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Abstract: Gompertzian dynamics appears in the Markovian model of the simpliest coupling of conditional 
probabilities. The solution of the corresponding Langevin equation relates probabilty distribution and the 
Gompertz function. Simplistic macroscopic Gompertzian dynamics emerges according to the principle of 
fractal-stochastic dualism. This occurs owing to both the complex coupling of probabilities of microscopic 
processes and the existence of fractal structure of time and space; the essence of life. That coupling leads 
not only to the emergence of the simplistic macroscopic dynamics, but also to the emergence of the 
complementary supramolecular system and its corresponding optimal morphology. Complementarity 
seems to be an intrinsic feature od complexity. 
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1. INTRODUCTION 

Macroscopic dynamics of a number of fundamental 
biological phenomena, such as gene expression, enzyme 
kinetics, oxygenation of hemoglobin, intensity of 
photosynthesis, growth of cells, tissues or populations  can be 
described by a family of logistic functions and reflected by 
the corresponding sigmoid curves (reviewed in Waliszewski, 
2005). In particular, Gompertzian dynamics appears during 
the early stages of tumorigenesis until a network of blood 
vessels develops in tumor tissue as a result of angiogenesis. 
Either tumorigenesis or angiogenesis are complex dynamic 
processes which imply expression of many genes and require 
simultaneous co-ordination. Little is known, however, how 
macroscopic Gompertzian dynamics emerges from a great 
number of dynamic processes at the microscopic scale, and 
what the underlying principle of integration of all those 
simultaneous events is?  

The Gompertz function is unique among a family of the 
logistic functions owing to some special mathematical 
features. This paper reports on a relationship between the 
Gompertz function, Morse-like potential, and Fokker-Planck 
equation as related to cellular proliferation and self-
organization. It is shown that growth is determined by 
coupling of probabilities. The process of coupling leads to the 
Fokker-Planck equation; one of the fundamental equations 
playing a role in theoretical biology of complex systems. 
Either Verhulst dynamics or Gompertzian dynamics can be 
obtained as a result of coupling of probabilities, but only the 
Gompertz function is a solution of the Markovian model of 
cellular growth.  

Coupling of two basic physical categories, such as space and 
time, initiates the emergence of the fractal structure of space-
time. An interplay between regular and chaotic molecular 
processes at the microscopic level leads first to a given 

distribution of probability. This distribution determines the 
emergence of both simplistic macroscopic dynamics of 
growth and the emergence of the appropriate complementary 
phenotype. Thus, the same principle of fractal-stochastic 
dualism underlies the quantitative and qualitative changes 
leading to the emergence of the most optimal morphology.  

For the purpose of this study, space is defined by a system of 
the geometrical co-ordinates. Those co-ordinates build up a 
volume, in which the nonlinear dynamic process occurs. 
Time is a parameter, which takes the sense of the evolutional 
co-ordinate.  

1.1 Coupling of Probabilities and Logistic Functions 

Consider a basic model of growth when there is a limit to 
growth given by the logistic equation (1):  
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with initial value p0, in which r is a parameter, time t is 
measured in discrete steps like 1, 2, 3,..., n, n+1,..., pn+1 stands 
for a number of cells in the n+1th generation, pn  is a number 
(or fraction, or probability) of cells undergoing divisions in 
the nth generation, 1-pn  is a number (or fraction, or 
probability) of cells among the population of the nth 
generation which do not divide.  

First, that map describes the co-existence of two antagonistic 
processes. They occur with probabilities pn and 1-pn. Indeed, 
the variables pn and 1-pn can be treated as probabilities of two 
events in the nth iteration step. A sum of those probabilities 
equals to 1. Second, the map (1) generates dynamics 
described by some sigmoid curve, or the Feigenbaum 
diagram (Fig.1). This is not the Gompertz curve. Indeed, (1) 
can be transformed to the algebraic form of a differential 
equation, if time is a continuous entity given by (2): 
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This differential equation possesses a Verhulst function as a 
solution.  
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in which κ is an experimental coefficient determining slope 
of the Verhulst curve. That latter function is not identical 
with the Gompertz one (see Waliszewski, 2005). Third, the 
algebraic form of (1) or (2) indicates that coupling of the 
probability p(t) of an event and the probability 1-p(t) of the 
antievent is a necessary condition for the emergence of the 
sigmoid dynamics. Equation (2) produces a symmetric bell-
shaped curve only. The asymmetry typical of the plot of the 
Gompertz derivative given by (4) emerges if more complex 
coupling takes place.                                                               

)1()('
bteabteabetf

−−−=                                                          (4) 

in which a and b are experimental coefficients determining 
slope of the curve, f’(t) stands for a derivative of the 
Gompertz function, f(t) is the Gompertz function (5):  
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For example, the probabilities in (1) or in (2) must possess 
power exponents. Apparently, the simple coupling of 
probabilities for two antagonistic dynamic processes is not 
sufficient to generate the asymmetric, skewed bell-curve of 
the Gompertz derivative. Analysis of the linear differential 
equation of the first order, which generates the normalized 
Gompertz function as a solution, confirms that the coupling 
of probabilities takes a complex algebraic form (6) (details 
see Waliszewski 2005): 
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in which )(ln tpe bt −=− . This coupling generates 
Feigenbaum-like diagram (Fig. 2). That diagram confirms 
that Gompertzian dynamics does reflect an equilibrium 
between regular and chaotic processes occurring in dynamic 
supramolecular system (Waliszewski and Konarski, 2005). It 
is worth to notice that there is many more areas of chaos in 
comparison with the Feigenbaum diagram obtained for the 
logistic map (compare Fig. 1 and Fig. 2).                                                  

 

Fig. 1. Feigenbaum diagram of the logistic map (1). 

Fourth, the derivative of the Gompertz function is a kind of 
the probability density function. The Gompertzian 
distribution of probability is not a kind of the Gaussian 
distribution, nor the logistic distribution. The Gaussian 
distribution represents the ideal distribution of probability. 
The Gompertzian distribution represents the distribution of 
probability for a dynamic process, which comprises events 
with the dependent, coupled probabilities.                                             

 

Fig. 2. The Feigenbaum diagram of the Gompertzian map. 
There are more areas of chaos than in the Feignebaum-
diagram for the logistic map; a feature typical of the systems 
far from equilibrium, which facilitates self-organization. 

1.2 p-adic Numbers and Coupling of Unlimited Exponential 
Dynamics of Growth  

A detailed analysis of the Verhulst function or the Gompertz 
function in the area of p-adic numbers reveals that those 
functions can be developed into the series of sums of the p-
adic exponential functions representing some local, 
microscopic growth processes with unlimited, exponential 
dynamics.  

The exponential function and the corresponding differential 
equation possess in the field of real numbers the algebraic 
form of (7) and (8), respectively 
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p-adic exponential function can be defined by the following 
series (9) (reviewed in Schikhov, 1984; Robert, 2000): 
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in which τ belongs to some surroundings Kλp(0) and λp=1/p; 
p is a prime number. 
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the p-adic Verhulst function (3) can be expressed by the 
following series (11): 
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Similarly,   
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Then, the p-adic Gompertz function can be expressed as (13) 
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For any τ which belongs to some surroundings Kλp(0) and 
λp=1/p; p is a prime number, φ is a kind of the Haar metrics, 
and for any µ: 
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On the other hand, any continuous function f(t) can be 
expanded into (15): 

∑∫
−

=

−

∞→
=

1

0

)(lim)()(
n

p

p

i
i

n

n
Z

tfpdtf τϕ                                        (15) 

Hence, function (11) can be developed into the p-adic series 
as well as expressed as the p-adic integral (16) for 0<|κt|p<λp 
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One can define the Gompertz function in the field of p-adic 
numbers in the same way using (13), (14) and (15). 

2. THE CHAPMAN-KOLMOGOROV APPROACH 

2.1 A Generalized Stochastic Markov Model 

Division of an eucaryotic cell occurs during a well-defined 
cell cycle. The cell cycle is the series of molecular biological 
events that take place in the cell leading to its replication. The 
cell cycle of the eucaryotic cell can be divided in the 
following states: interphase and metaphase, i.e., mitosis. The 
cell grows, accumulating nutrients needed for mitosis and 
duplicating its DNA during the first phase. The cell splits 
itself into two distinct cells during the mitosis. Expression of 
two key classes of regulatory proteins, i.e., cyclins and 
cyclin-dependent kinases, determine a cell's progress through 
the cell cycle. Cell cycle checkpoints are used by the cell to 
control the progress of the cell cycle. Checkpoints allow 

verification of critical processes or repair of DNA damage at 
specific points, such as the G1/S point. The cell cannot 
proceed to the next phase until checkpoint requirements have 
been met. Cells that are fully differentiated enter a state of 
quiescence called G0 phase, in which they cease division 
process for long periods of time. Non-differentiated, actively 
proliferating cells can also enter G0 phase under certain 
circumstances (reviewed in details in Lewin, 1990, Elledge, 
1996). This is a non-Markovian process with continuous time 
and with long-range memory. 

Without a loss of generality, proliferation of a special class of 
cells, such as non-differentiating cancer cells can be 
described as the Markov process containing both a 
continuous and a discrete part. In general case, a joint 
probability in such the process can be expressed in terms of 
transition probabilities as in (17): 
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i.e., continous summing a joint probability P(x) over all 
values of the variables x eliminates that variable, then using 
this principle and integrating equation (18) one gets the 
Chapman-Kolmogorov equation (19): 
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By definition of time derivative and using the normalization 
condition (20): 
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one gets (21) 
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in which area of integration O corresponds to at least two 
processes, i.e., a continous one in the infinitezimal 
surroundings of x and a discrete one outside that 
surroundings.  Expanding the integrand into a Taylor series 
one gets equation (22) with a component reflecting the 
discrete part of the stochastic process 
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in which Uj(x,t) stands for potential, known also as a drift 
vector; a measure of the internal interactions of dynamic 
system and Djk(x) represents a diffusion coefficient known 
also as a diffusion matrix; a measure of the external 
interactions of dynamic cellular system. 

2.2 The Markovian Model of Tumor Growth 

Cell division in a population of rapidly proliferating cells, 
which do not differentiate, occurs in a continous manner with 
short-range memory, i.e., the conditional probability is 
determined by the most recent state, and does not depend on 
the initial state (x0,t0). It can be described as a stochastic 
Markov process of probability transitions. Then, 
Gompertzian dynamics, but not Verhulst dynamics, emerges 
in that simpliest model of coupling between the predecessing 
and succeeding stage. 

Let us consider a small cellular colony with less than 106 
cancer cells growing within a normal tissue environment. 
First, let those cells possess broad autonomy. Let metabolic 
exchange through the gap junctions with normal surounding 
cells and with each other be very weak or does not exist. 
Second, there is no blood vessels in the colony. Feeding of 
cells occurs by diffusion. Third, cancer cells continue to 
proliferate spontaneously owing to a large number of 
molecular defects. Fourth, there is a minimal reaction of the 
external tissue systems, such as the neuroimmunohumoral 
system or the internal mechanisms, such as apoptosis. 
Finally, cancer cells belong to a single clone. Cells do not 
undergo differentiation or do not express multiple transitional 
phenotypes. There is a difference between the time-scales of 
molecular signaling, i.e., femtoseconds to miliseconds, 
cellular growth, i.e., hours and cellular proliferation, i.e., 
days. Single cells in the colony integrate molecular signals 
much faster than the colony expands in space-time. There is 
no memory of the state at previous timepoints in that tissue 
object. Hence, it is possible to describe a growth trajectory 
under those assumptions as a Markov chain of transitions for 
each timepoint by (23):  
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in which P(x0,...,xn) is a probability that the growing cellular 
colony is at the positions x0,…, xn at the timepoints 0,…n; 
P+xn∗xn-1, is a conditional probability that between timepoints 
n-1 and n the growth succeeds from the position xn-1 to xn. 

Since cellular growth and proliferation into a tissue structure 
occurs simulataneously in space and in time, it is particularly 
interesting to introduce the probability P as a function of 
geometrical spatial variable x and scalar time t. A speed of 
both processes is usually not large. So, the spatial expansion 
of cellular system ∆x = x – k in the small time step ∆t will 
also not be large. A change of the probability P in the 
infinitezimal intervall of time can be described by differential 
equation (24), in which such the change results from a 

difference between the probabilities of the jump from the 
position k to x and the probabilities of return owing to 
verification of critical processes or repair of DNA damage at 
the checkpoints: 
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This leads to (25), which has a well-known form of the 
Fokker-Planck equation; an integral part of (22): 
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 2.3 The Gompertz Function Appears in the Solution of the 
Langevin Equation 

Equation (25) can be transformed to the Langevin equation: 

 0)()()( =−+ tdMdttvtdv γ                                                (26) 

in which v(t) is the dynamical variable, i.e., the velocity of 
the division process, γ is the dissipation parameter, and dM(t) 
stands for the fluctuations, which compose a stationary 
differential Markov process. The latter process is specified by 
the probability distribution P(M(t), t) given by (27) (West et 
al., 2003): 
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in which t stands for scalar time, k is the Fourier variable, 
α, β>0 are real, constant factors. 
It is worth to notice that there is a relationship between such 
the conditional probability density P(v, t) and the Gompertz 
function f(t) defined by (5). Indeed, the conditional 
probability density P(v,t) can be expressed in the form of the 
Fourier transform taken with respect to the variable (v-v0e-λt) 
containing the Gompertz function f(t) (28): 
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3. COUPLING OF SPACE AND TIME  

3.1 A Relationship Between A Generalized Scalar 
Geometrical Variable And Scalar Time During Growth Of 
Cells With Gompertzian Dynamics 

Consider a dynamic system of interacting elements, such as a 
multicellular aggregate of normal or carcinoma-derived cells. 
That system occupies a given volume of space. It grows 
simultaneously in time and in space. It is known from 
experimental data that the number of cells (or their volume) 
changes in time t according to the Gompertzian function f(t) 
(5). A volume of the spheroid V is given by (29):  
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in which Vk is a mean volume of a single cell, n stands for a 
number of cells in the spheroid. From (5) and (29), and from 
the fact that the Gompertzian function is a fractal, (e.g., it can 
be fitted with the function f(t) = atb with very high accuracy, 
a coefficient of nonlinear regression R >> 0.95 for n ≥ 100 
pairs of co-ordinates), in which a stands for a scaling 
coefficient, bt is a temporal fractal dimension, (i.e., any real 
number), t is scalar time, we get (30): 
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The volume V of the spheroid can also be expressed as a 
function of scalar geometrical variable x (i.e., a radius of a 
family of the concentric spheres covering the entire spheroid) 
by (31): 
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in which a1 stands for a scaling coefficient, bs is a spatial 
fractal dimension after scalar time t1, x is a scalar, 
geometrical variable, which locates an effect in space. 

If the initial value of the temporal fractal dimension bt0 for 
cellular population expanding in space is different from the 
fractal dimension bt during the other stages of the process (t 
= tn), then, from (30) and (31), we get (32): 
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in which a, a0, and a1 stand for the scaling coefficients, bt is 
the temporal fractal dimension, bs0 and bs are the spatial 
fractal dimensions after time t0 and t, respectively, x is a 
geometrical variable.  

Hence, we get (33) that relates space and time 
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in which t stands for scalar time, x is geometrical variable, bs 
is the spatial fractal dimension, bt is the temporal fractal 
dimension. Equation (33) defines the geometrical variable x 
as a function of scalar time t. According to equation (33), 
both variables, spatial, x, and temporal, t, are coupled to each 
other through both temporal and spatial fractal dimension. 
The ratio of the temporal and spatial fractal dimension 
defines the appropriate tangent function for two stationary 
states with two different spatial fractal dimensions bs and bs0 
(34): 
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From (34), it can be seen that for 0 < t < 1  or 0 < x <1, a 
difference bs - bs0 decreases in time. The difference increases 
in time for t >1 or x > 1. 

 

3.2 Coupling of the Spatial and Temporal Variable 

As it has been noticed in the previous papers, cells grow both 
in space and in time (Waliszewski, 2005). Let us assume that 
both variables, the spatial x and the temporal t, are coupled 
each other in a linear manner as in (35) into a single, complex 
spatio-temporal variable: 

tx += µθ                                                                            (35) 

Then, the appropriate equation relating the function of 
probability distribution P(x,t) and the potential function U(x, 
t) is given by (36): 
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Indeed, let us calculate the appropriate derivatives of the 
equation (35), i.e., d/dt, d/dx, and d2/dx2. Let put them into 
the well-known equation of diffusion. We should get (37) 
with a single spatio-temporal variable:  
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For µ = 1/D and for  
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we can develop (37) into (39): 
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and finally, by calculating the appropriate complex 
derivatives arrive to (36).  

4. THE ANHARMONIC POTENTIAL 

4.1 On Some Features of the Fokker-Planck Equation 

The first part of equation (25) contains a function U(x,t) 
called the potential function. This part is a measure of the 
internal interactions in the dynamic system. It shows how the 
function of probability distribution P(x, t) changes in space-
time when dynamic system tends towards a minimum of the 
potential function. The second part contains a function D(x, t) 
known as the diffusion coefficient. This is a measure of the 
external interactions of dynamic system. It indicates how the 
function of probability distribution P(x, t) fluctuates around 
the minimum of the potential function. In addition, it 
provides an information about the probability of evolution of 
the system towards the novel minimum of the potential 
function if any fluctuation occurs in dynamic system, i.e., 
when elements of such system undergo the chaotic 
oscillations caused by the action of some physical force 
whose average value in time is zero.  
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Equation (25) can be transformed to (40): 
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The mathematical analysis of (40) reveals a number of the 
interesting features. First, if dynamic system reaches a 
stationary state in time, the temporal derivative of the 
function of probability distribution P(x, t) equals zero. Then, 
(40) has the solution given by (41)                                       
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in which C stands for a constant numerical value. 

Second, if the spatial derivative of the function P(x, t) equals 
zero, i.e., when the value of the function P(x, t) in space is 
constant, then the corresponding potential function has the 
algebraic form of (42): 
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in which C stands for a constant value of the function P(x, t). 
This equation represents a harmonic oscilator. 

Third, if the coefficient of diffusion, D(x,t) equals zero, then 
equation (25) possesses a Gauss function as a single solution 
(43): 
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Fourth, if the potential function U(x,t) equals zero or is 
constant, probability distribution depends only on the 
fluctuations which take place within dynamic system. Indeed, 
there is a relationship between the function of probability 
distribution P(x, t) and T(x), the function of time of the first 
transition for the δ-function of probability distribution 
P0(y)=δ(y-x) given by equation (44): 
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Then, the Fokker-Planck equation can be transformed to the 
equation (45): 

012

2
=+−

dx
dT

dx
dU

dx
TdD                                                     (45) 

in which for x 0 +a,b, T(a)=T(b)=0. Hence, one can 
calculate easily that for U(x,t) = 0 or for U(x, t)=λx, the 
function T(x) is given by equation (46) or by equation (47), 
respectively: 
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If λ, representing drift, approaches 0, and D, representing 
diffusion, is constant, then λ/D also approaches 0, and we 
obtain equation (46) from equation (47) (Gilmore, 1981). 

The most important is a relationship between the Gompertz 
function f(t) (5) and the anharminic potential through the 
following operator differential equation (48): 
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in which a represents a depth of the potential well, b is a 
range parameter. 

To summarize, potential U(x,t) determines evolution of 
dynamic system towards a stationary point in space and in 
time. In such the point all forces acting in dynamic system 
are in equillibrium and dynamic system cannot continue to 
develop. It is diffusion which pushes dynamic system to 
leave the minimum of potential. Otherwise, growth of 
cellular colony would quit in that point. 

5. DISCUSSION 

It is worth to notice that phenotype, a dynamic category, not 
genotype, a static category, undergoes natural selection. This 
interaction with environment selects the most favourable 
patterns of gene expression. Thus, phenotype is not a plain 
product of genotype, nor its bijective function in the sense of 
mendelian genetics. G. Mendel has just assumed that 
phenotype is determined by genotype unequivocally and, 
therefore, subordinated to the latter one. That assumption was 
neccessary to generalize results of the simple genetic 
experiments and formulate the Law of Mendelian Inheritance 
(Rubin, 1998). His assumption became later a keystone of the 
deductive strategy of molecular reductionism in cellular 
biology. Yet, phenotype is defined by activities of genes 
mediated via dynamic cellular network and selected by a 
number of interactions with environment, (i.e. by couplings 
occuring in the supramolecular cellular system); a statement 
best exemplified by metaplastic transformation of cells 
exposed to the unfavourable conditions in urinary conduit. 
This situation can be better understood within the Husserl’s 
phenomenology, which permits an alternative model of 
phenotype-genotype relationship. The model is based on 
more universal principle of complementarity. In nature, 
different categories are frequently combined into a complex 
entity, and complementarity can be identified in that 
relationship (e.g., a thermonuclear reaction, nuclear forces, 
and matter formation, co-operation between nucleic acids 
encoding proteins and proteins regulating DNA replication as 
well as gene expression underlying various cell activities, or 
co-existence of distinct, yet interlinked qualities, psyche and 
soma). All those phenomena are dependent upon the 
extraordinary equillibrium and incredible complementarity of  
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molecules, factors, or physical forces. Any imbalance leads to 
the structural or functional deformations of the self-optimized 
system. From that perspective, growth depends on a 
capability of cells to incorporate and to couple various 
molecular events in the complementary manner. For example, 
growth of epithelial cells depends on retinoids, (i.e., vitamin 
A and its derivatives). A reaction of those cells to natural 
retinoids during tissue formation can be defined as their 
ability to regulate, optimize, and control intracellular 
processes, (e.g., gene expression or ATP synthesis) by 
retinoids within dynamics of the self-organizing tissue entity. 
For example, an embryo, (i.e., an object which evolves from 
a single fertilized maternal cell) incorporates extracellular 
elements including retinoids into its complex metabolizing 
cellular network. It occurs in such a manner that the 
harmonious emergence of final morphology and growth of 
the entire object with Gompertzian dynamics follows. 
Complementarity emerges here along both a process of self-
organization of dynamic cellular network and a process of its 
natural selection, first within a cell, and, then, within a 
multicellular tissue structure of the developing organism, 
(i.e., within a quasi-deterministic network comprising a 
hierarchy of complex couplings). Complementarity is 
therefore the intrinsic feature of the complex system. 
Couplings of all those complementary molecular events 
within the fractal-stochastic frame lead not only to the 
emergence of some optimal morphology, but also to the 
emergence of a simplistic macroscopic dynamics of growth 
described by the Gompertz function. 

The Markov process examplifies the simpliest model of 
couplings between the preceding events and the succeeding 
ones. Then, the Gompertz function appears as a part of the 
solution in the realtionship with the conditional probability 
distribution. However, Gompertzian dynamics is not a unique 
feature of tumor growth, nor it appears at any stage of tumor 
formation. The model of growth defined by the Fokker-
Planck equation (25) or the model with the hidden Markov 
process standing behind the Langevin equation (30) describe 
growth of tissue structures correctly only and only then, if 
proliferating cells do not possess a memory of the events at 
the previous stages of growth. Their growth must depend 
solely on the status of cells in the preceding step or 
generation. Since majority of eucaryotic cells differentiate, 
i.e., attains a phenotypical determination by gradual 
expression of some specific or semi-specific proteins, such 
the assumption can only be made at the early stages of 
growth of tissue structures or for non-differentiating cells.  

Those results suggest that the emergence of macroscopic 
dynamics of growth results from coupling of conditional 
probabilities of a number of microscopic processes. That 
coupling is associated with the emergence of fractal structure 
exemplified by fractal structure of time and space, in which 
cellular growth occurs. Analysis of the same dynamics in the 
field of p-adic numbers reveals that both logistic functions 
can be expanded into the p-adic series of the sums of the 
exponential functions. The latter ones reflect unlimited 
dynamics of growth of multiple microscopic processes and 
their complex interefence; an effect that could not be seen so 
easy in the field of real numbers.  

Although modeling of cell growth with Markovian models 
possesses limitations, one can learn from those models an 
important lesson. The emergence of Gompertzian dynamics 
at the macroscopic, tissue level during growth and self-
organization is determined by the existence of fractal-
stochastic dualism at the microscopic level of supramolecular 
cellular system. Indeed, on one hand, Gompertzian dynamics 
results from the complex coupling of stochastic processes at 
the molecular cellular level. On the other hand, the Gompertz 
function is a contraction mapping and defines fractal 
dynamics in time-space; a prerequisite condition for the 
coupling of processes (Waliszewski, 2005). 

This paper unveils a relationship between the Gompertz 
function, the anharmonic potential of exchange, probability 
distribution, and the fractal dimension of time and space, in 
which cells exist and interact. This relationship defines 
Gompertzian growth and self-organization as a kind of the 
specific physical motion in fractal time-space with the 
anharmonic potential as the function of energy. The existence 
of the anharmonic potential denotes that distribution of the 
intrasystemic forces in growing cellular system is both non-
linear and asymmetric. Those forces comprise the entire 
system. The system is governed by a rule of relaxation that in 
the simpliest cases of the potential is described by equation 
46 or 47 (Gilmore, 1981).  

The anharmonic potential is related to dynamics of growth. 
According to cellular molecular biology, cell proliferation, 
self-organization, morphogenesis or tumorigenesis are 
determined solely by expression of genes or by gene defects. 
It is known that those phenomena involve long-range non-
local intercellular interactions. This must imply a long-range 
transfer of energy. In the case of dynamic cellular system, 
this could be electromechanical or chemical energy. The 
above-obtained mathematical equations indicate that 
metabolizing cellular system not only increases a number of 
cells and changes its complexity. Growth also implicates 
changes in both connectivity and distribution of energy 
between elements of that holistic system.  

The anharmonic potential attains a point of the minimum (U0, 
t0). That point indicates an important moment in the natural 
evolution of any non-linear process with Gompertzian 
dynamics. First, dynamic system attains that point relatively 
early in its evolution. Second, the point (U0, t0) indicates 
when interactions between elements of dynamic system are 
the weakest or disappear at all. Third, the potential attains 
that point as a result of the internal rearrangements between 
the increasing number of interacting elements, (i.e., as a 
consequence of growth and self-organization). Therefore, the 
existence of that point reflects a change of both complexity 
and connectivity (Waliszewski, 2005).  

6. CONCLUSIONS 

Cellular growth in its early stages can be described by the 
Fokker-Planck equation as a Markov process of probability 
transitions. The Gompertz function appears in a solution of 
the Langevin equation; a model of the system with the 
simpliest interactions without memory. This solution relates 
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probabilty distribution and the Gompertz function. Time and 
space are conjugated in a linear manner in any non-linear 
phenomenon with Gompertzian dynamics. Gompertzian 
curve reflects a balance between regular and chaotic states. 
Gompertzian function and the anharmonic potential are 
related each other through the one-dimensional differential 
operator.  
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