
CEAI, Vol.12, No.1, pp. 55-61, 2010 Printed in Romania

BLDC motor control using rapid control prototyping

Radu Duma, Mirela Truşcă, Petru Dobra

Technical University of Cluj–Napoca, Automatic Control Department

Abstract: The paper presents a Rapid Control Prototyping (RCP) toolbox, Target for Renesas M32C87,
for Matlab/Simulink which can be used to generate real-time C code for the Renesas M32C87
microcontroller. The RCP toolbox contains a digital motor control library which implements a brushless
direct current (BLDC) motor control algorithm. A practical application for closed loop speed control of
brushless direct current motor is presented.

Keywords: rapid control prototyping, automatic code generation, real-time, M32C87 microcontroller,
PID, brushless direct current motor

1. INTRODUCTION

Developing controllers for applications (electrical drive
systems) means large expenditure, when performed with
usual development methods. The workload comprises
development of a mathematical model as well as algorithm
design and implementation, off-line simulation, and
optimization. The whole process has to be restarted on
occurring errors or divergences, which makes the
development process time consuming and costly [8].

RCP is a way out of this situation, especially if the control
algorithm is complex and a lot of iteration steps are
necessary. RCP requires two components: a Computer Aided
Control System Design (CACSD) software and a dedicated
hardware capable of running hard real-time tasks (Fig.1).

Fig. 1. General architecture of an RCP system.

CACSD tools are extensively used to generate real-time
code automatically. The graphical programming approach
removes the need to write software by hand and allows the
engineer to focus instead on improving functionality and
performance. Complete system design is carried out within
the simulation environment.

With the great diversity of applications, a development
environment must be flexible and provide exactly the
functionality necessary for efficient problem solving.
Mathworks' Simulink [11] software is such a graphical
modeling tool. MathWorks developed toolboxes for some
wildly used targets: Motorola MPC555, Infinion C166,

C2000 and C6000 DSP families from Texas Instruments.
Rebeschiess [14] developed the MICROS toolbox for
standard 80C166 microcontrollers. A DSP based RCP system
for engineering education and research using as CACSD tool
Matlab/Simulink is presented in [9].
Hanselmann [7] from the dSPACE GmbH presented ’Total
Development Environment’ (TDE) for rapid control
prototyping. TDE includes MATLAB, Simulink, powerful
hardware, based on the DSP’s, and an additional set of
software tools for online data visualization (COCKPIT,
TRACE). Controller boards like DS1104 and DS1103 are
appropriate for motion control and are fully programmable
from the Simulink environment.

Microchip [12] developed a Matlab RCP toolbox for the
dsPIC33 Digital Signal Controllers (DSC), while Kerhuel
[10] developed a toolbox which offers support for several
Microchip microcontrollers and DSCs.

A free, open source, solution is based on Scilab/Scicos [16]
and Linux-RTAI [15], which uses the processor of a general
purpose computer for executing real-time tasks. A real-time
patch is applied to the standard Linux kernel. A modified
version of the Scicos code generator, RTAI-Lab generates
hard real-time code compatible with Linux-RTAI.
Acquisition cards can be directly integrated into the Scicos
scheme and into the generated code using drivers provided by
the COMEDI [1] project.

Ravn [13] implemented an adaptive control toolbox, for
Scilab/Scicos, which can be used for RCP. A target supported
in Scilab/Scicos is the Microchip dsPIC DSC microcontroller
[4]. Duma [3] presented a system identification and control
RCP toolbox for Scilab/Scicos.

In Fig. 2 is presented the bloc diagram for the information
flow (from concept to model) and for the data flow (between
PC and the Renesas M32C87 microcontroller), for the
implemented toolbox.

Control algorithms, for the M32C87 microcontroller can be
developed using blocks from the Target for Renesas M32C87
toolbox and predefined blocks from Simulink or user defined
blocks. After the validation of the model the code can be

56 CONTROL ENGINEERING AND APPLIED INFORMATICS

generated using Real-Time Workshop. At the end of the code
generation process the HEW IDE is automatically started, a
new HEW project is created, the generated code-source files
are added to the project, the project is compiled and the
binary file is downloaded to the target processor. The
execution of the code can be monitored in real-time using the
implemented CAN drivers.

Simulink and Real-Time Workshop

Target for Renesas M32C87

High-performance
Embedded

Workshop (HEW)

ModSDKM16C-CM32C87 Evaluation Board

CAN monitoring
application

Windows COM
application for HEW

PC

Microcontroller

Concept

Implementation

Fig. 2. Block diagram for the information and data flows for
the Target for Renesas M32C87, RCP toolbox.

2. TARGET HARDWARE

The target hardware for the implemented toolbox is the
modular development kit ModSDKM16C-CM32C87 (Fig 3).
It is composed of the generic main board ModSDK-Base and
the CM32C87 CPU module.

The CPU module is equipped with a M32C87 processor
member of the M16C microcontroller’s family. The
processor is an enhanced version of the M16C kernel with an
instruction set extended to 32 bits. The maximum operating
frequency is 32MHz.

The development board is suited for digital motor application
due to the following features: three-phase inverter motor
control unit, output compare unit which can generate
different PWM waveforms, 2-phase encoder input and time
measurement (input capture) function. Other peripherals
of the processor are: 10-bit A/D Converter: 34 channels; 8-bit
D/A Converter: 2 channels; intelligent I/O.

Fig. 3. The ModSDKM16C-CM32C87 development board.

The processor has several communication interfaces: 6 serial
interfaces for synchronous and asynchronous communication,
I2C, GCI and IrDa; 2 CAN channels.

The Renesas microcontrollers are supported in several IDEs:
HEW, IAR, TASKING. Each of this IDE has its own
integrate compiler for the M16C family. The executables can
be downloaded on the processor using the E8 or E8a
debuggers, or the Flash Development Toolkit and M16C
Flasher software.

The features presented in this section make the
ModSDKM16C-CM32C87 development kit an optimal
solution for an RCP toolbox.

3. TARGET FOR RENESAS M32C87

The Simulink toolbox for the M32C87 processor is presented
in Fig. 4.

The toolbox contains five libraries: I/O drivers (contains
drivers for the I/O peripherals of the target processor), DMC
(contains blocks which implement digital motor control
algorithms), CAN (contains blocks which implement drivers
for the CAN bus of the M32C87 processor), SCI contains
blocks which implement drivers for the serial interface of the
M32C87 processor) and M32C87 Target Preferences
(defines a target preference class for the implemented
toolbox). In the following subsection the DMC library will be
presented in detail.

Fig. 4. Traget for Renesas M32C87.

3.1 M32C87 Digital Motor Control library

The DMC library (Fig. 5) contains blocks which implement
digital motor control algorithms.

CONTROL ENGINEERING AND APPLIED INFORMATICS 57

Fig. 5. DMC library.

The implemented algorithms are optimized for the M32C87
microcontroller, which is a fixed point processor. The
hardware multiplier was used and only integer variables
where declared, in order to obtain the lowest sampling rate,
without breaking the real-time constrains.

The library contains the following blocks: M32C87 PID
(implements a PID controller with antisaturation), M32C87
Three-Phase Motor Control (configures the M32C87
processor to generate six complementary PWM signals with
dead-time) and M32C87 BLDC Motor Control (implements a
trapezoidal six step control algorithm for a BLDC motor).

3.1.1 M32C87 PID

The standard equation of a PID controller is presented below:

++= ∫

t

d
i

p dt
tdTd

T
tKtu

0

)()(1)()(ε
ττεε

where)()()(tytyt sp −=ε is the error signal, spy is the set
point and y is the output of the process.

During years of research several modifications have been
done to the standard PID controller structure. A pure
derivative cannot and should not be implemented, because it
will give a very large amplification of measurement noise.
The gain of the derivative must thus be limited. This can be
done by low-pass filtering the derivative term, resulting in a
limited gain N at high frequencies. N is typically in the range
of 3-20. The derivative effect will work only on the output of
the system, and not on the command. Also only a fraction β
of the command signal will act on the proportional part.

If the control error)()()(tytyt sp −=ε is so large that the
control output saturates the actuator, the feedback path will
be ”broken”, because the actuator remains saturated even if
the process output changes. The integrator may then integrate
up to a very large value. When the error is finally reduced,
the integral may be so large that it takes a considerable time

to reach a normal value again. This effect is called integrator
windup and one way to avoid it is shown in Fig. 6.

An extra feedback path is provided in the controller by
measuring the actuator output and forming an error signal u-
v, which is filtered and fed back through the integrator part of
the controller.

Taking into consideration the above remarks, the PID
algorithm can be described by the following equations:

Fig. 6. The structure of the PID controller.

))()(()(nynyKnP spp −= β

))()1(()1()(nynynDnD dd −−+−= βα (1)

)()()()(nDnInPnv ++=
))()(())()(()()1(nvnunynynInI tspi −+−+=+ ββ

where ()NhTT ddd +=α , () ()NhTNTK ddpd +=β ,

ispi TTK=β and tst TT=β .

A Simulink block is defined by two functions: a MEX
function written in the C language and a Target Language
Compiler (TLC) implementation. The MEX function
configures the number of inputs/outputs ports of the block
and transfers the parameters specified in the graphical user
interface of the block in the code generation process. The
TLC implementation initializes the I/O device, computes the
value for the output of the block and terminates the program
by setting the hardware to a “neutral” state. Equations (1)
were used for TLC implementation of the M32C87 PID
block.

3.1.2 M32C87 BLDC Motor Control

BLDC motors are one of the motor types rapidly gaining
popularity. BLDC motors are used in industries such as
Appliances, Automotive, Aerospace, Consumer, Medical,
Industrial Automation Equipment and Instrumentation.
BLDC motors do not use brushes for commutation; instead,
they are electronically commutated. BLDC motors have
many advantages over brushed DC motors and induction
motors.

The M32C87 BLDC Motor Control block implements a
trapezoidal six step control algorithm. The speed of the motor

58 CONTROL ENGINEERING AND APPLIED INFORMATICS

is controlled using PWM signals. The block uses as
modulation technique the upper modulation. Only the upper
transistors of the three phase bridge are controlled using
PWM signals while for the lower transistors enable/disable
signals are used.

The block has an input which represents the duty cycle of the
PWM signals. The block can determine the speed of the
motor using the signals from the Hall sensors In this case, the
block has an output port which represents the speed of the
BLDC motor in rotation per minute. Also, for speed
measurement an encoder can be used, in which case the block
will not have an output port.

Fig. 7 presents the Function Block Parameters window for
setting the parameters of the M32C87 BLDC Motor Control
block.

For the M32C87 BLDC Motor Control block the following
parameters have to be specified: the input pins on which the
signals form the Hall sensors will be applied, the
commutation sequence, the modules of timer A which will be
used for the generation of the PWM signals, the period of the
PWM signals, the pins which will be used for the
enable/disable of the lower transistors of the three phase
bridge.

4. BLDC MOTOR CONTROL

The test setup presented in Fig. 8 was used to test the Target
for Renesas M32C87 toolbox. An application for controlling
the speed of the BLDC motor was implemented. A Hurst-
Emerson motor was used. On the shaft of the motor an
Agilent HEDS-5500 encoder was mounted. The integrated
power module IRAMS10UP60A was used as motor drive,
which is optimized for electronic motor control.

Unlike a brushed DC motor, the commutation of a BLDC
motor is controlled electronically. To rotate the BLDC motor,
the stator windings should be energized in a certain sequence.
The energizing sequence must be introduce in the Function
Block Parameters window of the M32C87 BLDC Motor
Control block by selecting a corresponding option from the
drop down menu corresponding to Step1, Step2, Step3, Step4,
Step5 and Step 6 options.

The block diagram for a closed control system, using the
Renesas M32C87 microcontroller is presented in Fig. 9.

The timer A of the microcontroller is used to generate three
PWM signals for the upper arm transistors of the three phase
bridge, while three general purpose I/O pins are used to
generate the enable/disable signals for the lower arm
transistors of the three phase bridge.

The speed of the motor can be determined using the signals
from the Hall sensors. A timer of the microcontroller can be
used to count the clock cycles between two Hall transitions,
and using the timer value the speed of the motor can be
computed. For applications which require a high accuracy of
the measured speed an encoder must be used. The encoder
generates two-phase pulse signals.

Fig. 7. Function Block Parameters window of the M32C87
BLDC Motor Control block.

Fig. 8. Test setup.

CONTROL ENGINEERING AND APPLIED INFORMATICS 59

Fig. 9. Block diagram for a closed control system.

4.2 Controller tuning

For controller tuning the robust tuning method presented in
[2] was used. The paper presents a new tuning rule which
gives a new relationship between Ti and Td in stead of the
equation Ti = 4Td, proposed in the modified Ziegler-Nichols
methods [5][6]. The equations for determining the parameters
of the PID controller are presented below:

()
() ()()cmc

m
p

jPjP
K

ωγω

γ

∠−+
=

2tan1

cos

() ()

Φ+

Φ+

−
=

cpcpc

i

ss
T

ωωω
^

2
^

tantan

2

ip

pi

Twws
wswT

Td 2
00

00

)(2
)(2 ∆++−

=

where: mγ is the phase margin, ()cm jP ωγ ∠−=Φ
^

,

)(4)(8 0
22

0
2

00
2
0

2 wswTwTwswT piipi −−=∆ ,

|])(|ln||[ln2)()(000 jwPKjwPws gp −+∠≈
π

.

In order to estimate the phase and the module of the process
at the specified frequency a closed loop system with relay
and time delay has to be implemented. The Simulink model
for the closed loop system with relay and time delay is
presented in Fig. 10.

Fig. 10. Simulink model for the closed loop system with relay

and time delay.

The reference speed is set from the potentiometer of the
reference board, using the M32C87 ADC block from the I/O
drivers library. For speed measurement the M32C87 Encoder
block from the I/O drivers library is used. The signal from
the encoder is filtered. If the difference between the reference
speed and the measured one is smaller than zero, the duty
ratio of the PWM signal will be 92%, while if the error signal
is greater than zero the duty ratio of the PWM signal will be
68% thus obtaining a limit cycle. In order to retrieve data
from the target in real-time, blocks from the CAN library are
used. A configuration M32C87 CAN Configure block is
added to the model. It does not connect to any other blocks,
but stands alone to configure the selected CAN module. An
M32C87 CAN Transmit block is used for sending the speed
of the motor over the CAN bus.

A target preference block has to be added to the model. The
M32C87 Target block does not connect to any other blocks,
but stands alone to set the target preferences for the model.

After the validation of the model the code generation process
is invoked, and the generated executable file is downloaded
to the M32C87 processor.

The application presented in Section 5 is used for
communication with the target processor over the CAN bus.
Using this application the limit cycle is logged, and the
results are presented in Fig. 11.

Fig. 11. Limit cycle of the BLDC motor.

From Fig. 11 the module and phase of the process are
estimated, and the parameters of the controller are computed.

4.3 Controller implementation

The closed loop Simulink model for BLDC motor speed
control is presented in Fig. 12.

The reference speed is a rectangular signal whose level is set
over the CAN bus, using M32C87 CAN Receive block. The
reference speed and the measured speed, using an
M32C87 Encoder block, are applied at the input ports of a
M32C87 PID block. The M32C87 PID will compute a new
value for the duty cycle

of the PWM signal. The reference speed, the measured speed
and the duty cycle of the PWM signal are concatenated into
an array and are sent over the CAN bus using a M32C87
CAN Transmit block.

60 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 12. Simulink block diagram for closed loop control of BLDC Motor.

After the validation of the model the code generation
process is invoked, and the generated executable file is
downloaded to the M32C87 processor

Using the graphical user interface presented in Section 5,
the reference speed, the measured speed and the duty cycle
of the PWM signals can be monitored an analyzed.

The response of the motor using the determined PID
controller is presented in the upper graphic of the Fig 15.
The motor phase voltages during commutation are
presented in Fig. 13.

5. INSTRUMENTATION, DATA ACQUISISION AND
RESULTS

The target should support a mechanism that can be used to
observe the target code as it runs in real-time (outside of a
debugger). One industry-standard approach is to use the
CAN bus.

Fig. 13. Motor phase voltages during commutation.

For this purpose the CAN library was implemented. Using
blocks from this library data can be fetched and retrieved
from the target processor in real-time.

In order to communicate between the target processor and
the PC an USB-CAN converter produced by Systec-
Electronic [17] was used. There is an API for the converter
in the form of an dll file.

Using the USBCAN32.dll file a Matalb application for the
CAN bus monitoring was implemented. After loading the
dll file in the Matlab environment, using the loadlibrary
command, functions are called which implement the
communication with the USB-CAN converter. The
instrumentation panel implemented is presented in Fig. 14
and Fig. 15.

In Fig. 14 is presented the step response of the BLDC
motor to a rectangular reference signal when the integral
correction gain is set to zero, and in Fig. 15 the response of
the motor when the integrator windup is avoided. The
overshot and the time response are smaller when the
saturation of the command is avoided.

6. CONCLUSIONS

The paper presented the implementation of a rapid control
prototyping, Target for Renesas M32C87, toolbox for
Matlab/Simulink, which generates real-time C code for the
Renesas M32C87 microcontroller. For this processor until
now there was not a RCP toolbox. Using the toolbox one
can generate code for the M32C87 processor without
knowing in detail the architecture and peripherals of the
microcontroller.

Another contribution of the paper is the implementation of
a block for BLDC motor control, which is used for
automatic code generation. Using this block one does not
have to implement the control algorithm manually.

A closed loop control system for BLDC motor speed
control was implemented. For the controller tuning, a
robust tuning method based on the flat phase criteria was
used. For this method in the literature there were only
results proved by simulation. A contribution of the paper is

CONTROL ENGINEERING AND APPLIED INFORMATICS 61

the utilization with success of this method for a BLDC
motor.

Fig. 14. Instrumentation panel for a PID controller with
integrator windup.

Fig. 15. Instrumentation panel for a PID controller without
integrator windup.

For real-time data exchange between the target processor
and the PC, the CAN bus was used. A CAN library which
contains blocks for sending/receiving messages over the
CAN bus, and a graphical user interface for control and
monitoring of the CAN bus were implemented.

REFERENCES

Comedi , http://www.comedi.org.

Chen, Y., Moore, K. L., “Relay feedback tuning of robust
PID controllers with iso-damping property”, IEEE

Transactions on Systems, Man, and Cybernetics, Part
B, vol. 35, pp. 23_31, Feb. 2005.

Duma, R., Dobra, P., Trusca, M., Dumitrache, D., Sita, I.
V., “Rapid Control Prototyping Educational Toolbox
for Scilab/Scicos”, in Proc. of European Control
Conference 2009, pp. 4611_4616, 23_26, 2009.

Evidence , www.evidence.eu.com.

Emerson , http://www.emersonmotors.com

Hang, C. C., Astrom, K. J., Ho, W. K., “Refinements of
the Ziegler-Nicholstuning formula”, IEEE
Proceedings D Control Theory and Applications, vol.
138, pp. 111-118, Mar. 1991.

Hagglund, T., Astrom, K. J., PID Controllers: Theory,
Design, and Tuning. ISA -The Instrumentation,
Systems, and Automation Society, 2nd ed., 1995.

Hanselman, H., “DSP in control: the total development
environment,” International Conference on Signal
Processing Applications, Boston, MA, 1995.

Hanselman, H., “Automotive control: from concept to
experiment to product,” Proc. IEEE International
Symposium on Computer-Aided Control System
Design, pp. 129_134, Sept. 15_18, 1996.

Hercog, D., Curkovic, M., Jezernik, K., “DSP Based
Rapid Control Prototyping Systems for Engineering
Education and Research”, Proceedings of the 2006
IEEE Conference on computer Aided Control Systems
Design, Munich, Germany, October 4-6, 2006.

Kerhuel, www.kerhuel.eu.

MathWorks , http://www.mathworks.com.

Microchip , http://www.microchip.com

Ravn, O., “Adaptive control using the adaptive toolbox-
TAT for Scilab/Scicos”, 14th IFAC Symposium on
System Identification, Newcastle, Australia, 2006.

Rebeschiess, S., ”MIRCOS- microcontroller-based
real time control system toolbox for use with
Matlab/Simulink”. Proc. IEEE Int. Symp.Computer
Aided Control System Design, August 1999, pp. 267-
272.

Renesas, “Driving of a 3-phase BLDC Motor by 120-
Degree Trapezoidal Wave Commutation using HALL
Sensors”

RTAI, www.rtai.org.

Scilab, www.scilab.org.

SystecElectronic, www.systec.com.

Ziegler, J., Nichols, N., “Optimum settings for automatic
controllers,” Trans. ASME, pp. 759–768, 1942

http://www.comedi.org
http://www.evidence.eu.com
http://www.emersonmotors.com
http://www.kerhuel.eu
http://www.mathworks.com
http://www.microchip.com
http://www.rtai.org
http://www.scilab.org
http://www.systec.com

