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Abstract: A new and efficient method to classify cellular automata is presented and exemplified here for 
the case of elementary cellular automata (ECA) with 3 cells neighborhood. The approach has an 
important advantages over other methods: It is extremely fast since it does not require the simulation of 
the cellular automaton dynamics, instead all classification process is based on a uncertainty profile 
computed rapidly for a given cell logic and neighborhood.  The method may be easily generalized to 
more complex cellular neighborhoods. A comparison with another recent ECA classification method 
(based on a completely different approach, namely on the iterated maps theory in nonlinear dynamics) 
reveals a strong overlap between results.   
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1. INTRODUCTION 

Cellular automata (CA), were introduced by Ulam and von 
Neumann in the ‘50s to demonstrate the production of 
complex behaviors such as self-reproduction and universal 
computation, in artificial systems. Studied today in the wider 
framework of cellular nonlinear/neural networks (CNN) 
they gained lot of interest as tools for modeling and 
simulating various natural, social, and other complex 
behaviors. A collection of similar cells is updated in 
synchrony, each cell changing its state based on a CA rule 
which tells how to change the actual state based on the values 
of all neighbor cell states in the previous iteration. The 
structure of a CA is rather simple, yet the underlying 
dynamics may be extremely complex and intriguing. Such a 
surprising effect in a CA (that cannot be predicted unless 
simulating the CA dynamics) was called by different authors 
emergent behavior (Dogaru, 2008).  

Although many CA simulators exist and various theoretical 
studies investigate the relationship between CA rules and 
their emergent dynamics, such theoretic results still lack 
generality and quite often refer mostly to linear CA rules, a 
tiny subset of all possible rules. Complex behaviors in CA 
were inventoried and so far there are large lists with 
interesting CA and their corresponding emergent behaviors 
with a diverse range of applications such as: models of 
various processes, parallel image processing, aids for 
computer graphics and special effects, music generators, 
signal processing and many others. The potential of CA 
stands in the fact that they are a natural computing model, 
related with even more accurate models proposed recently 
such as the Small Worlds networks, capable to model a wide 
range of natural phenomena and possessing very interesting 
computing properties. For instance, in a simplified view the 
functioning of the human cortex can be regarded as a massive 
cellular automaton operating in emergent mode. Some  

authors even suggest that CA may be regarded as models of 
everything claiming that “a new kind of science” (Wolfram, 
2002) shall be constructed on this basis.   

Still, the following inverse problem remains an open issue in 
the theory and practice of CA: Given a desired behavior 
(often specified ambiguously, e.g. a complex behavior or 
one exhibiting chaos, or one exhibiting periodic 
oscillations, etc.), specify the CA rule to produce such a 
behavior. In order to solve this problem one needs to first 
define certain features describing the dynamic behavior and 
relate these features to the CA rule with a well defined 
mathematical function. Often this process is called a 
classification of CA rules. Solving the inverse problem is 
possible if an inverse of the classification function may be 
defined.  Quite often such an inverse problem is ambiguously 
defined as it results in a set of many possible mappings to the 
desired behavior, i.e. multiple rules. Further investigation 
among this limited set of rules may reveal the rules that best 
match the desired behavior. The problem is important 
because the number of possible rules is extremely high and 
grows super-exponentially with the size of the neighborhood. 
For instance, in a CA with 9 neighbor cells there are 

5122 22
9

=  possible rules. A good classification method that 
maps the rule space to the behavior space allows a faster 
location of the rules associated with a desired behavior, even 
in such large spaces.  

The first classification of CA rules into several categories 
with specific behaviors (Class I,II, III and IV) dates from the 
1980’s and belongs to Wolfram, but it has the main 
disadvantage that is based on visual observation and 
subjectivity of a human observing the consecutive states of 
the CA. It is neither a precise classification (but rather a 
taxonomy) nor practical to use in an automatic system to 
classify CA. Still, its application for the limited set of 256 
elementary cellular automata (ECA) with 3 cells 
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neighborhood (cells are disposed on a ring and each cell state 
depends only on its center, right and left neighbors) raised a 
lot of open questions in studying CA.  

Since Wolfram’s classification, many other methods to locate 
and classify CA rules were proposed. In (Dogaru, 2008a) a 
brief overview of such methods is given. The mostly 
accepted solution so far is the use evolutionary search 
techniques in conjunction with classification techniques to 
locate desired behaviors in huge CA rule spaces. Such 
classification techniques require the simulation of the CA 
given the rule and the calculation of certain numerical 
features, this process becoming part of the evolutionary 
algorithm. Consequently these methods are computationally 
intensive. Instead, an entirely new method is proposed in 
(Dogaru, 2008a) based on an information theoretic 
approach. In this paper, this method is applied to a widely 
studied CA category, namely the elementary cellular 
automata. The purpose is twofold: a) to calibrate the new 
method; b) to compare with the most advanced classification 
methods proposed in the literature. Section 2 gives the 
principle of the information theoretic approach showing that 
one may assume an initial state with m uncertain states in the 
middle of the array of cells. Given the neighborhood and the 
cell ID (identification of cell Boolean logic) it is shown in 
Section 3 that a well specified mapping function is defined to 
project the structural CA information in an uncertainty profile 
space which gives a good characterization of the emergent 
CA dynamics without the need to simulate it.  Consequently, 
given this mapping, one can easily solve the abovementioned 
inverse problem, not only for the elementary CA but also for 
any other kind of CA with different neighborhood and grid 
topology. The main advantage of our classification method, 
called next the “uncertainty profile method” (UPM), is its 
computational simplicity since it does not require simulation 
of the CA dynamics as most of the existent methods do.    

In Section 4 some results published recently in series of 
papers (Chua et al., 2002-2008) are reminded. They perform 
the first systematic analysis of ECA using nonlinear theory 
tools and propose another CA classification method. As 
shown in Section 5 their predictions overlap substantially to 
ours, although the approaches were quite different. For a finer 
description of the emergent behaviors the use of both 
methods in conjunction gives a better description of the ECA 
space. Still, as shown in Conclusions, the UPM method has 
the important advantage that it can be easily generalized to 
any neighborhood size and CA grid type while remaining 
computationally simple.   

 2. ELEMENTARY CA RULES, NEIGHBORHOODS, 
AND THE INFORMATION THEORETIC APPROACH TO 

EMERGENCE    

The discrete-time dynamics of an elementary cellular 
automaton (ECA) with n cells is given by the next equation, 
which applies synchronously to all cells (a cell is identified 
by a spatial index { }ni ,..2,1∈ ): 

( ) ( )( )IDtxtxtxCelltx T
i

T
i

T
i

T
i ,)),(,)1( 11 +−=+                    (1) 

where ( )IDuuuCelly j ,3,2,1=  is a Boolean function 
with 3 (in general m) binary inputs (u1,u2, and u3) specified 
by a decimal ID number called a CA rule. In its binary 
representation, the most significant bit of ID corresponds to 
the cell output 1−Ny when ]1,1,1[]1,2,3[ =uuu , the next bit 

2−Ny  is the cell output for ]0,1,1[]1,2,3[ =uuu , and 

finally its least significant bit 0y  corresponds to 

]0,0,0[]1,2,3[ =uuu . The identifier ID corresponds to 
the cellular automaton rule according to Wolfram’s 
notation (Wolfram, 2002) and it is the decimal representation 
of a vector [ ]021 ,..,, yyy NN −−=Y  collecting the outputs 

for all mN 2= possible cell inputs. Consequently the “j” 
index is the decimal value associated to the input vector 
[ ]123 ,, uuu . A periodic boundary condition is assumed i.e. if 

1=i  , then  ni →−1  and  if ni =  then 11 →+i . An 
initial state for the entire cellular automata is defined as 

( ) ( ) ( )]0,...,0,0[)( 21 nxxx=0x .   

In running the CA from an initial state where only some cells 
in the middle are randomly assigned to 1 or 0 (with 
maximum uncertainty, or probability ½) one can observe a 
decline or “implosive” behavior when after a few iterations 
all cells will enter a quiescent state (Fig.1a), a stable (or 
preserving) behavior as seen in Fig. 1b, or a growth 
(explosion) when uncertainty in the initial cell expands in one 
or more directions with smaller or larger speed, as seen in 
Fig.1c for the universal computing CA rule ID=110. In 
(Dogaru, 2008a), it is concluded that the most interesting 
(complex) CA behaviors require slow growth.  In fact, one of 
the most complex behavior in CA, the self-reproductive one, 
clearly belongs to the slow-growth type as defined above. 

 

Fig.1. Several typical CA behaviors in elementary cellular 
automata: a) imploding; b) preserving; c) exploding. Black 
color represents state 0 while the white state 1. Time axis is 
horizontal. 

As seen in Fig.2, in (Dogaru, 2008a) it is proposed that each 
cell is assigned a probability (to be in “1” state) and using a 
relatively simple probabilistic inference formulae one can 
compute the probability of each cell in the next CA iteration. 
Given the probability kp  that a cell “k” is in state “1” i, its 
uncertainty is defined (other than in Shannon’s information 
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theory) as: 121 −−= kk pu such that in either cased when 
cells are surely in “0” or “1” states, their uncertainty is 0. 
Based on experiments it was assumed that spreading of 
uncertainty is strong related to the CA dynamic behavior. As 
seen in the last section this assumption is validated for all 
ECA. As a consequence, classifying CA behaviors requires 
only the computation of an uncertainty profile defined as a 
vector U of 2m-1 uncertainties (in the case m=3 there are 5 
elements of U). Therefore our uncertainty profile method is 
much faster than simulating the entire CA.  

The piecewise-linear approach to uncertainty was used 
instead of Shannon’s entropy because it leads to less 
computational efforts while we are essentially interested in its 
spread through the spatial coordinates of the CA.  

 
 

Fig.2. Uncertainty and its spreading in the CA neighborhood. 
For a given ID and neighborhood geometry an uncertainty 
profile vector may be easily computed knowing the output 
probabilities of cells. 

3. UNCERTAINTY PROFILES AND THEIR 
CALCULATION USING REPRESENTATIVE 

PROBABILITY TABLES  

 
The uncertainty profile is computed entirely based on the ID 
of the CA rule (Y is the binary representation of ID) and on 
the neighborhood connectivity (as reflected in the 
representative probability table or RPT). As shown in 
(Dogaru et al., 2008d) there are 2 distinct RPTs, 10 , RR  
depending on whether the quiescent1 starting state of CA 
cells is “0” or “1”. Consequently, two different uncertainty 
profiles may be calculated for each of the abovementioned 
cases: 10 ,UU . For reasons mentioned in (Dogaru, 2008a) 
the calculation of the final uncertainty profile combine both 
depending on the configurations of the least and the most 
significant bits 10 , −Nyy  of Y. The formulae computes two 
terms only for part of the odd rules, while for all even rules 
U=U0. For odd rules with most significant bit “1” U=U1. The 
following formulae summarize the calculation of 
uncertainties for any CA rule:  

YRP0 0=  and YRP 11 =                          (2) 

                                                 
1 All other cell except the randomly initialized one that are set 
to either 1 or 0 state.  

1210 −−= 0PU  and 121 11 −−= PU          (3) 

( ) ( )[ ]110125.0 UUU −− ++−−= NooNoo yyyyyy          (4) 

where P0 and P1 are output probability profiles (m-sized line 
vectors), and the absolute value operator applied to a vector 
means its application element-wise. Y is a line matrix with 2m 
columns and R matrices are predefined depending on the 
particular CA topology and neighborhood (Dogaru et al, 
2008d). In particular for the one dimensional elementary 
cellular automata (ECA) with m=3 cells neighborhood, the 
RPTs are given by: 
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Consequently it turns out that no multiplications are 
necessary (coefficients of matrices and other multipliers are 
powers of 2) and in the worst case the main computational 
burden is about ( ) 1212 +− mm  operations. In the case of 
m=3 (elementary CA) the uncertainty profile of any given ID 
rule requires about 90 basic arithmetic operations (additions 
and shifts mainly). It is a much lower computational effort 
than for any CA simulation followed by an evaluation of 
certain features to characterize the CA dynamics.  

4. CLASSIFICATION OF ECA DYNAMICS BASED ON 
NONLINEAR ANALYSIS  

By virtue of the three global equivalence transformations 
derived in (Chua et al., 2004) it is shown that instead of all 
256 CA rules it suffices to conduct an in-depth analysis of 
only the 88 local rules listed in Table 3 of (Chua et al., 
2007a). Therefore in the next we will consider only those 88 
rules, listed in the following:  

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,18,19,22,23,24,25,26,27
,28,29,30,32,33,34,35,36,37,38,40,41,42,43,44,45,46,50,51, 
54,56,57,58,60,62,72,73,74,76,77,78,90,94,104,105,106,108,
110,122,126,128,130,132,134,136,138,140,142,146,150,152,
154,156,160,162,164,168,170,172,178,184,200,204,232. 
 If a certain rule of interest for the reader is not among them, 
its associated “parent”, with identical dynamic behavior, can 
be easily found among the 88 listed above by applying to that 
rule one of the next two transforms or both of them 
consecutively:  

a) “left-right” swap transform – meaning that a new Boolean 
function is defined preserving the same input output relations 
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but where the leftmost input is swapped with the rightmost 
input ( 31 uu ↔ );  

b) “negate inputs/output” transform: In this case the new 
Boolean function is obtain by inverting all inputs 
( 332211 ,, uuuuuu →→→ ) and the output ( )YY → .  

Roughly speaking, Chua’s analysis detailed in (Chua et al., 
2002-2008) results in classification of all ECA rules into 6 
categories (classes). The method used was to consider the CA 
as a nonlinear map (discrete time system) characterized by a 
nonlinear function, which is directly determined by the ID 
and the total number of cells n in the CA. The main feature 
to discriminate among classes is the length (period) of the 
most likely attractor (given a random initial state) in a 
CA with a given ID rule and the dependency of this 
period on the number n of CA cells.  Classes 1,2,3 (with 
26, 13 and 1 members) are similar in that for all of them there 
is a constant (1,2, or 3) length of the attractor while the 
difference among these classes is given by the period of the 
attractor (1, 2 or 3). Class 4, (or Bernoulli-shift, with 30 
members) includes all CA rules leading to a period that 
depends linearly by the number of cells n with a coefficient 
that can be accurately predicted. Because periods of attractors 
for these CA rules are larger, the corresponding cellular 
automata are more complex than those from the Class 1-3 
categories.  Nevertheless a complete description for each rule 
is possible, allowing prediction of the attractor period. Finally 
Classes 5 and 6 (with 10 and 8 members respectively) include 
the most complex CA rules, where a prediction of the 
attractor length is not possible without effectively running the 
CA. All rules in Class 5 are bilateral (or they have a 
symmetry, i.e. the Boolean function is not changed by the 
left-right swap transform) while those in Class 6 are not 
symmetric at all. Quite notably, those CA rules found so 
far by other researchers as possessing interesting 
properties fall in Chua’s Class 6. Recently it was found that 
ID=45 posses the interesting property of “binary chaos 
synchronization”, with many potential applications in 
information theory and communications (Dogaru et al., 
2008,2008b, 2009).  Note that Chua’s classification method 
for classes 5 and 6 is difficult to generalize in more complex 
CA, because a detailed analytic and numerical analysis shall 
be done for each particular rule. In CA with large 
neighborhoods such analysis becomes prohibitive if not 
impossible.   

5. INFORMATION THEORETIC CLASSIFICATION 
BASED ON UNCERTAINTY PROFILES 

While comparing the dynamics of all 88 elementary CA rules 
to their uncertainty profiles it turned out that several 
computable features allow a proper classification of all CA. 
These features, their significance and computation methods 
are next given: 

a) Cumulated uncertainty:  It is the sum of all uncertainties 
in the profile and gives information about the spreading of 

uncertainty. Therefore it is defined as ( ) ∑
−

=

=
12

1

m

i
iuC U . In 

conjunction with this feature, an “edge of complexity” 
boundary may be defined in the region 

[ ]2/1,2/1 +−∈ mmC  with both “exploding” and 
“preserving” profiles to be detailed next. The name “edge of 
complexity” is somehow related to the “edge of chaos” 
widely used in the complex systems literature as a frontier 
between ordered and disordered (chaotic) dynamics. In our 
case it defines a frontier between CA behaviors where the 
eventual uncertainty in the initial state is conserved within a 
fixed finite number of cells (preserving profiles or rules) and 
those interesting behaviors where a global behavior emerges 
out of the local CA interaction (exploding profiles or rules). 
Observations of the dynamic evolution of CA with rules 
within the edge of complexity (Dogaru, 2008a) led to the 
conclusion that most complex behaviors such as those found 
in various CA systems demonstrated to be universal 
computing machines, self-replicating systems and in general 
leading to glider structures are strong related with 
asymmetric exploding rules in the edge of complexity.  

b) Symmetric versus asymmetric profiles: For any given 
uncertainty profile one may compute a symmetry index:  

( ) ( )
( )U
UU

l
Ls = , where ( )UL  is the sum of all members to 

the right or to the left (except the center member) of the 
uncertainty profile. ( )Ul  is the sum of the members (except 

direction) in the opposite direction, such that ( ) ( )UU Ll ≤ .  

If ( ) 1=Us  the profile is symmetric, else it is asymmetric. 
The value of asymmetry may give some additional hints 
about the predicted dynamic behavior. Note that in the case 
of odd rules, since the profile U is the average of two 
uncertainty profiles U0 and U1 an additional condition that 
both U0 and U1 are symmetric is necessary to declare the rule 
a symmetric one. For instance, rule ID=25, with a symmetric 
U=[1/2 3/4 3/4 3/4 1] is in fact asymmetric because at least 
one U0=[0 1 ¾ 1 1] or U1=[1 ½ ¾ ½ 0] are asymmetric.   

c) Exploding, preserving and imploding profiles:  
An exploding profile corresponds to a growth in uncertainty 
from an initial state where only m cells have maximum 
uncertainty to a situation where all cells are in an uncertain 
state. A heuristic rule to compute whether a profile is 
exploding is the following: A profile is “exploding” if there 
are at least two members (elements) of the profile with 
maximum value( 1== lk uu ) and they are distant at more 

than m cells (i.e. mlk ≥− ). Also, a profile is “exploding” 
if the above condition is not fulfilled but if the sum of 
uncertainties is larger than 2/1+m . For instance, in the 
case of ECA with m=3, the CA with ID=78 has U=[0 1 1 1/2 
1] and satisfies the above criterion since 152 == uu  and 

352 ==− m . The same definition can begeneralized to  
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any other CA configuration. For multi-dimensional grids the 
above conditions should be satisfied for at least one particular 
expanding direction. For such exploding profiles a complex 
dynamics is expected (characterized by long period attractors 
or very long transients). As seen in Fig.3, not surprisingly 
most of these exploding rules overlap with Class 5 and Class 
6 categories, while the distinction between Class 5 and 6 is 
simply made by the asymmetry index. Though, some 
exploding rules can be found into less complex classes 
according to Chua’s classification, for instance rule 13 with 
U=[1 3/4 3/4  1/4  2/4] which was found to be a period-1 
(Class 1) rule. Still we might not consider this rule as a 
“simple” one because there is a relatively large transient. This 
may be explained by the fact that rule 13 falls within the edge 
of complexity boundary while it is an asymmetric one and 
therefore we may consider it as a complex one. Therefore, 
unlike Chua’s classification focusing on the attractors and 
their periods, the UPM approach reveals aspects that might 
be important for information processing. For instance, a 
complex computation behaves much like a CA with a long 
transient ending in a low period attractor (i.e. a fixed 
point representing the end of the computation). In such 
cases, the period of the attractor is not as relevant as the 
transient length to qualify the behavior as a complex. This 
is also the reason why non-expanding rules but with large 

( ) 5.0+> mC U  were included in the edge of complexity. 

The degree of asymmetry as well as the sum of uncertainty 
plays an important role and can differentiate among such 
exploding rules. Such computable features may be used to 
induce an order within the roughly defined qualitative 
categories.  

A preserving profile is a non-exploding one with at least m 
non-zero elements. Such a profile guarantees that uncertainty 
is neither spreading nor implode, it will be always preserved 
in a finite number of cells.  A preserving profile indicates that 
there is no major global effect of the CA coupling. Still quite 
complex oscillatory behaviors may be associated with such 
categories.  For asymmetric preserving profiles, as seen in 
Figs 10-11, since uncertainty circulates with a certain speed 
(cells to the right or left per iteration) it is obvious that the 
underlying nonlinear dynamics will have a periodic attractor 
with a length proportional to the number n of cells.  Not 
surprisingly the asymmetric preserving category almost 
overlaps with Chua’s Class 4 (Bernoulli-shift rules).  The 
dynamics of the symmetric preserving rules is expected to be 
simpler, and not surprisingly most pf these rules overlap with 
rules in Chua’s Class 2 and Class 1.   

An imploding profile is a non-exploding one but with less 
than m non-zero elements. Such profiles are associated with 
a dynamics of the CA such that after a few (usually less than 
n) iterations all cells have a sure state (either 1 or 0). From 
the point of view of nonlinear dynamics this evolution 
corresponds to either Period 1 or Period 2 attractors. 

The table in Fig.3 reveals several interesting aspects about 
our classification scheme: For most complex rules (with large 
period attractors, depending on the number of CA cells, i.e. 
Classes 4-6) there is a strong overlap between our categories 

and those obtained using the nonlinear theory classification. 
While the methods to classify these rules are entirely 
different both capture the essential qualitative differences in 
CA behaviors. Small differences may be explained in that 
UPM method does not focus on attractors and their lengths 
but rather on uncertainty spreading. In fact, each method 
brings something new to the other. For instance, Chua’s 
method cannot predict spatial explosions in rules such as 
62,28,156,78 while our method cannot predict that some of 
the asymmetric exploding rules correspond to a low period 
attractor.  

 

Fig. 3. Both Chua’s and UPM classification of ECA rules:  A 
row corresponds to a class according to Chua, a column 
corresponds to a UPM class. Inside each box, rule IDs are 
listed in an increasing order of the cumulated uncertainty and 
the rules falling within the edge of complexity are 
represented underlined. Those that were effectively found 
interesting (large lengths of transients or gliders) by computer 
simulations are represented with bold characters.  

 The uncertainty profile method allows a finer subdivision 
inside each class. For instance observing CA simulations it 
turns out that more complex behaviors are expected to 
happen within the edge of complexity also depending on the 
symmetry index. As long as the class is asymmetric, the 
smallest the symmetry index the larger the complexity of the 
CA behavior. This observation explains why not all 
“underlined” rules in the table (having the potential to 
generate complexity) are also “bold” (observed to effectively 
generate complex behaviors in simulations). At a closer look 
it turns out that “bold” rules in the table have a symmetry 
index lower than 2.5. Comparisons of uncertainty profiles 
with CA simulations for all elementary CA reveal that the 
less complex rules are the symmetric ones.  

In addition to the above, Chua’s classification based on 
nonlinear dynamics reveals another interesting aspect: If a 
rule belongs to a low-period category, even if it falls within 
the complexity edge, it has a smaller chance to behave as a 
complex rule in computer simulations. Such cases are rules 
78,76 and 204. But as observed from the table, most 
effectively complex rules (underlined and bold) are to be 
found within the “asymmetric preserving” category. In our 
opinion such rules deserve further investigation. In fact, rule 
184 was already extensively investigated due to its traffic 
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modeling capabilities (Fuks and Boccara, 1998). In 
conjunction with a new phenomena described recently as 
emerging in CA, that of binary synchronization (Dogaru et al, 
2009), another predictive conjecture emerged comparing 
simulations of CA where this phenomena is present, with 
ours and Chua’s classification:  

Most asymmetric rules in Classes 3 to 6 do have 
attractors that synchronize binary. There is a single 
exception, namely ID=60. Also it was  found that in the case 
of symmetric rules there is no binary synchronization. 

In the next figures, representative examples from each 
category mentioned in Fig.3 are considered. For each 
example two plots are displayed. The upper one corresponds 
to 100 different runs, each starting with a different random 
initial state with a few random cells in the middle. Its 
evolution represents the uncertainty evolution of all cells 
(maximum uncertainty is represented here in black). The 
lower plot in each figure represents a particular simulation 
example where the time evolution corresponds to the 
dynamics of the CA state. In the next, the examples are 
grouped into categories according to the UPM classification.  

Asymmetric exploding rules: 
First let us consider 2 examples from the “Asymmetric 
Exploding & Class 6” rules: 

 

Fig.4 CA simulations for ID=110 

 

Fig.5 CA simulations for ID=110 

The first example (ID=110, quite famous since it was 
demonstrated in (Wolfram, 2002) to represent the simplest 
CA capable of universal computation) was underlined since 
its uncertainty profile enters the “edge of complexity”. 
Indeed, compared to the second example (ID=30), out of the 
edge of complexity, regular interacting structures called 
“gliders” emerge for ID=110 (better seen in Fig.1). For both 
ID=110 and 30 the periods of the attractors are obviously 
quite large, in any case larger than the simulation interval.  

Let now compare the above examples with the one in Fig. 6 
obtained for ID=78 from the same UPT category but in Class 
1 (Chua’s classification). 

 

Fig. 6. CA simulations for ID=78 

While the exploding type of behavior was correctly predicted 
for all above examples only Chua’s classification predicted 
correctly the attractor period that is indeed small (period 1) in 
case of ID=78. Since this rule falls within the edge of 
complexity, it is expected to provide some computationally 
meaningful effects. Indeed, for all random initial states, this 
CA converges towards a much smaller number of attractors. 
This behavior may be eventually exploited as an associative 
memory.  Note that Chua’s method could not predict from the 
ID number and without CA simulation the exploding 
character and the complexity of the spatial behavior for 
ID=78.  

Symmetric exploding rules: 
As seen in both Fig.7 and 8 the symmetry of uncertainty 
profile determines the symmetrical pattern evolution of such 
rules.  Both rules give less complex (more predictable) 
behaviors than asymmetric rules discussed before. Besides, 
rule 90 in Fig. 8 may be regarded as being “simpler” than rule 
126 in Fig. 7 because the uncertainty profile has only 3 gray 
shades for rule 90 and therefore all future states are quite 
predictable, while it has more gray shades for rule 126 
indicating that the pattern evolution depends stronger on the 
initial state choice.    

Chua’s method makes no particular distinction between these 
2 rules, placing both of them in class 5. From the example in 
Fig. 7 it appears that ID=126 must fall in class 1 (period 1 
attractor) but this is not the case if all cells are in a random 
initial state. Of course the uncertainty probability method 
could not predict the most likely attractor period but allows 
predicting many other features.   

As expected, the exploding and symmetric character of the 
rule ID=77 is predicted by UPM theory but the periodicity of 
1 for the attractor can be predicted only by Chua’s approach. 

 

Fig. 7 CA simulations for ID=126 



24                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

 

Fig. 8. CA simulations for ID=90 

 

Fig.9. CA simulation for ID=77 

Asymmetric preserving rules: 
As predicted by the uncertainty profiles, both above rules 
give an expected behavior, an asymmetric spreading of 
uncertainty but limited such that it will never affect all cells 
in the array.  But since the cumulated uncertainty is larger in 
the case of ID=106, the number of cells affected by 
uncertainty is even larger. For ID=184 investigated in (Fuks 
et al. 1998) the behavior is apparently not so complex but the 
situation changes if the initial state cells are all random. But 
in any case there is less complexity than for ID=106 as 
correctly predicts our uncertainty profile method.  Quite 
interestingly in this case, the theory of uncertainty can 
explain why the period of the attractors is a multiple of n 
(number of cells). Since there is a lateral propagation due to 
an asymmetric profile, uncertainty repeats periodically at 
certain cell sites and the period is obviously proportional to n. 
Not surprisingly most rules in this UPM category falls also in 
Class 4 (attractor period proportional to n). The exceptions in 
Class 1 have a weak asymmetry (S=1.3) that is not enough to 
allow a lateral propagation, as seen in Fig. 12, and 
consequently the attractor period becomes small and not 
dependent on the number of cells. This behavior is also 
predicted by the UPM via the symmetry index, very close to 
1 in such cases.  

 

Fig. 10. CA simulation for ID=106 

 

Fig. 11. CA simulation for ID=184 

Since this rule falls in the edge of complexity there is no 
surprise that for all cells in random initial states this CA 
behaves as an associative memory and therefore it has some 
computational potential.   

 

Fig. 12. CA simulation for ID=172 

Symmetric preserving rules: 
The typical evolution of such CA rules is shown in Fig. 13. It 
is somehow similar to that in Fig.12 but now the uncertainty 
profile is symmetric and there is no lateral propagation. As 
expected, the behavior is even less complex than in the 
previous cases, only certain cells including the initially 
uncertain ones and some very few around them propagate the 
uncertainty, but always on the same sites. Also in this case it 
is easy for UPM to explain why the period of the attractor 
cannot be in general very large (it is expected that attractors 
should be small and indeed they belong mostly to Chua’s 
classes 2 and 1), and in any case is not dependent of the 
number of cells n.   

 

Fig.13 CA simulations for ID=37 

Imploding behaviors: In these cases the CA behavior is 
rather dull as seen in Fig. 14, since uncertainty vanishes after 
a few iterations. There is, of course, no computational 
meaning for such CA systems. 

 

Fig. 14. CA simulation for ID=136. 
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6. CONCLUSIONS 

A novel classification method of arbitrary cellular automata 
was proposed. It computes uncertainty profiles as (2m-1) 
sized vectors of all affected cell in the next CA iteration 
while the starting state is defined with a number of m cells in 
a completely uncertain state. Since uncertainty spreading was 
found to be strongly related to the dynamic behavior of the 
CA it can be used as a feature to classify CA rules according 
to several simple algorithms. Moreover, in addition to 
classification of a given rule, numerical indicators such as 
asymmetry index and cumulated uncertainty allow to define a 
finer hierarchy within each category.   

 Our method was compared to the most recent ECA 
classification results based on nonlinear theory and a large 
overlap was found between classifications provided by both 
methods. This result validates our method as one capturing 
correctly the complexity aspects in cellular automata. 
Moreover, unlike Chua’s method, ours can be easily 
generalized since concepts like uncertainty spreading remain 
unchanged for larger CA neighborhoods and topologies. For 
instance, in (Dogaru, 2008c,d) we show that CA rules 
providing complex behaviors (e.g. gliders) can be identified 
quite easily, without the need of a genetic or evolutionary 
algorithm, by simply inspecting the representative probability 
table and allowing bits in Y to be set or reset in such a way to 
create a desired uncertainty profile. In the abovementioned 
case, such rules were found in the relatively large space of 232 
possible rules of CA with 5 neighbors.  The algorithm to 
classify CA rules as imploding, preserving or exploding is the 
same for any other kind of CA, as long as one provides the 
RPT (representative probability matrices) for the particular 
kind of neighborhood in that CA.  
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