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Abstract: The main idea of this cycle is that mixed initial boundary value problems for partial
differential equations of hyperbolic type in two dimensions modeling lossless propagation are a valuable
source of functional differential equations, in particular of neutral type. Starting from the simplest
examples there are discussed such topics as basic theory (including various explanations for “what could
actually define a neutral equation”), stability and forced oscillations. Rather than giving strictly rigorous
proofs, the good motivations and final results are given priority. It is author’s strong belief that well
formulated applied problems are able to supply interesting, appealing while not always easy to solve
problems.
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3. LECTURE THREE. FOR AND AGAINST LIAPUNOV
FUNCTION(AL)S

The title of this lecture is an adaptation of the title of a paper
of A. Halanay published some 35 years ago - Halanay (1971).
At that time the equivalence between the “good” properties of
a certain Liapunov function and a certain frequency domain
inequality due to V. M. Popov was a quite “young” result and
the application of both methods to such problems as absolute
stability but especially forced oscillations in nonlinearsystems
with sector restricted nonlinearities was still establishing it-
self. On the other hand the case of time delay and distributed
parameter systems again with sector restricted nonlinearities
was tackled almost exclusivelyvia the frequency domain in-
equality for at least three reasons: a) the use of the Liapunov
Krasovskii functionals was not very popular (perhaps due to
the fact that the LMI technique was not very “handy” since
the corresponding software had not yet been elaborated); b)a
Liapunov function(al) had to be “guessed” while a frequency
domain inequality could be obtained in a more systematic way;
c) as pointed out by several experts of the field, even in the
distributed parameter case, the state space might be infinite
dimensional but the number of the input/output terminals was
necessarily finite.

In this context the cited paper Halanay (1971) was not a
polemic one but it just tried to mention the competition of the
two approaches and to advise which of them was more suitable
for one problem or another.

The situation is now changed. Let us mention some of the
achievements of the third of century that passed since then.
From the theoretical point of view there exists now the above
mentioned equivalence within an abstract framework; the coun-
terpart is that there is little experience in applying it to e.g.
time delay systems. There exists a large experience of using
Liapunov Krasovskii functionals but they have not the most
general form prescribed by the above mentioned equivalence.
⋆ Presented at the Department of Automatic Control of the Research Institute
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The third fact is that with the advent of the LMI powerful com-
putation toolbox, certain roles of the Liapunov function(al)s
and frequency domain inequalities are interchanged: if previ-
ously the fulfilment of a certain frequency domain inequality
would mean feasibility of some LMI, now it is more likely to
associate a LMI to some frequency domain inequality and to
check the fulfilment of this inequalityvia the LMI feasibility.
In the following we shall be discussing some applications of
time/frequency domain methods i.e. Liapunov Krasovskii func-
tionals/frequency domain approaches.

3.1 Linear systems stability

Our basic system will be again system (1) below
ẋ1 = A0x1(t)+A1x2(t − τ)

x2(t) = A2x1(t)+A3x2(t − τ)
(1)

For this system we have already mentioned - Răsvan (2009a)
the possibilities and the drawbacks of the complex domain
approachvia the characteristic equation. Based on a second
order example we were able to introduce delay independent and
delay dependent stability. Worth mentioning that these notions
have been discussed firstly within the time domain approach
based on Liapunov Krasovskii functionals. We think interesting
to give here a brief historical sketch of the approach. It seems
that the first very simple examples of quadratic Liapunov func-
tionals for linear time delay systems were given in the book of
Krasovskii (1959). In the neutral case we know the conference
paper of Infante (1971) which was concerned with the circuit
incorporating a LC line and a nonlinear circuit device - the tun-
nel diode. On the other hand the quadratic Liapunov Krasovskii
functional in a rather general form occurred when estimating a
certain quadratic integral index or for the state feedback control
synthesis in order to minimize a quadratic cost functional.In
order to make the things more clear let us remember that in
the finite dimensional case the exponential stability conditions
for ẋ = Ax are equivalent to the existence of a solution to the
symmetric Liapunov matrix equation

ATP+PA=−I
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the matrix P > 0 thus defining a positive definite quadratic
Liapunov functionV(x) = xTPx whose derivative along sys-
tem’s solutions isW(x) = −|x|2. This is nothing more than
the perfect equivalence of the two approaches - time domain
and complex (frequency) domain. This result has a semi-group
counterpart due to Datko (1970). But from the abstract scheme
to the specific applications there are several steps to be taken.
In the retarded case early results are due to Repin (1965) who
clearly showed that the Liapunov operator equation turned to
be a coupled system of algebraic equations, ODE and PDE.
The line has been followed by Infante and Castelan (1978)
but the application remained quite difficult. The advancement
of the LMI simplified the job but the stability criteria remained
very “conservative” i.e. containing sufficient conditionsbeing
quite far from the necessary ones. The more recent results
of Kharitonov and Zhabko (2003) have partially relaxed this
“conservativeness”.

It is worth insisting here on the motivation of the results ofV.
L. Kharitonov as seen in a classical control system context.A
control system with constant reference signal is describedfrom
the point of view of the control error by the following system
in deviations

ẋ= Ax , ε = cTx (2)

For this system, assumed exponentially stable, the controlqual-
ity is measured e.g by the following Integral of the Square Error
(ISE) criterion

ISE=

∞
∫

0

ε2(t)dt =

∞
∫

0

xT(t)ccTx(t)dt (3)

which can be computed by solving a Liapunov matrix equation

ATP+PA=−ccT

for which exponential stability is assumeda priori and the
RHS is given. The solutionP > 0 exists provided(cT

,A) is
observable (an this is the case in practice). Sometimes ISE is re-
placed by another integral, a quadratic form of the error andits
derivatives up ton−1, wheren is the order of the system (these
new integral criteria were proposed by A. A. Fel’dbaum some
50 years ago). Or the construction of Kharitonov and Zhabko
(2003) starts exactly from an exponentially stable time delay
system with ana priori assumed derivative of the quadratic
Liapunov functional along system’s solutions.

For neutral FDE as well as for system (1) there exist several
extensions of the Liapunov approach. More precisely it is again
the LMI technique ensuring sufficient conditions of stability.
Following Niculescu (2001) we find that the most popular
Liapunov functional candidate for (1) is

V(x,φ) = x∗Px+

0
∫

−τ

φ(θ )∗Sφ(θ )dθ (4)

with P> 0 andS> 0 being constant matrices. The LMI for the
derivative function reads as

(

A∗
0P+PA0+A∗

2SA2 PA1+A∗
2SA3

A∗
1P+A∗

3SA2 A∗
3SA3−S

)

< 0 (5)

which may lead to a degenerate Liapunov functional since
AT

2 SA2 ≥ 0 even ifS> 0; thereforeP ≥ 0 if A0 is a Hurwitz
matrix unless an additional observability assumption is made;

if not this may be still handled provided the approach of Aizer-
man and Gantmakher (1963) based on “degenerate” Liapunov
functions is used together with some structural propertiesof
the system. Let us remark that the assumption forA0 to be a
Hurwitz matrix clearly sends to the delay independent stability
case.

3.2 Stability and forced oscillations of systems with sector
restricted nonlinearities

The mathematical object of this section will be the nonlinear
system

{

ẋ1(t) = A0x1(t)+A1x
2(t − τ)−b1ϕ(c∗ox1(t))+ f 1(t)

x2(t) = A2x1(t)+A3x
2(t − τ)−b2ϕ(c∗ox1(t))+ f 2(t)

(6)

with ϕ(σ) satisfying a sector restriction of the form

ϕ ≤
ϕ(σ)

σ
≤ ϕ (7)

with the inequalities being possibly strict. For this system two
problems with engineering significance will be considered

3.2.1A stability problem - the problem of the absolute stability.
This problem is stated for the autonomous system (6) i.e. with
f i(t) ≡ 0 and is as follows:find conditions on linear subsys-
tem’s coefficients(Ai ,bi ,co) in order that the zero solution of
the autonomous system (6) should be globally asymptotically
stable for all nonlinear functions restricted to the sector(7).

It is quite well known that in solving this problem two ap-
proaches coexist and compete: the method of the Liapunov
functional leading to some Linear Operator Inequalities which
in special cases become computer feasible Linear Matrix In-
equalities and the method of Popov-like frequency domain in-
equalities. it is now well established that the two approaches
are perfectly equivalent theoretically: in the finite dimensional
case this follows from the Yakubovich - Kalman - Popov lemma
while in the infinite dimensional case there exist extensions due
to D. Wexler, then to Yakubovich and Likhtarnikov further to
R. Curtain and her co-workers in the most general case of the
Pritchard- Salamon systems (the reader is sent to the survey
Răsvan (2002) for more details). From the point of view of
the applications the competition still exists; to illustrate this we
state both types of such results as follows

Theorem 1.( Răsvan (1973)) Consider system (6) under the
following assumptions: i) the linear system (1) is exponentially
stable; ii) the nonlinear functionϕ is subject to the sector
condition (7) withϕ = 0; iii) f i(t) ≡ 0; iv) there exists some
β ≥ 0 such that the Popov-like frequency domain inequality is
fulfilled

1
ϕ̄
+ℜe(1+ ıωβ )γ(ıω)> 0, ∀ω ∈ R (8)

where γ(s) is the transfer function of the linear part of (6)
namely

γ(s) = (c∗o 0)Ho(s)
−1

(

b1

b2

)

(9)

with Ho(s) defined in Răsvan (2009b). Then system (6) has
the zero solution which is globally asymptotically stable for all
nonlinear functions satisfying assumption ii).
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Concerning the proof of this result which is given in Răsvan
(2002) it is worth mentioning thatits prerequisites are exactly
exponential stability of the linear part and an appropriatefor-
mula of variations of constants for system (6)with ϕ(σ) ≡ 0.
Remark also the structural resemblance of (6) and the struc-
turally perturbed system from the theory of the stability radii -
see Răsvan (2009b). Consequently the transfer function isthe
same; this fact motivated analysis of the stability radii inthe
absolute stability context ( Halanay and Răsvan (1997), R˘asvan
(2000)).

If the Liapunov approach is taken, a straightforward resultis
the following
Theorem 2.Consider system (6) under the assumptions i) - iii)
of Theorem 1 and assume that iv’) there exist positive definite
matricesP andS and some parameterβ ≥ 0 in order that the
following linear matrix inequality is fulfilled

(

H11 h12 H13
h∗12 χ22 h∗23
H∗

13 h23 H33

)

< 0 , (10)

where we denoted

H11 = A∗
0P+PA0+A∗

2SA2,

h12 =−Pb1−A∗
2Sb1+

1
2
(βA∗

0+ I)co

H13 = PA1+A∗
2SA3

χ22 =−
1
2

β (c∗ob1+b∗1co)− ϕ̄ +b∗2Sb2

h23 =−A∗
3Sb2, H33 = A∗

3SA3−S

(11)

Then the conclusion of Theorem 1 holds.

At this points some comments are necessary and also useful.
The first comment concerns feasibility of (10). In the early
stage of the absolute stability problem this LMI feasibility was
tackledvia analytical methods. The Yakubovich Kalman Popov
lemma reduced this feasibility to some frequency domain in-
equality of Popov type. Moreover this inequality may provide
the most general Liapunov function(al) of the form “quadratic
form + integral of the nonlinearity”. Using engineer’s tools the
frequency condition appeared as easier to check (e.g. graph-
ically, as the Nyquist condition in the linear feedback case).
With the advancement of the software tools this connection has
been reversed: now a frequency domain inequality is checked
via some LMI. Worth mentioning also that sometimes it is
easier even to check analytically the conditions required for a
wisely chosen Liapunov function(al) than those for a frequency
domain inequality (see e.g. Răsvan and Niculescu (2002).

The second comment concerns the Liapunov functional

V(x1
,x2(·)) = (x1)∗Px1+

0
∫

−τ

x2(θ )∗Sx2(θ )dθ+

+β
c∗ox1
∫

0

ϕ(σ)dσ

(12)

obtained from (4) by adding the integral of the nonlinear
function. This is not the most general Liapunov functional that
may be associated to our problem; consequently the frequency
domain inequality associated to itvia YKP lemma is stronger

than the general condition (8): its fulfillment implies fulfillment
of (8).

The third comment concerns usefulness of the two approaches
for two kinds of problems: as a proof tool and as a computa-
tional tool. At present the method of Liapunov -via the LMI
techniques - is better suited for computation. The frequency
domain inequality may give most general conditions in basic
theorems but there are still areas (e.g. instability) wherethe
method of Liapunov appears as better suited even as a proof
tool. Concerning this dialectics of the “for and against Liapunov
functions” see Halanay (1971), Răsvan (2002). Further this
aspect will be again present.

3.2.1A problem of forced oscillations; the almost linear behav-
ior. This problem is stated for the “complete” (forced) system
(6) and from the engineering point of view it is a problem of
signal processing: iff i(t)≡ constwe have sources of constant
signals, if f i(t) are periodic this corresponds to a.c. sources
in electrical engineering and iff i(t) are almost periodic this
corresponds to modulated signals. It is but well known that in
the linear case the system displays a steady state i.e. a solution
defined on the whole real axisR and this steady state is of
the same type as the input signal (constant, periodic or almost
periodic); moreover, if the autonomous system is exponentially
stable this steady state is exponentially stable. The following
theorem will displaya similar behavior for system(6)

Theorem 3.( Halanay and Răsvan (1977)) Consider system (6)
under the following assumptions: i) the linear system (1) is
exponentially stable; ii) the nonlinear functionϕ is globally
Lipschitz i.e.

0≤
ϕ(σ1)−ϕ(σ2)

σ1−σ2
≤ L ,σ1 6= σ2 (13)

iii) | f i(t)| ≤ M; the Popov like frequency domain inequality (8)
holds forβ = 0 i.e. the circle-like frequency domain inequality
is valid

1
L
+ℜeγ(ıω)> 0 , ∀ω ∈R+ (14)

whereγ(s) is the same as in Theorem 1. Then system (6) has a
unique bounded onR solution which is exponentially stable; if
f i are constant,T-periodic or almost periodic then this solution
is also constant,T-periodic or almost periodic respectively.

Theorem 4.( Răsvan and Niculescu (2002)) Assume that i)-iii)
of Theorem 3 hold and, additionally, there exist positive definite
matricesP andS in order that LMI (10) holds withβ = 0 and
ϕ̄ = L i.e. withh12 andχ22 as follows

h12 =−Pb1−A∗
2Sb1+

1
2

co

χ22 =−L+b∗2Sb2

(15)

Then the conclusion of Theorem 3 follows.

Summarizing the results contained in the theorems of this sec-
tion we obtained the following: under the above assumptions
system (6) has in the autonomous case a unique equilibrium
which is globally asymptotically stable and, if forced by a con-
stant, periodic or almost periodic exogeneous signal, displays a
globally exponentially stable steady state which is of the type
of that signal i.e. constant, periodic or almost periodic respec-
tively. This is what we callalmost linear behavior( Barbălat and
Halanay (1974), Răsvan (2001)).
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3.3 Self-sustained oscillations in the sense of Yakubovich.
Instability and dissipativity

The object of this section will be again the autonomous (with
f i(t) ≡ 0) system (6). Starting from the idea that globally
stable periodic solutions are a very special and very sel-
dom phenomenon, V. A. Yakubovich and his co-workers in-
troduced a special kind of relaxed oscillatory behavior for
which existence results may be obtained easier than for
the periodic one Gueorguevskiiet al (1972), Yakubovich
(1973), Yakubovich (1977), Tomberg and Yakubovich (1989).

A solution of the autonomous system (6) is called[−α,β ]-
oscillation with respect to the outputν(t) for t → ∞ if the
solution is bounded fort > 0 and the output - a linear functional
on system’s state space - has the following properties: i) it
changes sign infinitely many times fort > 0; ii) it belongs
infinitely many times either to(−∞,−α) and [−α,β ] or to
[−α,β ] and (β ,+∞) as t → ∞. If additionally there exists
someT > 0 such that the time of confinement of the output
in any interval is not larger than T, the oscillation is called non-
dilating. If the above properties hold fort → −∞ the solution
is called[−α,β ]-oscillationwith respect to the outputν(t) for
t → −∞; such a solution also may benon-dilating. Let M be
a set of[−α,β ]-oscillations: if there exists somet∗ such that
for all t > t∗ (t < t∗) the non-dilation property holds for the
sameT, then M is called the set of uniformly non-dilating
[−α,β ]-oscillations. Any [−α,β ]-oscillation for someα ≥ 0,
β ≥ 0, α +β > 0 is calledoscillation or oscillatory solution.
An oscillation is calledbilateral if it is an oscillation both for
t → +∞ andt → −∞ while for different pairsα,β . A system
whose almost all solutions are oscillations is calledoscillatory.

Since the problem for time delay and propagation systems is
still open, it is worth pointing out the pre-requisites and the
main features that may be useful. As in the case of the stable
limit cycles in the state plane (in fact the Poincaré-Bendixson
theorem ensures that any Yakubovich oscillation in dimension
2 approaches asymptotically or it is a limit cycle itself), if
there is a unique equilibrium at the origin, this equilibrium has
to beexponentially unstable. The instability result is obtained
in a standard way if Liapunov function(al)s are to be used
Yakubovich (1970); its counterpart in the frequency domainin-
equalities framework may be found in Popov (1974) where an
exponential dichotomy result is obtained for systems described
by integral equations. Less obvious is how to recognize an
unstable system (for the stable one it is quite clear throughout
the paper).

Next, as in the case of the stable limit cycles in the state plane,
the large deviations have to enter eventually some bounded do-
main containing the equilibrium. This is the so-calleddissipa-
tivity (in the sense of N. Levinson) and it can be established also
via the method of Liapunov ( Yoshizawa (1966), Yoshizawa
(1975)); for systems with sector restricted nonlinearities the
results are due to Barbălat and Halanay (1971). There is no
result concerning dissipativity using the frequency domain in-
equality without the Liapunov function(al)s at least as proof
instruments.

The abstract version of YKP lemma is a serious inhibitory
factor in applying the Liapunov method e.g. for system (6);
in fact we should construct the entire Hilbert space framework
required in this case. The frequency domain inequality reduces
to the standard one (which may be obtained also by the integral

equations approach) but the Liapunov functional is the most
general quadratic form on the chosen Hilbert space e.g.R

n1 ×
L2(−τ,0;Rn2). Nevertheless if we accept sufficient conditions
then commonly used Liapunov Krasovskii functionals may be
satisfactory. The specific results in specific applicationscan
give hints on the sharpness of various approaches.

3.4 Conclusions

This cycle was intended to cover in fact two topics. The first
one was concerned with the general features of the Functional
Differential Equations of neutral type. It was shown that a
special class of FDE, in fact a system of coupled delay differ-
ential and difference (algebraic) equations, occurs in a natural
way when the method of d’Alembert is applied to the Initial
Boundary Value Problems for some hyperbolic PDE in the
plane (two variables). At their turn these Initial BoundaryValue
Problems are describing power control systems (both thermal
and hydraulic), electrical circuits with LC lines, nuclearreactor
dynamics. There were shown the specific features of the FDE
of neutral type and the fact that the systems generated by PDE
of hyperbolic type meet these features being thus “affiliated”
to the class of neutral FDE gives a good motivation for these
equations which are obtained in a natural way starting from
broad classes of applications.

The second topic dealt with what we finally called to belinear
and almost linearbehavior. There were considered linear or
nonlinear systems of the type described above (the nonlinear
systems incorporating sector restricted nonlinearities)to which
there were associated quadratic Liapunov Krasovskii func-
tionals and/or Popov like frequency domain inequalities.These
mathematical objects are involved in the analysis of the fol-
lowing problems: basic theory, asymptotic stability,forced and
self sustained oscillations (in the sense of Yakubovich). We
consider answer to these problems as pre-requisites for the
almost linear behavior of the nonlinear systems: a single, glob-
ally asymptotically (or exponentially) stable equilibrium and
forced oscillatory behavior of the same type (periodic, almost
periodic) as the forcing signal, the oscillatory solution being
exponentially stable.

It is felt that studying this kind of systems and the above
enumerated problems is still rewarding and may contribute also
to the development of theoretical instruments (e.g. Liapunov
techniques, control synthesis).
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