C.26):  

∫ 𝐰𝑇(𝑡)
𝑡

0

𝐲(𝑡)𝑑𝑡 = 𝑘𝑝,𝑒𝑠𝑡 ∫ 𝜉2𝑑𝑡
𝑡

0

+                                  

+∫ (−𝜉 (𝜔𝑟 −∫
𝑘𝑝,𝑒𝑠𝑡
𝑇𝑖,𝑒𝑠𝑡

𝜉𝑑𝜏
𝑡

0

))
𝑡

0

𝑑𝑡                                (C. 26)

 

First term of the right of the equality (C.26) is always not 

negative. Assume that 𝜔𝑟 = 𝑐𝑜𝑛𝑠𝑡, second term is converted 

and compared as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∫ (−𝜉 (𝜔𝑟 −∫
𝑘𝑝,𝑒𝑠𝑡
𝑇𝑖,𝑒𝑠𝑡

𝜉𝑑𝜏
𝑡

0

))
𝑡

0

𝑑𝑡 =                                

𝑇𝑖,𝑒𝑠𝑡
𝑘𝑝,𝑒𝑠𝑡

∫ 𝑓(𝑡)𝑑𝑓(𝑡)
𝑡

0

=
𝑇𝑖,𝑒𝑠𝑡[𝑓(𝑡)

2 − 𝑓(0)2]

2𝑘𝑝,𝑒𝑠𝑡
≥              

−
𝑇𝑖,𝑒𝑠𝑡𝑓(0)

2

2𝑘𝑝,𝑒𝑠𝑡
= −

𝑇𝑖,𝑒𝑠𝑡𝜔𝑟
2

2𝑘𝑝,𝑒𝑠𝑡
         (C. 27)

 

where:

𝑓(𝑡) = 𝜔𝑟 − ∫
𝑘𝑝,𝑒𝑠𝑡

𝑇𝑖,𝑒𝑠𝑡
𝜉𝑑𝜏

𝑡

0
                                                  (C. 28) 

Therefore, the inequality (C.11) is fullfilled in the electrical 

rotor speed estimation utilizing (C.22)-(C.25), resulting in the 

speed estimation being hyperstable. From equations (C.22)-

(C.25) is obtained (11). 

 

 

 

 

 


