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Abstract: The paper presents a Rapid Control Prototyping (RCP) toolbox, Target for Renesas M32C87, 
for Matlab/Simulink which can be used to generate real-time C code for the Renesas M32C87 
microcontroller. The RCP toolbox contains a digital motor control library which implements a brushless 
direct current (BLDC) motor control algorithm. A practical application for closed loop speed control of 
brushless direct current motor is presented. 
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1. INTRODUCTION 

Developing controllers for applications (electrical drive 
systems) means large expenditure, when performed with 
usual development methods. The workload comprises 
development of a mathematical model as well as algorithm 
design and implementation, off-line simulation, and 
optimization. The whole process has to be restarted on 
occurring errors or divergences, which makes the 
development process time consuming and costly [8]. 

RCP is a way out of this situation, especially if the control 
algorithm is complex and a lot of iteration steps are 
necessary. RCP requires two components: a Computer Aided 
Control System Design (CACSD) software and a dedicated 
hardware capable of running hard real-time tasks (Fig.1). 
 

 
 

Fig. 1. General architecture of an RCP system.  
 
CACSD tools  are  extensively  used to  generate real-time 
code automatically. The graphical programming approach 
removes the need to write software by hand and allows the 
engineer to focus instead on improving functionality and 
performance. Complete system design is carried out within 
the simulation environment. 

With the great diversity of applications, a development 
environment must be flexible and provide exactly the 
functionality necessary for efficient problem solving. 
Mathworks' Simulink [11] software is such a graphical  
modeling tool. MathWorks developed toolboxes for some  
wildly used targets: Motorola MPC555, Infinion C166,  

C2000 and C6000 DSP families from Texas Instruments. 
Rebeschiess [14] developed the MICROS toolbox for 
standard 80C166 microcontrollers. A DSP based RCP system 
for engineering education and research using as CACSD tool 
Matlab/Simulink is presented in [9]. 
Hanselmann [7] from the dSPACE GmbH presented ’Total 
Development Environment’ (TDE) for rapid control 
prototyping. TDE includes MATLAB, Simulink, powerful 
hardware, based on the DSP’s, and an additional set of 
software tools for online data visualization (COCKPIT, 
TRACE). Controller boards like DS1104 and DS1103 are 
appropriate for motion control and are fully programmable 
from the Simulink environment. 

Microchip [12] developed a Matlab RCP toolbox for the 
dsPIC33 Digital Signal Controllers (DSC), while Kerhuel 
[10] developed a toolbox which offers support for several 
Microchip microcontrollers and DSCs. 

A free, open source, solution is based on Scilab/Scicos [16] 
and Linux-RTAI [15], which uses the processor of a general 
purpose computer for executing real-time tasks. A real-time 
patch is applied to the standard Linux kernel. A modified 
version of the Scicos code generator, RTAI-Lab generates 
hard real-time code compatible with Linux-RTAI. 
Acquisition cards can be directly integrated into the Scicos 
scheme and into the generated code using drivers provided by 
the COMEDI [1] project. 

Ravn [13] implemented an adaptive control toolbox, for 
Scilab/Scicos, which can be used for RCP. A target supported 
in Scilab/Scicos is the Microchip dsPIC DSC microcontroller 
[4]. Duma [3] presented a system identification and control 
RCP toolbox for Scilab/Scicos. 

In Fig. 2 is presented the bloc diagram for the information 
flow (from concept to model) and for the data flow (between 
PC and the Renesas M32C87 microcontroller), for the 
implemented toolbox. 

Control algorithms, for the M32C87 microcontroller can be 
developed using blocks from the Target for Renesas M32C87 
toolbox and predefined blocks from Simulink or user defined 
blocks. After the validation of the model the  code can be  
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generated using Real-Time Workshop. At the end of the code 
generation process the HEW IDE is automatically started, a 
new HEW project is created, the generated code-source files 
are added to the project, the project is compiled and the 
binary file is downloaded to the target processor. The 
execution of the code can be monitored in real-time using the 
implemented CAN drivers. 
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Fig. 2. Block diagram for the information and data flows for 
the Target for Renesas M32C87, RCP toolbox.  

2. TARGET HARDWARE 

The target hardware for the implemented toolbox is the 
modular development kit ModSDKM16C-CM32C87 (Fig 3). 
It is composed of the generic main board ModSDK-Base and 
the CM32C87 CPU module. 

The CPU module is equipped with a M32C87 processor 
member of the M16C microcontroller’s family. The 
processor is an enhanced version of the M16C kernel with an 
instruction set extended to 32 bits. The maximum operating 
frequency is 32MHz. 

The development board is suited for digital motor application 
due to the following features: three-phase inverter motor 
control unit, output compare unit which can generate 
different PWM waveforms, 2-phase encoder input and time 
measurement   (input capture)   function.   Other peripherals 
of the processor are: 10-bit A/D Converter: 34 channels; 8-bit 
D/A Converter: 2 channels; intelligent I/O. 
 

 
 
Fig. 3. The ModSDKM16C-CM32C87 development board.  

 

The processor has several communication interfaces: 6 serial 
interfaces for synchronous and asynchronous communication, 
I2C, GCI and IrDa; 2 CAN channels. 

The Renesas microcontrollers are supported in several IDEs: 
HEW, IAR, TASKING. Each of this IDE has its own 
integrate compiler for the M16C family. The executables can 
be downloaded on the processor using the E8 or E8a 
debuggers, or the Flash Development Toolkit and M16C 
Flasher software. 

The features presented in this section make the 
ModSDKM16C-CM32C87 development kit an optimal 
solution for an RCP toolbox. 

3. TARGET FOR RENESAS M32C87 

The Simulink toolbox for the M32C87 processor is presented 
in Fig. 4. 

The toolbox contains five libraries: I/O drivers (contains 
drivers for the I/O peripherals of the target processor), DMC 
(contains blocks which implement digital motor control 
algorithms), CAN (contains blocks which implement drivers 
for the CAN bus of the M32C87 processor), SCI contains 
blocks which implement drivers for the serial interface of the 
M32C87 processor) and M32C87 Target Preferences 
(defines a target preference class for the implemented 
toolbox). In the following subsection the DMC library will be 
presented in detail. 

 
 

Fig. 4. Traget for Renesas M32C87. 

3.1 M32C87 Digital Motor Control library 

The DMC library (Fig. 5) contains blocks which implement 
digital motor control algorithms. 
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Fig. 5. DMC library. 
 

The implemented algorithms are optimized for the M32C87 
microcontroller, which is a fixed point processor. The 
hardware multiplier was used and only integer variables 
where declared, in order to obtain the lowest sampling rate, 
without breaking the real-time constrains. 

The library contains the following blocks: M32C87 PID 
(implements a PID controller with antisaturation), M32C87 
Three-Phase Motor Control (configures the M32C87 
processor to generate six complementary PWM signals with 
dead-time) and M32C87 BLDC Motor Control (implements a 
trapezoidal six step control algorithm for a BLDC motor).  

3.1.1 M32C87 PID 

The standard equation of a PID controller is presented below: 
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where )()()( tytyt sp −=ε  is the error signal, spy is the set 
point and y  is the output of the process. 

During years of research several modifications have been 
done to the standard PID controller structure. A pure 
derivative cannot and should not be implemented, because it 
will give a very large amplification of measurement noise. 
The gain of the derivative must thus be limited. This can be 
done by low-pass filtering the derivative term, resulting in a 
limited gain N at high frequencies. N is typically in the range 
of 3-20. The derivative effect will work only on the output of 
the system, and not on the command. Also only a fraction β 
of the command signal will act on the proportional part. 

If the control error )()()( tytyt sp −=ε  is so large that the 
control output saturates the actuator, the feedback path will 
be ”broken”, because the actuator remains saturated even if 
the process output changes. The integrator may then integrate 
up to a very large value. When the error is finally reduced, 
the integral may be so large that it takes a considerable time 

to reach a normal value again. This effect is called integrator 
windup and one way to avoid it is shown in Fig. 6. 

An extra feedback path is provided in the controller by 
measuring the actuator output and forming an error signal u- 
v, which is filtered and fed back through the integrator part of 
the controller. 

Taking into consideration the above remarks, the PID 
algorithm can be described by the following equations: 

 
 

Fig. 6. The structure of the PID controller. 
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where ( )NhTT ddd +=α , ( ) ( )NhTNTK ddpd +=β , 

ispi TTK=β  and tst TT=β . 

A Simulink block is defined by two functions: a MEX 
function written in the C language and a Target Language 
Compiler (TLC) implementation. The MEX function 
configures the number of inputs/outputs ports of the block 
and transfers the parameters specified in the graphical user 
interface of the block in the code generation process. The 
TLC implementation initializes the I/O device, computes the 
value for the output of the block and terminates the program 
by setting the hardware to a “neutral” state. Equations (1) 
were used for TLC implementation of the M32C87 PID 
block. 

3.1.2 M32C87 BLDC Motor Control 

BLDC motors are one of the motor types rapidly gaining 
popularity. BLDC motors are used in industries such as 
Appliances, Automotive, Aerospace, Consumer, Medical, 
Industrial Automation Equipment and Instrumentation. 
BLDC motors do not use brushes for commutation; instead, 
they are electronically commutated. BLDC motors have 
many advantages over brushed DC motors and induction 
motors. 

The M32C87 BLDC Motor Control block implements a 
trapezoidal six step control algorithm. The speed of the motor 
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is controlled using PWM signals. The block uses as 
modulation technique the upper modulation. Only the upper 
transistors of the three phase bridge are controlled using 
PWM signals while for the lower transistors enable/disable 
signals are used.  

The block has an input which represents the duty cycle of the 
PWM signals. The block can determine the speed of the 
motor using the signals from the Hall sensors In this case, the 
block has an output port which represents the speed of the 
BLDC motor in rotation per minute. Also, for speed 
measurement an encoder can be used, in which case the block 
will not have an output port. 

Fig. 7 presents the Function Block Parameters window for 
setting the parameters of the M32C87 BLDC Motor Control 
block. 

For the M32C87 BLDC Motor Control block the following 
parameters have to be specified: the input pins on which the 
signals form the Hall sensors will be applied, the 
commutation sequence, the modules of timer A which will be 
used for the generation of the PWM signals, the period of the 
PWM signals, the pins which will be used for the 
enable/disable of the lower transistors of the three phase 
bridge. 

4. BLDC MOTOR CONTROL 

The test setup presented in Fig. 8 was used to test the Target 
for Renesas M32C87 toolbox. An application for controlling 
the speed of the BLDC motor was implemented. A Hurst-
Emerson motor was used. On the shaft of the motor an 
Agilent HEDS-5500 encoder was mounted. The integrated 
power module IRAMS10UP60A was used as motor drive, 
which is optimized for electronic motor control.  

Unlike a brushed DC motor, the commutation of a BLDC 
motor is controlled electronically. To rotate the BLDC motor, 
the stator windings should be energized in a certain sequence. 
The energizing sequence must be introduce in the Function 
Block Parameters window of the M32C87 BLDC Motor 
Control block by selecting a corresponding option from the 
drop down menu corresponding to Step1, Step2, Step3, Step4, 
Step5 and Step 6 options.   

The block diagram for a closed control system, using the 
Renesas M32C87 microcontroller is presented in Fig. 9. 

The timer A of the microcontroller is used to generate three 
PWM signals for the upper arm transistors of the three phase 
bridge, while three general purpose I/O pins are used to 
generate the enable/disable signals for the lower arm 
transistors of the three phase bridge. 

The speed of the motor can be determined using the signals 
from the Hall sensors. A timer of the microcontroller can be 
used to count the clock cycles between two Hall transitions, 
and using the timer value the speed of the motor can be 
computed. For applications which require a high accuracy of 
the measured speed an encoder must be used. The encoder 
generates two-phase pulse signals. 
 

 
 

Fig. 7. Function Block Parameters window of the M32C87 
BLDC Motor Control block. 
 

 
 

Fig. 8. Test setup. 
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Fig. 9. Block diagram for a closed control system. 

4.2 Controller tuning 

For controller tuning the robust tuning method presented in 
[2] was used. The paper presents a new tuning rule which 
gives a new relationship between Ti and Td in stead of the 
equation Ti = 4Td, proposed in the modified Ziegler-Nichols 
methods [5][6]. The equations for determining the parameters 
of the PID controller are presented below: 
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In order to estimate the phase and the module of the process 
at the specified frequency a closed loop system with relay 
and time delay has to be implemented. The Simulink model 
for the closed loop system with relay and time delay is 
presented in Fig. 10. 

 
Fig. 10. Simulink model for the closed loop system with relay 

and time delay. 

The reference speed is set from the potentiometer of the 
reference board, using the M32C87 ADC block from the I/O 
drivers library. For speed measurement the M32C87 Encoder 
block from the I/O drivers library is used. The signal from 
the encoder is filtered. If the difference between the reference 
speed and the measured one is smaller than zero, the duty 
ratio of the PWM signal will be 92%, while if the error signal 
is greater than zero the duty ratio of the PWM signal will be 
68% thus obtaining a limit cycle. In order to retrieve data 
from the target in real-time, blocks from the CAN library are 
used. A configuration M32C87 CAN Configure block is 
added to the model. It does not connect to any other blocks, 
but stands alone to configure the selected CAN module. An 
M32C87 CAN Transmit block is used for sending the speed 
of the motor over the CAN bus. 

A target preference block has to be added to the model. The 
M32C87 Target block does not connect to any other blocks, 
but stands alone to set the target preferences for the model. 

After the validation of the model the code generation process 
is invoked, and the generated executable file is downloaded 
to the M32C87 processor. 

The application presented in Section 5 is used for 
communication with the target processor over the CAN bus. 
Using this application the limit cycle is logged, and the 
results are presented in Fig. 11. 

 
Fig. 11. Limit cycle of the BLDC motor. 

From Fig. 11 the module and phase of the process are 
estimated, and the parameters of the controller are computed. 

4.3 Controller implementation 

The closed loop Simulink model for BLDC motor speed 
control is presented in Fig. 12. 

The reference speed is a rectangular signal whose level is set 
over the CAN bus, using M32C87 CAN Receive block. The 
reference speed and the measured speed, using an  
M32C87 Encoder block, are applied at the input ports of a 
M32C87 PID block. The M32C87 PID will compute a new 
value for the duty cycle  

of the PWM signal. The reference speed, the measured speed 
and the duty cycle of the PWM signal are concatenated into 
an array and are sent over the CAN bus using a M32C87 
CAN Transmit block. 
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Fig. 12. Simulink block diagram for closed loop control of BLDC Motor. 

After the validation of the model the code generation 
process is invoked, and the generated executable file is 
downloaded to the M32C87 processor 

Using the graphical user interface presented in Section 5, 
the reference speed, the measured speed and the duty cycle 
of the PWM signals can be monitored an analyzed. 

The response of the motor using the determined PID 
controller is presented in the upper graphic of the Fig 15. 
The motor phase voltages during commutation are 
presented in Fig. 13.  

5. INSTRUMENTATION, DATA ACQUISISION AND 
RESULTS 

The target should support a mechanism that can be used to 
observe the target code as it runs in real-time (outside of a 
debugger). One industry-standard approach is to use the 
CAN bus. 

 
 

Fig. 13. Motor phase voltages during commutation. 

For this purpose the CAN library was implemented. Using 
blocks from this library data can be fetched and retrieved 
from the target processor in real-time. 

In order to communicate between the target processor and 
the PC an USB-CAN converter produced by Systec-
Electronic [17] was used. There is an API for the converter 
in the form of an dll  file. 

Using the USBCAN32.dll file a Matalb application for the 
CAN bus monitoring was implemented. After loading the 
dll file in the Matlab environment, using the loadlibrary 
command, functions are called which implement the 
communication with the USB-CAN converter. The 
instrumentation panel implemented is presented in Fig. 14 
and Fig. 15. 

In Fig. 14 is presented the step response of the BLDC 
motor to a rectangular reference signal when the integral 
correction gain is set to zero, and in Fig. 15 the response of 
the motor when the integrator windup is avoided. The 
overshot and the time response are smaller when the 
saturation of the command is avoided. 

6. CONCLUSIONS 

The paper presented the implementation of a rapid control 
prototyping, Target for Renesas M32C87, toolbox for 
Matlab/Simulink, which generates real-time C code for the 
Renesas M32C87 microcontroller. For this processor until 
now there was not a RCP toolbox. Using the toolbox one 
can generate code for the M32C87 processor without 
knowing in detail the architecture and peripherals of the 
microcontroller. 

Another contribution of the paper is the implementation of 
a block for BLDC motor control, which is used for 
automatic code generation. Using this block one does not 
have to implement the control algorithm manually. 

A closed loop control system for BLDC motor speed 
control was implemented. For the controller tuning, a 
robust tuning method based on the flat phase criteria was 
used. For this method in the literature there were only 
results proved by simulation. A contribution of the paper is 
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the utilization with success of this method for a BLDC 
motor. 
 

 
 
Fig. 14. Instrumentation panel for a PID controller with 
integrator windup. 
 

 
 

Fig. 15. Instrumentation panel for a PID controller without 
integrator windup. 

For real-time data exchange between the target processor 
and the PC, the CAN bus was used. A CAN library which 
contains blocks for sending/receiving messages over the 
CAN bus, and a graphical user interface for control and 
monitoring of the CAN bus were implemented. 
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