CEAI, Vol.12, No. 1, pp. 62-66, 2010 Printed in Romania

Three Lectures on Neutral Functional Differential
Equations *

Vladimir R asvan*

* Department of Automatic Control, University of Craioval.Buza, 13
Craiova, RO-200585 Romania (e-mail: vrasvan@automationro).

Abstract: The main idea of this cycle is that mixed initial boundaryuealproblems for partial
differential equations of hyperbolic type in two dimensienodeling lossless propagation are a valuable
source of functional differential equations, in particutd neutral type. Starting from the simplest
examples there are discussed such topics as basic thednd(imgy various explanations for “what could
actually define a neutral equation”), stability and forcediltations. Rather than giving strictly rigorous
proofs, the good motivations and final results are givenrjbyiolt is author’s strong belief that well
formulated applied problems are able to supply interes@pgealing while not always easy to solve
problems.
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3. LECTURE THREE. FOR AND AGAINST LIAPUNOV  The third fact is that with the advent of the LMI powerful com-
FUNCTION(AL)S putation toolbox, certain roles of the Liapunov functidiga
and frequency domain inequalities are interchanged: Wipre
The title of this lecture is an adaptation of the title of a @ap ously the fulfilment of a certain frequency domain inequyalit
of A. Halanay published some 35 years ago - Halanay (197yould mean feasibility of some LMI, now it is more likely to
At that time the equivalence between the “good” propertfes @ssociate a LMI to some frequency domain inequality and to
a certain Liapunov function and a certain frequency domaigheck the fulfilment of this inequalityia the LMI feasibility.
inequality due to V. M. Popov was a quite “young” result andn the following we shall be discussing some applications of
the application of both methods to such problems as absoldtme/frequency domain methods i.e. Liapunov Krasovskicku
stability but especially forced oscillations in nonlinegistems  tionals/frequency domain approaches.
with sector restricted nonlinearities was still estabiighit- . .
self. On the other hand the case of time delay and distributédl Linear systems stability
parameter systems again with sector restricted nonlitesri . . .
was tackled almost exclusivelja the frequency domain in- OUr basic system will be again system (1) below
equality for at least three reasons: a) the use of the Liapuno X1 = Ao (t) +Axo(t — T) )
Krasovskii functionals was not very popular (perhaps due to _ _
the fact that the LMI technique was not very “handy” since Xe(t) = Axa(t) +Agre(t =)
the corresponding software had not yet been elaborated); bFor this system we have already mentioned - Rasvan (2009a)
Liapunov function(al) had to be “guessed” while a frequencyhe possibilities and the drawbacks of the complex domain
domain inequality could be obtained in a more systematic wagipproachvia the characteristic equation. Based on a second
c) as pointed out by several experts of the field, even in theder example we were able to introduce delay independent an
distributed parameter case, the state space might be énfinifelay dependent stability. Worth mentioning that theséonet
dimensional but the number of the input/output terminals wehave been discussed firstly within the time domain approach
necessarily finite. based on Liapunov Krasovskii functionals. We think intéres

In this context the cited paper Halanay (1971) was not give here a brief historical sketch of the approach. Itreee

polemic one but it just tried to mention the competition o th Nat the first very simple examples of quadratic Liapunoctun
8nals for linear time delay systems were given in the bdok o

two approaches and to advise which of them was more suitat}l -
for one problem or another. rasovskii (1959). In the neutral case we know the confezenc
paper of Infante (1971) which was concerned with the circuit
The situation is now changed. Let us mention some of thacorporating a LC line and a nonlinear circuit device - tine-t
achievements of the third of century that passed since tharel diode. On the other hand the quadratic Liapunov Kradbvsk
From the theoretical point of view there exists now the abovieinctional in a rather general form occurred when estinggdin
mentioned equivalence within an abstract framework; thmeo certain quadratic integral index or for the state feedbackrol
terpart is that there is little experience in applying it tg.e synthesis in order to minimize a quadratic cost functiotral.
time delay systems. There exists a large experience of usiogler to make the things more clear let us remember that in
Liapunov Krasovskii functionals but they have not the mosthe finite dimensional case the exponential stability coos
general form prescribed by the above mentioned equivalender x = Ax are equivalent to the existence of a solution to the
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the matrixP > O thus defining a positive definite quadraticif not this may be still handled provided the approach of Aize
Liapunov functionV (x) = x"Px whose derivative along sys- man and Gantmakher (1963) based on “degenerate” Liapunov
tem’s solutions iSW(x) = —|x|%. This is nothing more than functions is used together with some structural propexfes
the perfect equivalence of the two approaches - time domdipe system. Let us remark that the assumptionApto be a
and complex (frequency) domain. This result has a semiggrotiurwitz matrix clearly sends to the delay independent &tgbi
counterpart due to Datko (1970). But from the abstract sehengase.

to the specific applications there are several steps to lemtak

In the retarded case early results are due to Repin (1965) wB@ Stability and forced oscillations of systems with secto
clearly showed that the Liapunov operator equation turoed testricted nonlinearities

be a coupled system of algebraic equations, ODE and PDE.

The line has been followed by Infante and Castelan (197&he mathematical object of this section will be the nonlinea
but the application remained quite difficult. The advanceme system

of the LMI simplified the job but the stability criteria renmeid

very “conservative” i.e. containing sufficient conditiobsing (1) = A (t) + ApP(t — T) — by (i (1)) + FL(t
quite far from the necessary ones. The more recent results (t) = Ao (1) + Awx( )~ P (Cox (1) ® (6)
of Kharitonov and Zhabko (2003) have partially relaxed this | X2(t) = Apx}(t) + Asx?(t — T) — b (cix (1)) + F2(t)
conservativeness”. with ¢ (o) satisfying a sector restriction of the form

It is worth insisting here on the motivation of the resultsvof ¢(0)

L. Kharitonov as seen in a classical control system confext. $<—=<9 (7)

control system with constant reference signal is descfitmea o

the point of view of the control error by the following systemwith the inequalities being possibly strict. For this systavo
in deviations problems with engineering significance will be considered

- T
X=AX, €=C'X (2)  3.2.1A stability problem - the problem of the absolute stahility

This problem is stated for the autonomous system (6) i.dx wit
f'(t) = 0 and is as followsfind conditions on linear subsys-
tem’s coefficient$A;,bi, co) in order that the zero solution of
the autonomous system (6) should be globally asymptaticall
stable for all nonlinear functions restricted to the sec{®y.

For this system, assumed exponentially stable, the cootiad}
ity is measured e.g by the following Integral of the Squam®Er
(ISE) criterion

2 T T
ISE /8 (t)dt /X (thec x(t)dt ®) It is quite well known that in solving this problem two ap-
0 0 proaches coexist and compete: the method of the Liapunov
which can be computed by solving a Liapunov matrix equatioftnctional leading to some Linear Operator Inequalitiesoivh
T T in special cases become computer feasible Linear Matrix In-
A'P+PA=—cc equalities and the method of Popov-like frequency domain in
for which exponential stability is assumedpriori and the equalities. it is now well established that the two appresch
RHS is given. The solutio® > 0 exists providedc’,A) is  are perfectly equivalent theoretically: in the finite dirsemal
observable (an this is the case in practice). SometimessI&E i case this follows from the Yakubovich - Kalman - Popov lemma
placed by another integral, a quadratic form of the erroriend while in the infinite dimensional case there exist extersitune
derivatives up to— 1, wheren is the order of the system (theseto D. Wexler, then to Yakubovich and Likhtarnikov further to
new integral criteria were proposed by A. A. Fel'dbaum som®. Curtain and her co-workers in the most general case of the
50 years ago). Or the construction of Kharitonov and Zhabkeritchard- Salamon systems (the reader is sent to the survey
(2003) starts exactly from an exponentially stable timeaglel Rasvan (2002) for more details). From the point of view of
system with ara priori assumed derivative of the quadraticthe applications the competition still exists; to illuserhis we
Liapunov functional along system'’s solutions. state both types of such results as follows

For neutral FDE as well as for system (1) there exist severaheorem 1.( Rasvan (1973)) Consider system (6) under the
extensions of the Liapunov approach. More precisely it airg following assumptions: i) the linear system (1) is exporaiyt

the LMI technique ensuring sufficient conditions of stapili Stable; ii) the nonlinear functiop is subject to the sector
Following Niculescu (2001) we find that the most populagondition (7) with¢ = 0; iii) f'(t) = 0; iv) there exists some

Liapunov functional candidate for (1) is B > 0 such that the Popov-like frequency domain inequality is
0 fulfilled
V(X,¢) =X Px+/<p(9) Sp(6)de 4 7' De(1+1wB)y(1w) > 0, Yw e R (8)
-T
with P > 0 andS > 0 being constant matrices. The LMI for the Where y(s) is the transfer function of the linear part of (6)
derivative function reads as namely
oP+PA+A3SA PAL+A5SA X (b1
AT PR ASA PR 5) V(s) = (c5 OHo(s) ©)
AP+ ASA A;SA—-S 7]

which may lead to a degenerate Liapunov functional sinocgith Hy(s) defined in Rasvan (2009b). Then system (6) has
AlSA >0 even ifS > 0; thereforeP > 0 if Ag is a Hurwitz the zero solution which is globally asymptotically statde ll
matrix unless an additional observability assumption islepa nonlinear functions satisfying assumption ii).
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Concerning the proof of this result which is given in Rasvaihan the general condition (8): its fulfillmentimplies fllfient
(2002) it is worth mentioning thats prerequisites are exactly of (8).

exponential stability of the linear part and an appropridte- The third comment concerns usefulness of the two approaches
mula of variations of constants for system (@}h ¢ (o) =0. . . PP
r two kinds of problems: as a proof tool and as a computa-

Remark also the structural resemblance of (6) and the stn{g- : .
turally perturbed system from the theory of the stabilitgtira tfcnhﬂ.tocg' A_\t_prﬁzttetgtr the tg] detfg?dcgrnL'afali%%w%fgefrZM' enc
see Rasvan (2009b). Consequently the transfer functitiveis Iques ISI' sul pu I lon. 1he reqyen

same; this fact motivated analysis of the stability radithie domain inequality may give most general conditions in basic

absolute stability context ( Halanay and Rasvan (1993 [heorems but there are still areas (e.g. instability) wiibee
(2000)). method of Liapunov appears as better suited even as a proof

tool. Concerning this dialectics of the “for and againsidLiaov
If the Liapunov approach is taken, a straightforward result functions” see Halanay (1971), Rasvan (2002). Furthey thi
the following aspect will be again present.

Theorem 2.Consider system (6) under the assumptions i) - iiiy 2 1A problem of forced oscillations; the almost linear behav-
of Theorem 1 and assume that iv’) there exist positive definifo; This problem is stated for the “complete” (forced) system
matricesP andS and some parametg > 0 in order that the (g) and from the engineering point of view it is a problem of
following linear matrix inequality is fulfilled signal processing: if'(t) = constwe have sources of constant
signals, if f'(t) are periodic this corresponds to a.c. sources

H*ll hi2 H*13 in electrical engineering and if (t) are almost periodic this
hlg X22 o3 | <O, (10) corresponds to modulated signals. It is but well known that i
His h2s Has the linear case the system displays a steady state i.e.t&osolu
where we denoted defined on the whole real ax® and this steady state is of
the same type as the input signal (constant, periodic orstimo
Hi1= AP+ PA + A;SA, periodic); moreover, if the autonomous system is expoaéyti
1 stable this steady state is exponentially stable. Theitig
hip = —Pby — A;Sh + > (BAS+1)co theorem will displaya similar behavior for systert6)

Theorem 3.( Halanay and Rasvan (1977)) Consider system (6)

His = PAc+ASAs (1) under the following assumptions: i) the linear system (1) is
1 . exponentially stable; ii) the nonlinear functign is globally
Xo2 = _EB(Cébl +bico) — ¢ + b3Sk Lipschitz i.e.
hps = —A;Shy, Has= AiSA — S 0< ¢(01) — ¢(02) <L.0y 40 (13)
Then the conclusion of Theorem 1 holds. 01— 02

At this points some comments are necessary and also usefil). | f'(t)| < M; the Popov like frequency domain inequality (8)
The first comment concerns feasibility of (10). In the earljolds for = 0 i.e. the circle-like frequency domain inequality
stage of the absolute stability problem this LMI feasipilitas s valid
tackledvia analytical methods. The Yakubovich Kalman Popov 1

lemma reduced this feasibility to some frequency domain in- [ THev(iw) >0, Vo e Ry (14)
equality of Popov type. Moreover this inequality may pravid

the most general Liapunov function(al) of the form “quaitrat wherey(s) is the same as in Theorem 1. Then system (6) has a
form + integral of the nonlinearity”. Using engineer’s tedthe unique bounded oR solution which is exponentially stable; if
frequency condition appeared as easier to check (e.g. graghare constantl -periodic or almost periodic then this solution
ically, as the Nyquist condition in the linear feedback ¢aseis also constanfl -periodic or almost periodic respectively.

With the advancement of the software tools this connectamn hTheorem 4.( Rasvan and Niculescu (2002)) Assume that i)-ii)

been reversed: now a frequency domain inequality is checkgglTheorem 3 hold and, additionally, there exist positivérite

via some LMI. Worth mentioning also that sometimes it isnatricesP andSin order that LMI (10) holds witf3 = 0 and
easier even to check analytically the conditions requicecaf ¢ — | j.e. with h;» andx.» as follows

wisely chosen Liapunov function(al) than those for a fretpye

domain inequality (see e.g. Rasvan and Niculescu (2002). i 1
hiz = —Pby — A;Sh + 560

X22=—L+Db5Sh
Then the conclusion of Theorem 3 follows.

The second comment concerns the Liapunov functional (15)

0
V(< 2()) = ()P + / x2(6)*SX(6)d6+
i Summarizing the results contained in the theorems of this se

cixt (12)  tion we obtained the following: under the above assumptions

' system (6) has in the autonomous case a unique equilibrium
+B / ¢(0)do which is globally asymptotically stable and, if forced byane
0 stant, periodic or almost periodic exogeneous signaljalyspa

obtained from (4) by adding the integral of the nonlineaglobally exponentially stable steady state which is of gyet
function. This is not the most general Liapunov functiomatt of that signal i.e. constant, periodic or almost period&pez-
may be associated to our problem; consequently the fregquenively. This is what we caldlmost linear behavidBarbalat and
domain inequality associated tovita YKP lemma is stronger Halanay (1974), Rasvan (2001)).
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3.3 Self-sustained oscillations in the sense of Yakuboviabguations approach) but the Liapunov functional is the most
Instability and dissipativity general quadratic form on the chosen Hilbert spaceRgx
L?(—1,0;R"™). Nevertheless if we accept sufficient conditions
hen commonly used Liapunov Krasovskii functionals may be
atisfactory. The specific results in specific applicatioas
éi;ive hints on the sharpness of various approaches.

The object of this section will be again the autonomous (wit
'(t) = 0) system (6). Starting from the idea that globall

stable periodic solutions are a very special and very s
dom phenomenon, V. A. Yakubovich and his co-workers in- i

troduced a special kind of relaxed oscillatory behavior foB-4 Conclusions

which existence results may be obtained easier than for

the periodic one Gueorguevskiit al (1972), Yakubovich This cycle was intended to cover in fact two topics. The first

(1973), Yakubovich (1977), Tomberg and Yakubovich (1989) one was concerned with the general features of the Funttiona
Differential Equations of neutral type. It was shown that a

A solution of the autonomous system (6) is calleed, B]-  special class of FDE, in fact a system of coupled delay differ
oscillation with respect to the output(t) for t — o if the  ential and difference (algebraic) equations, occurs intareh
solution is bounded fdr> 0 and the output - a linear functional way when the method of d’Alembert is applied to the Initial
on system's state space - has the following properties: i) goyndary Value Problems for some hyperbolic PDE in the
changes sign infinitely many times for> 0; ii) it belongs  pjane (two variables). At their turn these Initial Boundsajue
infinitely many times either tq—, —a) and [-a,B] or to  proplems are describing power control systems (both tHerma
[—a.B] and (B,+) ast — . If additionally there exists anq hydraulic), electrical circuits with LC lines, nucleaactor
someT > 0 such that the time of confinement of the outpupynamics. There were shown the specific features of the FDE
in any interval is not larger than T, the oscillation is cdlfon-  of neytral type and the fact that the systems generated by PDE
dilating. If the above properties hold far— —co the solution ot hyperbolic type meet these features being thus “affiliate

is called[—a, B]-oscillationwith respect to the outpu(t) for (5 the class of neutral FDE gives a good motivation for these

t — —oo; such a solution also may b®n-dilating Let.# be  gquations which are obtained in a natural way starting from
a set of[—a, B]-oscillations: if there exists sonte such that gad classes of applications.

for all t > t, (t < t.) the non-dilation property holds for the
sameT, then./ is calledthe set of uniformly non-dilating The second topic dealt with what we finally called tolinear
[—a, B]-oscillations Any [—a, B]-oscillation for somex > 0, and almost linearbehavior. There were considered linear or
B >0, a+f > 0is calledoscillation or oscillatory solution nonlinear systems of the type described above (the nomlinea
An oscillation is callecbilateral if it is an oscillation both for Systems incorporating sector restricted nonlinearitegyhich
t — +o0 andt — —co while for different pairsa, 8. A system there were associated quadratic Liapunov Krasovskii func-
whose almost all solutions are oscillations is cabisdillatory. ~ tionals and/or Popov like frequency domain inequalitieese

. . ) mathematical objects are involved in the analysis of the fol
Since the problem for time delay and propagation systems i§ying problems: basic theory, asymptotic stability, fedcand
still open, it is worth pointing out the pre-requisites ame t self sustained oscillations (in the sense of Yakubovichg. W
main features that may be useful. As in the case of the stablgnsiger answer to these problems as pre-requisites for the
limit cycles in the state plane (in fact the Poincare-B&sdn 4most inear behavior of the nonlinear systems: a sindtd-g
theorem ensures that any Yakubqwg:h osglllgtlon in (_jmtmns! ally asymptotically (or exponentially) stable equilibmuand
2 approaches asymptotically or it is a limit cycle itself), i forced oscillatory behavior of the same type (periodic,@st

there is a unique equilibrium at the origin, this equililnihas heriodic) as the forcing signal, the oscillatory solutiogirty
to beexponentially unstablerhe instability result is obtained exponentially stable.

in a standard way if Liapunov function(al)s are to be used

Yakubovich (1970); its counterpart in the frequency donain It is felt that studying this kind of systems and the above
equalities framework may be found in Popov (1974) where a@numerated problems is still rewarding and may contriblste a
exponential dichotomy result is obtained for systems diesdr to the development of theoretical instruments (e.g. Liapun
by integral equations. Less obvious is how to recognize dfachniques, control synthesis).

unstable system (for the stable one it is quite clear through
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