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Abstract: Customers are now also worrying about restricting factors in the Electric Vehicle industry 

like battery life, charge station location, power grid capacity, restricted drive range, and slow battery 

charging. However, there is a rise in Electric vehicles and Emergency Solar-to-Electric Vehicle Battery 

Charger (SEBC) is recommended. It offers a practical way to charge Electric cars in critical situations. 

Based on the state of charge (SOC), capacities, and vital factors, the proposed smart charger can 

charge another Electric vehicle. Smart chargers can control Output voltages and immediately deliver 

current into an Electric vehicle. These qualities are achieved by the model-free non-linear integral. The 

Back-stepping controller (MF-NIBC) is used for managing battery charger Output voltage. By using 

the critic networks with the deep deterministic policy gradient (DDPG), the MF-NIBC controller 

is adjusted.  Though many solutions to these limitations have been put forth, it offers low efficiency and 

minimum cost-effectiveness. Therefore, this study proposes a brand-new battery charger called the 

Emergency Solar-to-Electric Vehicle Battery Charger (SEBC). Last but not least, real-time experiments 

based on the OPAL-RT configuration to verify the viability and application of the suggested Solar-to-

Electric vehicle battery charging features. 

Keywords: Electric vehicle, Quick charger, Sliding mode controller, System learning, Dual Active Bridge. 

1. INTRODUCTION 

The transport industry is rapidly switching from gas-powered 

cars to electric vehicles due to the pollution produced by these 

vehicles and their influence on climate change (Iyer et al., 

2018). The Electric vehicle encourages low Energy use and 

minimizes carbon emission (Fuinhas et al., 2021; Gryparis et 

al., 2020). Yet, it includes the battery's life span, speed of the 

charger, and access to the station for charging and the 

Electric vehicle industry usage is constrained by costs and 

travel lengths (Asna et al., 2021; Tu et al., 2019). The restricted 

range of EVs is the most important obstacle to their broad 

adoption (Krishna, 2021). People are concerned about their 

Electric Vehicle's battery running out while on long trips in 

places with no charging options.  
 

To handle this, charging spots have been installed in both city 

and country areas. Yet, it is not enough to serve all EVs and 

these charging points are scant and somewhat apart in rural 

regions. Additionally, it is not cost-efficient (Sheng et al., 

2021). Using this technique, EVs can assist one another by 

sharing 5–15 percent of the charge in their batteries in a critical 

situation. But, battery-specific details like charge condition, 

Voltages, current, capacities, and charging time are essential 

to assuring a secure and convenient system.  Notably, the 

charger and charging procedure should have been made more 

reliable.  By using smart controller, it can be accomplished. 

Some control strategies include Model prediction controller 

(MPC) (Li et al., 2019), slide mode controller (SMC) (Ahmed 

et al., 2021; Mallik et al., 2018), Active Disruption Rejections 

Controller (ADRC) (Aboudrar et al., 2020), Backstepping 

controller (Song et al., 2021), and Long Short-Term Memory 

(LSTM) neural networks (Chang et al., 2021), have been 

devised by modern researchers for use with EV chargers. 

However, the majority of powerful controllers necessitate an 

in-depth recognition of the system model. These techniques 

are incapable of correctly stabilizing the Electric Vehicle 

charger when variability and unmodeled dynamics occur. To 

address this issue, Model-free Backstepping control can be 

used on systems without defining the model (Younes et al., 

2016). Also, it includes certain parameters and it is developed 

using a variety of techniques, such as fuzzy logic, Meta 

heuristic algorithm, and neural network   Zeitouni et al., 2020; 

(Gheisarnejad & Khooban, 2019) Wu et al., 2021).  In(Precup 

et al., 2022), the iterative Feedback Tuning, Intelligent PID 

Controllers, Model-Free Sliding Mode Controllers, Model-

Free Adaptive Controllers, Hybrid Model-Free and Model-

Free Adaptive Virtual Reference Feedback Tuning controllers 

and Hybrid model-free and model-free adaptive fuzzy 

controllers were used for tuning process which was observed 

and studied. This procedure deals with the structural, 

operational, and behavioral components of the company, 

perceived as an intricate dynamic system, suggesting a design 

and administration technique modeled after the human brain, 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                            70      

in which the problem solving is accomplished through 

Perception — Memory — Learning and Action formation 

mechanisms(Dumitrache et al., 2021). The classical PI control 

technique based on Gradient Descent (GD) and the RL-based 

control approach utilizing the metaheuristic Particle Swarm 

Optimization (PSO) algorithm are compared. Experiments are 

conducted on a nonlinear servo system laboratory setup. Each 

technique is evaluated on its ability to solve the optimal 

reference tracking control problem for a laboratory position 

control system(Zamfirache et al., 2022). A novel testing 

methodology has been presented which is appropriate for multi 

rotor drones, featuring adjustable control parameters and real-

time tracking of sensor data via wireless communication. It has 

the benefit of unrestricted motion along all axes without 

elevation motion, compared to already existing testing 

systems(Ucgun et al., 2022). 
 

According to literature, the previous study showed clearly that 

the controller used for stability analysis and electric vehicle 

applications was not suitable for tuning. The main challenge 

posed by the combination of model-free and critic RL control 

is that each has its own set of strengths and weaknesses. 

Model-free RL is adept at adapting rapidly to changes in the 

environment and can learn from experience without much 

prior knowledge. Nevertheless, it is prone to weak 

generalisation performance and can take a long time to achieve 

convergence. Critic RL on the other hand learns faster, but 

demands a model of the environment to make predictions and 

updates. To incorporate these two approaches effectively, it is 

necessary to acquire sufficient data to create an accurate model 

of the environment, adjust the learning parameters to achieve 

a balance between the two approaches, and make sure that the 

model-free and critic RL do not compete but rather 

collaborate. The previous systems lagged behind in terms of 

voltage and current adjustment in the charging system. 

Therefore, the proposed system overcomes the above issues 

with the following motivations.  
 

This study suggests and motivates an emergency Solar to 

Electric Vehicle Battery Charger (SEBC) as a practical way to 

recharge EVs on-road travel. In Figure 1, the SEBC system’s 

concept is shown. 
 

 

Fig. 1. Emergency Solar to Electric Vehicle Battery Charger. 

By using this environmentally safe Electric Vehicle, each can 

contribute five to fifteen percent of the batteries energy to help 

others in emergency situations. The output voltage and the 

current fed into the Electric vehicles are instantly adjusted in 

the suggested more innovative charging system. A Non-linear 

integral Back stepping controller (MF-NIBC) built on Deep 

Reinforcements Learnings (DRL) is used in the stability 

of electric vehicles. On the OPAL-RT platform, a real-time 

test is performed to see the applicability of the MF-NIBC 

controller. 

This paper's section is organized as follows: The suggested 

SEBC's power structure, which consists of a unidirectional 

Dual Active Bridging (DAB) chopper, is discussed in 

Section 2. Section 3 presents the MF-NIBC design developed 

by DRL. The three scenarios real-time assertions are shown in 

Section 4 to verify the recommended controller. Finally, 

Section 5 brings the conclusion of the paper. 

2. SUGGESTED SYSTEM LAYOUT 

2.1. Power Layout of the Suggested SEBC 

The suggested SEBC's power arrangement, which uses a 

unidirectional Dual Active Bridging (DAB) chopper, is shown 

in Figure 2. The dual active bridging design for DC-DC 

converter offers excellent efficiencies, great performances, an 

inbuilt soft-switching characteristic, more power density, and 

electrolytic separation (Feng et al., 2022). Additionally, the 

DAB has the ability to deliver unidirectional power flow, 

allowing for dynamic interaction with energy storage systems. 

The two full bridge circuits are present in the DAB DC to DC 

converter and are coupled by a coupler inductor and an 

isolation transformer. The transformer leakage inductance 

supports the coupling inductor. The corresponding terminals 

of every bridge in the dual active bridging chopper produce 

square wave voltages.  By properly correcting the coupling 

inductor, the power flow can be controlled, which flows from 

one DC source to another. 

The voltage that is generated by the two bridges is shown as 

V1 and V2, accordingly in Figure 2. In that iL is the coupling 

inductor current, iout is the output current, and iin is the input 

current. The lag time between V1 and V2 to regulate power 

flow is equal to
𝑑𝑇𝑠

2
, in which d stands for duty cycle and Ts 

stands for switch period. The suggested SEBC chooses the 

best operation mode depending on the battery voltage level in 

the Electric Vehicles. In buck or boost modes, the DAB DC-

DC converter must have functioned. The output current can be 

shown in the following when the converter is in buck mode. 

𝐼𝑜𝑢𝑡 =
𝑛𝑉𝑖𝑛𝑇𝑠

2𝐿
 (𝑑 − 𝑑2)               (1) 

Here n is the transformer's turn ratio. In Eq. (1), it is clear that 

a proper duty cycle can be used to regulate the SEBC's output 

current. Additionally, the converter's output curve could be 

written as follows in the boost mode and it is represented in 

Eq. (2). 

 𝐼𝑜𝑢𝑡 =
𝑛𝑉𝑖𝑛𝑇𝑠

2𝐿
 (𝑑2 − 𝑑)            (2) 

 



71                                                                                                                 CONTROL ENGINEERING AND APPLIED INFORMATICS  

 

Fig. 2. Suggested SEBC's power Arrangement with DAB DC to DC converter. 

Further information regarding the operational state of the DAB 

DC-DC converter occurs in (Naayagi et al., 2012).In this, 

dynamic stability analyses are carried out using the smaller 

signal model and the linear transfer functions. Figure 3 shows 

a simplified version of Figure 2, where 𝑅𝑠 stands for the 

source's internal resistance. The following formula (Bai et al., 

2010) (Vasuki et al., 2021) can be used to represent the smaller 

signal model of the DAB simple model which is represented 

in Eq. (3). 

(

𝑑𝑣1

𝑑𝑡
𝑑𝑣2

𝑑𝑡

) = (
−

1

𝑅𝑠𝐶1

𝑑2−𝑑

2𝐿𝑓𝑠𝐶1

−𝑑2+𝑑

2𝐿𝑓𝑠𝐶2
−

1

𝑅𝑠𝐶2

) (
𝑉1

𝑉2
) +

(

1

𝑅𝑠𝐶1

2𝑑−1

2𝐿𝑓𝑠𝐶1
(𝑉2)

0
−2𝑑+1

2𝐿𝑓𝑠𝐶2
(𝑉1)

) (
𝑉𝑠

∆ ∗ 𝑑
)           (3) 

Where Δ is the relatively % of the variation in the 2 square 

wave phase shifts. The following are some ways that the phase 

shifting duty cycle variations could affect the output voltage 

rippling content: 

Δ𝑉2

𝑉2
=

−2𝑑+1

4𝐿𝑓𝑠𝐶2
∗

𝑉1

𝑉2
                          (4) 

According to Eq. (4), the DAB's stability may be ensured, and 

its quick, flexible response and absence of steady-state error 

can be controlled. In  (Anitha et al., 2022) contains additional 

information regarding the stability of the DAB DC-DC 

converter. The technique for the controller design is provided 

in the following section. 

 

Fig. 3. Simplify DAB DC to DC Converter circuit. 

2.2. Photovoltaic modelling 

In terms of robustness with non-rotating equipment, high 

durability, good efficacy, and minimal maintenance among the 

many energy sources, solar PV is the best alternative option 

for producing power from PV without causing climate change. 

Cells in the PV system are connected in series to provide the 

required voltages. The photovoltaic plane of the final voltage 

is computed by combining the terminal voltage and the 

current. The corresponding model of a solar module is shown 

in Figure 4. 

Eq. (5) and (6) are utilized to determine the output voltage and 

current requirements for solar panels. 

𝐼𝑐𝑝 = 𝐼𝑠𝑐 − 𝐼𝑜 {𝑒𝑥𝑝 [
𝑄

𝑇𝐾𝐴
(𝑉𝑐𝑝 + 𝐼𝑐𝑝𝑅𝑖𝑛𝑡) − 1]} −

𝑉𝑐𝑝+𝐼𝑠𝑐𝑅𝑖𝑛𝑡

𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙

              (5) 

𝑉𝑐𝑝 =
𝑇𝐾𝐴

𝑄
ln (

𝐼𝑠𝑐

𝐼𝑐𝑝
+ 1)            (6) 

In this equation, Q stands for the charged particles, K for the 

diode component and Boltzmann equivalence, T for the 

temperatures (Kelvin), RSE for the series resistance, 𝑅𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  

for the parallel resistance, 𝐼𝑠𝑐  for the current, and 𝑉𝑐𝑝 is cell 

potential. Lastly, Eq. (7) is used to calculate the solar panel's 

output power. 

𝑃𝑠𝑜𝑙𝑎𝑟𝑃𝑉 = 𝑁𝑠𝑜𝑙𝑎𝑟𝑃𝑉 ∗ 𝐼𝑠𝑜𝑙𝑎𝑟𝑃𝑉 ∗ 𝑉𝑠𝑜𝑙𝑎𝑟𝑃𝑉           (7) 

Where 𝑃𝑠𝑜𝑙𝑎𝑟𝑃𝑉  stands for photovoltaic output, 𝐼𝑠𝑜𝑙𝑎𝑟𝑃𝑉  for 

solar DC output current, 𝑁𝑠𝑜𝑙𝑎𝑟𝑃𝑉  for the number of solar cells, 

and 𝑉𝑠𝑜𝑙𝑎𝑟𝑃𝑉  for output voltages. Because of the limited 

capacity and consumption, peak power extraction from the 

system doesn't happen at all. To get the most power out of PV 

under various loads, maximum power point tracking is 

frequently permitted. There are various methods; the 

recommended method employs the incremental conductance 

technique. 
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Fig. 4. Equivalent model of a solar module. 

3. DEEP REINFORCEMENT LEARNING-BASED 

DESIGNING OF NOVEL ASSORT NON-LINEAR 

CONTROLLERS 

The primary control goal is to react dynamically quickly and 

with zero steady-state error to govern the system of the 

researched SEBC. In this part, a deep reinforcement learning 

(DRL) algorithm-based Model Free Non-linear Integral Back 

stepping control (MF-NIBC) approach is recommended. 

Stabilization of MF-NIBC applied to the power converter 

system is examined using the basic Lyapunov theory approach.  

The Lyapunov functions used for practical purposes have 

certain restrictions and correctness. One limitation is that these 

functions are only suitable for systems having particular 

features, such as steadiness, boundedness, and continuity. If 

the system does not exhibit these elements, then the Lyapunov 

function may be ineffective. Plus, the Lyapunov function must 

be selected cautiously so that the system is steady. If a 

Lyapunov function is chosen that is too intricate or too 

straightforward, it could be inadequate in depicting the 

dynamics of the system. Lastly, the Lyapunov function must 

be decided on so that it is easy to execute and can be calculated 

precisely. If the Lyapunov function is too intricate to carry out, 

or if it is not estimated accurately, then the outcomes may be 

inaccurate. 

3.1. Model Free Integral Back Stepping Control (Mf-Nibc) 

Method Formation 

The expression "model-free" is utilized to portray an 

assortment of procedures for tackling issues in an assortment 

of fields, including machine learning, reinforcement learning, 

artificial intelligence, and robotics. It is regularly utilized to 

allude to techniques that don't require a definite model of an 

arrangement or condition, however rather depend on trial and 

error or other learning-based techniques. Model-free strategies 

are regularly looked at with model-based strategies, which 

depend on express numerical models of the condition to make 

forecasts and choices. 

Model-free control is a technique for tuning a control system 

without having to employ a mathematical model of the system. 

This form of control commonly utilizes a trial-and-error 

procedure, adjusting the controller parameters to get the 

wanted response. The objective of model-free control is to 

attain a desired performance with as little exertion as possible 

(Precup et al., 2022). 

The SEBC system with the DAB DC to DC converter is shown 

in the next non-linear dynamics which is represented below in 

Eq. (8) 

𝑌η = Ƒ(y, �̇�, �̈�, … . . , 𝑦η) + 𝑔𝑊           (8) 

Wherein, Ƒ(y, �̇�, �̈�, … . . , 𝑦η) is the take-out structure 

dynamics, 𝑊 is the network input, and 𝑓 is the unidentified 

scale element. Through describe Ƒ𝑒(y, �̇�, �̈�, … . . , 𝑦η)  and 𝑔′ as 

uncertainty and Eq. (8) can be rewritten as follows using the 

unmodeled time vary forces at work of the suggested SEBC 

and the estimation of the unidentified scaling of constraint 𝑔 is 

given below in Eq. (9), 

𝑌η = Ƒ(y, �̇�, �̈�, … . . , 𝑦η) + Ƒ𝑒(y, �̇�, �̈�, … . . , 𝑦η) + 𝑔𝑊         (9) 

Wherein η is the characterization of the command of the 

estimated models. So Ƒ(y, �̇�, �̈�, … . . , 𝑦η) described in Eq. (10) 

Ƒ𝑒(y, �̇�, �̈�, … . . , 𝑦η) = (uncertainty and unmodeled dynamic 

system) + (𝑔 − 𝑔′)𝑊,          (10) 

To reduce the mistakes in certain state variables, an ultra-local 

model that is constantly remodeled could explain the input-

output relationship of the proposed SEBC system (Glida et al., 

2020) which is given by the Eq. (11) as follows, 

𝑥η = Ƒ(y, �̇�, �̈�, … . . , 𝑦η) + 𝑔𝑊         (11) 

Wherein, Ƒ(y, �̇�, �̈�, … . . , 𝑦η) is a continuous update function 

which explains the time vary changing aspects of battery 

charging systems and is defined in Eq. (12). 

 Ƒ(y, �̇�, �̈�, … . . , 𝑦η)+Ƒ𝑒(y, �̇�, �̈�, … . . , 𝑦η) =
continuous update function         (12) 

It is also possible to reduce the noise produced by the 

derivatives of 𝑦η.   As a result, the generic Model Free Control 

(MFC) input expression is given in Eq. (13). 

 𝑊 =
− Ƒ(y,�̇�,�̈�,…..,𝑦η) + 𝑦𝑑

η
 − 𝑊𝑐

𝑔
             (13) 

𝑊𝑐 is the feedback controllers’ input, 𝑦𝑑
η
 is the nth derivative 

of the object path. Eq. (13) suggests that in order to alter the 

input control, based on the uncertainty of the system 

characteristics, with the co-ordinate of model-free and 

feedback controllers. Eq. (13) can be used in place of Eq. (11) 

to produce : 

𝑋η = Ƒ(y, �̇�, �̈�, … . . , 𝑦η) + 𝑔
− Ƒ(y,�̇�,�̈�,…..,𝑦η)+ 𝑦𝑑

η
 − 𝑊𝑐

𝑔
= 𝑦𝑑

η
 −

 𝑊𝑐            (14) 

It is obviously seen the difference between each state 

variable desired and actual value in Eq. (14). So, the definition 

of the tracking error is given in Eq. (15) as: 

𝑒 = 𝑦 − 𝑦𝑑               (15) 

Eq. (14) and (15) combined to give Eq. (16), 

𝑦η − 𝑦𝑑
η

+ 𝑊𝑐 = 0 = 𝑒η + 𝑊𝑐 = 0            (16) 

Here 𝑒η is nth derivative of Eq. (15). Make sure that 𝑊𝑐 must 

be designed in order to produce a linear differential equation 

that monotonically converges to the intended path. 

The following Eq. (17) and (18) defines the variable of the 

SEBC system of the DAB DC to DC converter: 

𝑦1 = 𝑣𝑜𝑢𝑡                (17)  

𝑦2 = 𝑦1                (18) 
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The combination of the location errors of a given variable and 

the speed track errors associated with that particular 

specific state are the primary goals of MF-NIBC. So, the well-

known Lyapunov function is used to guarantee the 

stabilization of the described Non-linear SEBC through errors 

of track convergent. 

Lyapunov functions are advantageous for many practical 

applications as they present a mathematical way to analyze the 

steadiness of a system. The Lyapunov function can be used to 

gauge the steadiness of a system by studying how the value of 

the function adjusts over time. This can be employed to inspect 

the behavior of the system and deliver advantageous 

comprehension into how the system will respond to certain 

changes or inputs. In addition, Lyapunov functions can give a 

useful tool for constructing and optimizing control systems. 

By making use of Lyapunov functions, engineers can design 

systems that are more robust and proficient. Therefore, 

Lyapunov functions are a significant tool for practical 

applications. 

In 1st step, positive definite Lyapunov function, 𝑉(𝑦1 − 𝑦1
𝑑) =

𝑉(𝑒1) is generated within the desired state variable in 

following Eq. (19), 

𝑉(𝑒1) =
1

2
𝑒1

2                (19) 

By differentiating Eq. (19), we get Eq. (20) as, 

𝑉(𝑒1) =
1

2
(2𝑒1𝑒1) = 𝑒1(𝑦2

𝑑 − 𝑦𝑑)         (20) 

The difference occurs between 𝑦2  and 𝑦2
𝑑 since 𝑦2  is not the 

control Input of the system. So, to balance the dynamic error, 

the velocity tracking error is formulated as follows in Eq. (21) 

and Eq. (22), 

𝑒2 = 𝑦2 − 𝑦2
𝑑            (21)                                                                                

𝑒2 = 𝑦2 − 𝑦𝑑 + 𝐴𝑒1          (22)                                                                                    

The system errors will settle to 0 if Lyapunov's function is 

accurately defined. To do this, Lyapunov’s function 

is designed as semi-negative 𝑉(𝑒1) ≤ 0. The Input 𝑦2  

described as Eq. (23), 

 𝑦2
𝑑 = 𝑦𝑑 − 𝐴𝑒1           (23) 

A steady state error can be produced by the specified SEBC 

system's uncertainty and the modelling error. This mistake 

might affect the controller's functionality. In order to eliminate 

this in the described controller, the integral terms given 

below are used in Eq. (24) and Eq. (25): 

 𝑦2 = 𝑦𝑑 − 𝐴𝑒1 − 𝐵 ∫ 𝑒1          (24) 

𝑒2 = 𝑦2 − 𝑦𝑑 + 𝐴𝑒1 + 𝐵 ∫ 𝑒1            (25) 

The derivation of the location and velocity tracking error can 

be described as in Eq. (26) and (27), 

𝑒1 = 𝑦1 − 𝑦𝑑 = 𝑒2 + 𝑦∗ − 𝑦𝑑 = 𝑒2 − 𝐴𝑒1 − 𝐵 ∫ 𝑒1       (26) 

𝑒2 = 𝑦2 − 𝑦�̈� + 𝐴𝑒1 − 𝐵𝑒1 = 𝑦2̈ − 𝑦�̈� + 𝐴𝑒2 − 𝐴2𝑒1 −
𝐴𝐵 ∫ 𝑒1 − 𝐵𝑒1           (27) 

The Lyapunov function 𝑉(𝑒1, ∫ 𝑒1) and 𝑉′(𝑒1, 𝑒2 ∫ 𝑒1) is 

designed for the location and location speed tracking error and 

as mentioned below in Eq. (28), (29), (30) and (31)  

𝑉(𝑒1, ∫ 𝑒1) =
1

2
[𝑒1

2 + 𝐵(∫ 𝑒1)2]         (28) 

𝑉(𝑒1, ∫ 𝑒1) = 𝑒1𝑒1 + 𝐵𝑒1 ∫ 𝑒1 = 𝑒1(𝑒2 − 𝐵𝑒1)]       (29) 

 𝑉′(𝑒1, 𝑒2 ∫ 𝑒1) =
1

2
[𝑒1

2 + 𝑒1
2 + 𝐵(∫ 𝑒1)2]        (30) 

𝑉′(𝑒1, 𝑒2 ∫ 𝑒1) = 𝑒2𝑒2 + 𝑒1(𝑒1 + 𝐵(∫ 𝑒1)) = 𝑒1(𝑒2 − 𝐴𝑒1) +

𝑒2(𝑦2̇ − 𝑦�̈� − 𝐴2𝑒1 − 𝐵𝑒1 + 𝐴𝑒1 − 𝐴𝐵 ∫ 𝑒1)        (31)  

According to Lyapunov’s theory,  𝑒2 convergent to ‘0’ by 

selecting semi-negative definitive 𝑉′(𝑒1, 𝑒2) and Eq. (32) is 

given by, 

 𝑒1𝑒2 + 𝑒2(𝑦2̇ − 𝑦�̈� − 𝐴2𝑒1 − 𝐵𝑒1 + 𝐴𝑒2 − 𝐴𝐵 ∫ 𝑒1) =
−𝐶𝑒2

2               (32) 

So, 𝑦2̇ could be defined as follows in Eq. (33), 

𝑦2̇ = 𝐹(𝑦, �̇�, �̈�) + 𝑦�̈� + 𝑊𝑐 = 𝑦�̈� + (𝐴2 + 𝐵 − 1)𝑒1 −
(𝐴 + 𝐶)𝑒2 + 𝐴𝐵 ∫ 𝑒1          (33) 

The system regulating law for the given SEBC with the dual 

active bridging chopper may thus be derived as , Eq. (23) by 

replacing Eq. (33) with Eq. (32) and is derived as Eq. (34), 

𝑊𝑐 = (𝐴2 + 𝐵 − 1)𝑒1 − (𝐴 + 𝐶)𝑒2 + 𝐴𝐵 ∫ 𝑒1 − 𝐹(𝑦, �̇�, �̈�)
            (34)  

Figure 5 shows the NIB-MFC structure in accordance with the 

control law of 𝑊𝑐 in Eq. (34). 

 

Fig. 5.  NIB-MFC looping control system structure. 

Since the controlling characteristics determine how effective 

the suggested MF-NIB controller is, these variables are 

constructed using the deep deterministic policy gradient 

technique (DDPG). The computational complexity of Model 

Free Integral Back Stepping Control to design the controller is 

O (n3), where n is the number of states and control inputs. 

3.2. Mechanism and Stability for DDPG 

The Deep Deterministic Policies Gradients procedure 

offers the benefits of deterministic Policies Gradients (DPG) 

and Deep Q Networks (DQN). While the DQN-agent 

implements the Epsilon-Greedy policies and does distinct 

operations, the deep neural network (DNN) approximates the 

Q-function in Q-learning. By configuring the DNN, wherein 

the weights coefficient of the system is developed by the 

efficiency of the policy's gradients. The four deep neural 

networks, comprising the primary actor and critics networks 

and the objective network, make up the DDPG algorithms. 
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The steadiness of DDPG is reliant on multiple elements, 

including the selection of the neural network pattern, the 

learning rate, the exploration approach, and the reward system. 

The pick of neural network blueprint is pertinent since it 

affects the intricacy of the policy being learned. A complicated 

network with a lot of layers and nodes can often cause 

unsteadiness due to the augmented number of parameters that 

can be adjusted. Also, the number of neurons in each layer 

should be decided on carefully because too many neurons can 

cause overfitting. The learning rate is indispensable for the 

steadiness of DDPG. If the learning rate is too high, the 

algorithm might become unstable and not converge. On the 

other hand, if the learning rate is too low, the algorithm may 

take too long to converge. It is thus important to find an 

optimal learning rate that guarantees steadiness while still 

allowing the algorithm to converge. The exploration policy is 

also a critical factor in the steadiness of DDPG. The policy 

should be chosen in a way that motivates exploration without 

causing unsteadiness. For instance, a policy that randomly 

explores without any control can lead to unsteadiness due to 

the randomness of the exploration. 

To analyze the stability of the DDPG algorithm, we can 

examine its underlying equations. These equations can be 

broken down into two main parts: the actor-critic update and 

the target network update. The actor-critic update works to 

optimize the expected total reward by implementing the 

Bellman equation to compute the Q-value of the current state-

action pair. The gradients of the Q-value are then used to 

modify the actor and critic networks. To balance the learning 

process, the target network update is utilized to offer a slowly 

changing objective for the Q-value. This is accomplished by 

allocating the target network parameters to a moving average 

of the actor-critic network parameters. 

In the DDPG approach, the critics networks are trained to use 

a deep neural network instead of the Q table, while the actor-

network is trained to provide determinists policies (Qiu et al., 

2019), (Gheisarnejad et al., 2021). 

The computational intricacy of Deep Deterministic Policies 

Gradients (DDPG) to construct the controller is O(N), where 

N stands for the amount of parameters in the neural network. 

DDPG is an off-policy, actor-critic reinforcement learning 

algorithm not requiring a model and taking advantage of a 

deep neural network as the controller. The complexity of 

DDPG is determined by the magnitude of the neural network, 

which is based on the quantity of parameters. 

In policy gradients, where states are mapped to actions based 

on probabilities, the progress of the agent is dependent on the 

policy p. The q table described in the Bellman’s eqn (Wei et 

al., 2022) by taking into account the action 𝑊𝑡 and state 𝑆𝑡 

under a deterministic policy of activities 𝑞μ(𝑆𝑡 , 𝑊𝑡) is given 

by Eq. (35): 

𝑞μ(𝑆𝑡 , 𝑊𝑡) = 𝐸𝑟𝑡,𝑠𝑡+1~Φ[r(St,Wt)] + 𝑔[𝑞(𝑆𝑡+1,μ(𝑆𝑡+1))
μ

]       (35) 

Here r stands for the reward function, g for the discount 

factors, and Φ for the distributions of expectations. Deep 

neural networks q are predicted to be able to approximate the 

Bellman equation for a random stochastic policy Φ. The critic 

network's update loss is calculated using Eq. (36): 

𝐿(ϴ𝑞) = 𝐸𝑠−𝑝Φ, W~μ~Φ[𝑞μ(𝑆𝑡+1, μ(𝑆𝑡+1) − 𝑦𝑡)2]       (36) 

pΦstands for the state distributions under the F policy, ϴ𝑞  is 

the deep q-network weight variable, and 𝑥𝑡 is well-defined as 

in Eq. (37): 

𝑥𝑡 = 𝑟(𝑆𝑡 , 𝑊𝑡) + γQ(𝑆𝑡+1, μ(𝑠𝑡+1)ϴ𝑞)        (37) 

The respective gradient updates the response network's policy 

with the critic network and is given by Eq. (38), 

∇ϴμ|𝐽ϴμ ≈ 𝐸𝑠~𝜌μ[∇𝑤𝑞(𝑠, 𝑤|ϴ𝑞)|𝑠=𝑠𝑡,𝑤=μ(𝑠𝑡)∇ϴμμ(s|ϴμ)|𝑠=𝑠𝑡
]

            (38) 

 

Fig. 6. The DDPG algorithm's process. 



75                                                                                                                 CONTROL ENGINEERING AND APPLIED INFORMATICS  

Here ϴμ stands for the actor DNN's weight variable. Figure 6 

illustrates the DDPG algorithm's procedure code(Farag, 2020). 

The DDPG includes a replay buffer to eliminate sample 

relationships and improve training stability by isolating the 

target DNNs (q’, μ’). For exploratory reasons, additional noise 

N is also added to the actions so that 𝑤𝑡  = μ (𝑠𝑡) + N. 

Additionally, update the critics and actor target network is 

given in Eq. (39) and (40), 

ϴ𝑞′ ← τϴ𝑄 + (1 − τ)ϴ          (39) 

μ𝑞′ ← τϴμ + (1 − τ)𝑞μ′          (40) 

3.3. Utilizing the MF-KEY NIBC'S Constants 

The MF-NIBC controller's structure contains a few 

variables that must be properly changed in order to control the 

outcome of the dual active bridging chopper. Elements of A, 

B, as well as C, are the essential variables in MF-NIB Wc laws 

regulation Eq. (31) that the DDPG algorithm will customize it. 

Figure 7 shows the general layout of the suggested DDPG-

based MF-NIB controller. 

In this methodology, the system states are represented by the 

terms of the output voltages Vo and the trailing errors e(t) = 

𝑣0(𝑡) - 𝑣𝑟𝑒𝑓(𝑡), the lag of the voltages errors (𝑒𝑑(t)), and the 

derivation value of 𝑣0 and e(t). 𝑠𝑡  = (𝑣0(t) ,e(t), 𝑣0−𝑑(t), 

𝑒𝑑(t), 𝑣0(t)/dt, de(t)/dt. By maximizing the reward function, 

the DDPG-deep agent's neural network is trained to reduce 

output power fluctuation in the power electronics tests. The 

definition of the reward signal is defined as following Eq. (41): 

𝑟𝑡 = {

𝜎2

|𝑣0(𝑡)−𝑣𝑟𝑒𝑓(𝑡)|
, 𝑖𝑓 (𝑣0(𝑡) − 𝑣𝑟𝑒𝑓(𝑡)) < 𝜖

−𝜎1|𝑣0(𝑡) − 𝑣𝑟𝑒𝑓(𝑡)|, 𝑒𝑙𝑠𝑒
  (41) 

 

Fig. 7. DDPG Algorithm based MF-NIB controller. 

Here Ɛ is the specified Output voltage deviation from the 

nominal value σ1 and σ2 are the reward penalties. The DDPG 

agent adjusts the control settings to maximize a reward signal, 

which stabilizes the Output voltage by utilizing the neural 

network's capabilities. Figure 8 shows the DDPG algorithm's 

deep neural network architecture. 

The DDPG agent adjusts the control variables to maximize a 

reward signal while stabilizing the Output voltage. Figure 8 

shows the DDPG algorithm's deep neural network 

architecture. 

 

Fig. 8. The actor-critic DDPG algorithm structure. 

4. PERFORMANCE ASSESSMENT 

The real-time findings are described in this part to verify the 

efficiency of the suggested controllers and the functionality of 

the smart chargers. Figure 9 depicts the setup test based on the 

OPAL-RT. Table 1 lists the electrical specifications for the 

proposed Electric vehicle smart charger, and Table 2 lists the 

controller specifications. On the basis of the electrical 

specifications of the EV's battery, a number of criteria can be 

taken for granted to examine the applicability of the suggested 

Emergency Solar to Electric vehicle battery charger (SEBC). 

Based on the battery's voltage, three situations can be 

examined for this reason. 

 

Fig. 9. SEFPC's Real Time setting is based on OPAL-RT. 

Table 1. Variables of the SEBC. 

Variables Values Variables Values 

Vin 400 v Cout 200 μF 

Vout 300 – 500 v L 40 μH 

Irated 20 A N 2.5 

Prated 8000 W Cin 20 μF 

Table 2. Variables of the Controllers. 

Variables Values 

Kp 0.003 

Ki 25 

Predicting Horizon (N) 6 

Weigh Factor ( λ) 0.5 
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Case 1: In the first case, the assumption is both EVs' batteries 

are identical. As a result, the DAB DC-DC converter's 

Input and Output voltages are 400 Volts and 20 Ampere, 

respectively. In this case, the correct value and charge rate are 

established by controlling the DAB DC-DC converter's Output 

current. As seen in Figure 10a, the converter's maximum 

current in emergency mode is set to be 25 Ampere at 400 

Volts. The maximum amount of transmitted energy in this 

circumstance is 15 percent of the battery's capacity. 

Additionally, there is a restriction of current of 15 Ampere on 

the current transmission of one Electric vehicle to another 

Electric Vehicle. 

 

 

Fig. 10. Performance for the emergency charging mode in the 

projected SEBC in a real-time basis: (a) Output Current (b) 

Output Power. 

The suggested SEBC's Output current and power step changes 

are depicted in Figures 10a and 10b, respectively. Figure 11 

displays the suggested charger's Output voltage. A relationship 

between the MPC controller and the traditional PI controller is 

done in order to show how well our suggested charger 

performs with the innovative MF-NIBC controller. Figure 11 

shows that suggested controllers have a higher transient 

response and ensure the stabilization of the DAB DC to DC 

converter's Output voltage. Furthermore, the simultaneous 

realization of Output current control is possible. 

 

Fig. 11. While step change in the Output power in the 1st case, 

the correlation of voltage transitory response of the suggested 

MF-NIBC controllers, MPC, and the traditional PI controllers. 

Case 2: The Electric batteries in the 2nd case are seen as being 

different. It indicates that the 2nd Electric Vehicle, which 

receives the energy, is supposed to have a voltage of 300 Volts, 

while the first EV, which injects power into the other, has a 

voltage of 400 Volts. The highest and lowest values of the 

current that can be injected in this case are 25 A and 15 A, 

accordingly. The spontaneous results of the Output voltages of 

the suggested charging system are depicted in Figure 12 to 

demonstrate the advantages of the MF-NIBC controller over 

other controllers. The MF-NIBC controller has the quickest 

transitory responses compared to other controllers, 

which means the proposed method can provide voltage 

stabilization and offer correct controlling of the Output 

voltages and current simultaneously. This conclusion can be 

drawn from Figure 12. 

 

Fig. 12. Performance of suggested MF-NIBC controller, MPC, 

and the traditional PI controller's voltage transient responses 

during a step change in Output power in 2nd case. 

Case 3: In the final case, it is considered that the second 

Electric vehicle's nominal voltage is 500 Volts while the 

Electric vehicle acting as a source has a voltage of 400 Volts. 

As earlier mentioned, because the SEBC operates in crisis 

mode, it is permitted to transmit up to 15% of the 

battery’s capacity. As a result, the injected current is restricted 

within top and bottom preset values, as shown in Figure 10a. 

The transient results of the suggested MF-NIBC controllers, 

MPC controllers, and PI controllers are expressed in Figure 13. 

Figure 13 proposed smooth charging system has high 

reliability with the least overshoots when compared with 

conventional controllers with the support of proposed MF-

NIBC controllers. 

Employing same design goals and complexity, the following 

controller’s objectives are designed: Employ a consistent 

design procedure with a clear definition of the problem, the 

anticipated result, the intended audience, and the assessment 

criteria. Create a design specification that lists the features and 

functions of the controller based on customer feedback and 

market research. Utilize a modular system to the design 

process, dividing the controller into smaller segments that can 

be designed and tested separately. Adopt a top-down design 

approach, starting with the general system architecture and 

later focusing on the details. Implement a standard set of 

components and parts for all controllers to guarantee that the 

complexity of each controller is consistent. Utilize existing 

design patterns and industry standards to guarantee the 

controllers are designed with efficiency and effectiveness. Put 

into effect a rigorous testing process to make sure that all 

controllers meet the design objectives and possess a consistent 

level of complexity. 
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Fig. 13. The comparison of the proposed MF-NIBC controller, 

MPC, and the traditional PI controller voltage transient 

responses during a step change in Output power in the 3rd 

case. 

5. CONCLUSION 

This study presents the development of an Emergency solar-

to-Electric vehicle Portable Battery Charger (SEBC) for 

charging Electric vehicles in emergency mode while driving. 

The suggested smart charging system can distribute up to 15% 

of the energy that has been stored, which is taken into account 

capacity, state of charging (SOC), and other significant 

methodological specifications of the Electric Vehicle batteries. 

The suggested SEBC can continuously control the Output 

voltages and the injecting current to the Electric vehicle by 

utilizing a Dual Active Bridge (DAB) chopper. A model Free 

non-linear integrals backstepping controller (MF-NIBC) was 

done to control the Output voltages of the suggested SEBC to 

achieve smart charging processes. Additionally, a deep 

deterministic policy gradient (DDPG) was used in conjunction 

with the actor and critic network to modify the MF-NIBC 

controller. The functionality and viability of the suggested 

SEBC were validated using real-time data based on the OPAL-

RT configuration. Long-term analysis of the transferred 

energy and conversion efficiency is required for future work. 

Additionally, the temperature that both batteries encounter 

should be examined while taking into account how the transfer 

affects the progression of temperature. 
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