
CEAI, Vol.25, No.1, pp. 12-20, 2023                                                                                                                    Printed in Romania 

A Reduced-order Observer-based LQR Control Method for Roll-to-roll 

Systems 
 

Zhanpeng He, Zhihua Chen*, Xueqin Huang, Dong Ma 

 

Institute of Computing Technology, Guangzhou University, China, Guangdong, Guangzhou, 510006 

 (Tel: +8613119536446; e-mail: 2112006102@e.gzhu.edu.cn; czhgd@gzhu.edu.cn; 

2112006109@e.gzhu.edu.cn; 2112006033@e.gzhu.edu.cn). 
*  Corresponding Author: Zhihua Chen 

Abstract. Roll-to-roll (R2R) manufacturing is a flexible material manufacturing process with a high degree 

of automation and a low degree of cost. However, the complex characteristics make the high-precision 

register control a critical challenge. In this study, a reduced-order observer was designed to estimate the 

tension fluctuation value, and the estimated value was used to calculate the optimal control quantity through 

a linear quadratic regulator (LQR). Combined with the decoupling algorithm, a high-precision reduced-

order observer-based LQR control (LQRC) is achieved. Simulations and comparisons confirmed that the 

register control method improves the control accuracy and adjustment time. Compared with the published 

fully decoupled proportional-derivative (FDPD) control algorithm, the control accuracy of LQRC was 

improved by at least 47%, and the adjustment time was reduced by at least 55%. Further, it was found that 

the LQRC method has a smoother control signal and consumes less energy compared with the FDPD 

control method. Overall, the results indicated that the LQRC method has good robustness and advantages 

in the practical application of industry. 
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1. INTRODUCTION 

Roll-to-roll (R2R) manufacturing is widely used in the 

production of flexible materials because of its low 

manufacturing cost and high automation (Jung et al., 2014; 

Palavesam et al., 2018; Lee et al., 2019). The typical 

application of R2R manufacturing is the R2R printing 

machines (Figure 1 displays a schematic diagram of the R2R 

printing system used in the industry), and the key criterion is 

error registration accuracy (Abbel et al., 2018). The tension 

fluctuation of the printing material (also called web) leads to 

register errors, and it is induced by various factors such as 

disturbances and velocity changes. The R2R system is a 

complex coupling system with multi-inputs and multi-outputs. 

A high-precision register control is extremely important for 

R2R printing systems, but the control law is not trivial due to 

the complex coupling (Lee et al., 2020; Lee et al., 2020). 

 

Fig. 1. A R2R printing system used in the industry. 

Note. R2R: Roll-to-roll. 

Some studies have been conducted on the register control of 

R2R systems. (Yoshida et al., 2008) and (Yoshida, 2008) 

deduced the register errors model and proposed a feedforward 

proportional derivative (PD) control method to eliminate the 

influence of the upstream control quantities on the downstream 

printing units, which improved the register accuracy of the 

R2R printing systems. Using new governing equations to 

minimize the effect of web tension on downstream printing 

units, (Torres and Pagilla, 2018) reduced the propagation of 

lateral perturbations. (Zhou et al., 2016) designed a control 

method for R2R systems for micro-contact printing to 

completely eliminate the coupling effect of the lateral motion 

of the web, achieving a precise control of ±200 nm. Likewise, 

(Nguyen et al., 2018) proposed a hyperbolic partial differential 

equation control method with two control inputs to reduce the 

lateral vibration of the web. Further, (Kim et al., 2020) 

designed an intelligent nonlinear tension and speed controller 

to improve the disturbance rejection performance and offset-

free properties of R2R printing systems. (Zhang et al., 2021) 

proposed a direct-decoupling PD control method that 

completely eliminated the register errors caused by upstream 

control quantities. Moreover, a fully decoupled proportional-

derivative control algorithm was proposed by (Chen et al., 

2021) to completely eliminate the complex coupling 

relationship, thus improving the register accuracy. 

The application of R2R systems in high-tech products poses 

higher requirements for register accuracy such as solar thin-

film cells and flexible circuit boards (Dou et al., 2018; Gao et 

al., 2016; Bariya et al., 2018; Wang et al., 2021). Optimal 

control has rich theoretical support (Kim et al., 2010; Neilan 

et al., 2010) and is widely used in various industries (Buchholz 

et al., 2013; Zulkowski and DeWeese, 2015). In this study, a 

reduced-order observer-based linear quadratic regulator 

(LQR) optimal control method was proposed to estimate the 

tension fluctuation value. An LQR is designed according to the 

estimated tension fluctuation and measured register errors to 

calculate the optimal feedback control quantities. Experiments 
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and comparisons indicated apparent improvement in the 

accuracy and adjustment time of the LQR control (LQRC)  

method proposed in the current study. This study is presented 

as follows: 

In Section 2, a reduced-order observer is designed based on the 

mathematical model of R2R printing systems to estimate the 

tension fluctuation. In Section 3, an LQR optimal control is 

designed based on the estimated state variables. In Section 4, 

simulation and comparisons are carried to verify the 

effectiveness of the proposed LQR control algorithm. Finally, 

the conclusion is given in Section 5. 

2. DESIGN OF REDUCED-ORDER OBSERVER 

The simplified diagram of two adjacent printing units is 

illustrated in Figure 2. Each printing unit can print a mark that 

can run to the next printing unit as a reference. The registered 

error is defined as the position misalignment of the marks 

between the first and the current printing unit. Then, a 

mathematical model of printing registration can be derived 

based on the definition. The technological nomenclature used 

in this study is listed in Table 1. 

Table 1. Nomenclature. 

 𝒓  Radius of gravure cylinder 

 𝑴  Elasticity coefficient 

 𝝎∗  Angular velocity of gravure cylinder at steady 

state 

 𝑻∗  Web tension at steady state 

 𝒍𝒊  Web length between No.i and No.(i + 1) gravure 

cylinder 

𝑻𝒊(𝒕)  Web tension between No.i and No.(i + 1) 

gravure cylinder at time t 

𝝎𝒊(𝒕) Angular velocity of No.i gravure cylinder at 

time t 

𝑬𝒊(𝒕) Register errors between No.(i + 1) and No.1 unit 

at time t 

 ∆𝑻𝒊(𝒕) Tension fluctuation between No.i and No.(i + 1) 

gravure cylinder at time t 

∆𝝎𝒊(𝒕) Variation of angular velocity of No. i gravure 

cylinder at time t 

In Figure 2, 𝑇𝑖  is the web tension which is the sum of  ∆𝑇𝑖  and 

 𝑇∗,   and 𝜔𝑖 denotes the angular velocity which is the sum of 

∆𝜔𝑖 and  𝜔∗. According to the law of conservation of mass, the 

relationship among the angular velocity of the gravure 

cylinder, the tension of the web, and the register errors, 

namely, the differential equation model of R2R printing 

systems, is as follows (Chen et al., 2021):   

{
 
 

 
 
𝑑∆𝑇𝑖(𝑡)

𝑑𝑡
= 𝑎𝑖( ∆𝑇𝑖−1(𝑡) −  ∆𝑇𝑖(𝑡)) +                        

       𝑏𝑖( ∆𝜔𝑖+1(𝑡) −  ∆𝜔𝑖(𝑡))             

 
𝑑𝐸𝑖+1(𝑡)

𝑑𝑡
= 𝑐∆𝑇𝑖(𝑡)                                               

          (1) 

where  𝑎𝑖 =  𝑟𝜔
∗ / 𝑙𝑖   ,  𝑏𝑖 = 𝑟(1 + 𝑀𝑇

∗ )/𝐾𝑙𝑖    ,  𝑐 =  𝑀𝑟𝜔
∗ /

 (1 + 𝑀𝑇∗ ) . 

 

Fig. 2. The simplified diagram of the adjacent unit of R2R 

printing systems. 

Note. R2R: Roll-to-roll.  

From Eq. (1), it can be easily observed that the register error 

results from the tension change. To reduce the register errors, 

a state observer is designed to estimate the tension fluctuation 

value. The first thing to be done is to convert the mathematical 

differential model to a state space model.  

Put i=1 in Eq. (1), the No.1 printing unit has no controller and 

is at a steady level with a steady speed, containing ∆𝜔1(𝑡) =
0 , ∆𝑇0(𝑡) = 0 , and 𝐸1(𝑡) = 0.  Then, we have 𝑥(𝑡)  =
[∆𝑇1(𝑡), 𝐸2(𝑡)]

𝑇 , 𝑢(𝑡) = ∆𝜔2(𝑡),  and 𝑦(𝑡) = 𝐸2(𝑡) , so the 

state space model under this condition is: 

{
 
 

 
 [
∆𝑇1̇ (𝑡)

𝐸2̇(𝑡)
] = [

−𝑎1 0
𝑐 0

] [
∆𝑇1(𝑡)

𝐸2(𝑡)
] + [

𝑏1
0
] ∆𝜔2(𝑡)

𝑦(𝑡) = [0 1] [
∆𝑇1(𝑡)

𝐸2(𝑡)
]                                        

  
                  (2) 

Put i=1 and i=2 in Eq. (1), then, we have 𝑥(𝑡) = [∆𝑇1(𝑡), 
∆𝑇2(𝑡), 𝐸2(𝑡), 𝐸3(𝑡)]

𝑇 , 𝑢(𝑡) = [∆𝜔2(𝑡), ∆𝜔2(𝑡)]
𝑇  and 𝑦(𝑡)   

= [𝐸2(𝑡), 𝐸3(𝑡)]
𝑇 , so the state space model under this 

condition is: 

{
 
 
 
 
 
 

 
 
 
 
 
 

[
 
 
 
 
∆𝑇1̇ (𝑡)

∆𝑇2̇ (𝑡)

𝐸2̇(𝑡)

𝐸3̇(𝑡) ]
 
 
 
 

= [

−𝑎1
𝑎2

0
−𝑎2

𝑐
0

0
𝑐

     

0
0

0
0

0
0

0
0

]

[
 
 
 
∆𝑇1(𝑡)

∆𝑇2(𝑡)

𝐸2(𝑡)

𝐸3(𝑡) ]
 
 
 

+ [

𝑏1 0
𝑏2
0
0

−𝑏2
0
0

] [
∆𝜔2(𝑡)

∆𝜔3(𝑡)
]

𝑦(𝑡) = [
0 0
0 0

1 0
0 1

]

[
 
 
 
∆𝑇1(𝑡)

∆𝑇2(𝑡)

𝐸2(𝑡)

𝐸3(𝑡) ]
 
 
 

        

  
                          (3) 

Accordingly, if we assume that the entire system has n+1 

printing units, put i=1, i=2, ⋯⋯, i=n in Eq. (1), then, the 

2n×1 state vector can be defined as 𝑥(𝑡) = [∆𝑇1(𝑡), ∆𝑇2(𝑡), 
⋯⋯ ,∆𝑇𝑛(𝑡), 𝐸2(𝑡), 𝐸3(𝑡),⋯⋯ , 𝐸𝑛+1(𝑡)]

𝑇 , the n×1 control 

vector is expressed as 𝑢(𝑡) = [∆𝜔2(𝑡), ∆𝜔3(𝑡),⋯⋯, 
∆𝜔𝑛+1(𝑡)]

𝑇, and the n×1 system output vector is defined as 

𝑦(𝑡) = [𝐸2(𝑡), 𝐸3(𝑡), ⋯⋯ ,𝐸𝑛+1(𝑡)]
𝑇. The state space model 

of R2R printing systems can be obtained as follows:  

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)                  
                                                             (4) 

where  𝐴 = [
𝐴11 𝐴12
𝐴21 𝐴22

], matrix 𝐴11 , 𝐴12 , 𝐴21  and 𝐴22  both 

are the square matrices of order n, 𝐼(𝑛)  represents a unit 

matrix of order n, and 𝑂(𝑛) denotes a zero matrix of order n: 
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𝐴11 =

[
 
 
 
 
 
−𝑎1 0 0 ⋯ 0 0
𝑎2 −𝑎2 0 ⋯ 0 0
0 𝑎3 −𝑎3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝑎𝑛−1 0
0 0 0 ⋯ 𝑎𝑛 −𝑎𝑛]

 
 
 
 
 

             

 𝐴21 = 𝑐 ∗ 𝐼(𝑛), 𝐴21 = 𝐴21 = 𝑂(𝑛)                                        

  (5) 

and 𝐵 = [𝐵11 𝐵21]
𝑇 , matrix 𝐵11  and 𝐵21  both are square 

matrices of order n: 

𝐵11 =

[
 
 
 
 
 
𝑏1 0 0 ⋯ 0 0
−𝑏2 𝑏2 0 ⋯ 0 0
0 −𝑏3 𝑏3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑏𝑛−1 0
0 0 0 ⋯ −𝑏𝑛 𝑏𝑛]

 
 
 
 
 

,          

𝐵21 = 𝑂(𝑛)                                                                

                    (6) 

and 𝐶 = [𝐶11 𝐶21] , matrix 𝐶11  and 𝐶21 both are square 

matrices of order n:  

𝐶11 = 𝑂(𝑛), 𝐶21 = 𝐼(𝑛)                                                              (7) 

According to the Popov-Belevitch-Hautus observability 

criterion, when the inputs of R2R printing systems satisfy 

𝑢(𝑡) = 0, the sufficient and necessary condition for the state 

vector 𝑥(𝑡)  to be completely observable is that the matrix  

[𝑠𝐼 − 𝐴 𝐶]𝑇 is full rank, namely, rank [𝑠𝐼 − 𝐴 𝐶]𝑇 = 2𝑛, 

where s is the eigenvalue of the state matrix A. As can be 

observed from Eq. (5), A is a 2n×2n matrix, which has a total 

of 2n eigenvalues, the n eigenvalues of matrix A are both zero, 

and the other n eigenvalues are [𝑎1, 𝑎2, ⋯ , 𝑎𝑛], thus the rank 

of (𝑠𝐼 − 𝐴) is n. At the same time, it can be understood from 

Eq. (7) that the rank of the matrix 𝐶 is also n. Therefore, the 

rank of [𝑠𝐼 − 𝐴 𝐶]𝑇  is 2n, meeting the observability 

criterion, thus R2R printing systems have complete 

observability. 

The output vectors are [𝐸2(𝑡), 𝐸3(𝑡),⋯⋯ , 𝐸𝑛+1(𝑡)]
𝑇 , which 

are the last n state of the state vectors 𝑥(𝑡). Then, the n state 

vectors of R2R printing systems can be directly replaced by 

the n output vectors. It is necessary to establish an n 

dimensional reduced-order observer to reconstruct the 

remaining n state vectors.  

Divide state vectors 𝑥(𝑡) =  [∆𝑇1(𝑡), ∆𝑇2(𝑡),⋯⋯ , ∆𝑇𝑛(𝑡), 
∆𝐸2(𝑡), ∆𝐸3(𝑡),⋯⋯ , ∆𝐸𝑛+1(𝑡)]

𝑇  into 𝑥𝑎(𝑡) = [∆𝑇1(𝑡), 
∆𝑇2(𝑡),⋯⋯ , ∆𝑇𝑛(𝑡)]

𝑇  and 𝑥𝑏(𝑡) = [∆𝐸2(𝑡), ∆𝐸3(𝑡),⋯⋯ ,
∆𝐸𝑛+1(𝑡)]

𝑇. The state space model of R2R printing systems 

can be rewritten as: 

{
 

 [
𝑥𝑎̇(𝑡)

𝑥𝑏̇(𝑡)
] = [

𝐴11 𝐴12
𝐴21 𝐴22

] [
𝑥𝑎(𝑡)

𝑥𝑏(𝑡)
] + [

𝐵11
𝐵21

] 𝑢(𝑡)

𝑦(𝑡) = [𝐶11 𝐶21] [
𝑥𝑎(𝑡)

𝑥𝑏(𝑡)
] = 𝑥𝑏(𝑡)                  

                    (8) 

Expand Eq. (8) to: 

{
𝑥𝑎̇(𝑡) = 𝐴11𝑥𝑎(𝑡) + 𝐴12𝑦(𝑡)+𝐵11𝑢(𝑡)

𝑦̇(𝑡) = 𝐴21𝑥𝑎(𝑡) + 𝐴22𝑦(𝑡)+𝐵21𝑢(𝑡) 
                                (9) 

define 𝑧(𝑡) = 𝑦̇(𝑡) − 𝐴22𝑦(𝑡)−𝐵21𝑢(𝑡), then Eq. (9) can be 

derived as follows: 

{
𝑥𝑎̇(𝑡) = 𝐴11𝑥𝑎(𝑡) + 𝐴12𝑦(𝑡)+𝐵11𝑢(𝑡)

𝑧(𝑡) = 𝐴21𝑥𝑎(𝑡)                                         
                               (10) 

𝐴12𝑦(𝑡)+𝐵11𝑢(𝑡) can be used as an input in Eq. (10), and 

𝑧(𝑡) = 𝑦̇(𝑡) − 𝐴22𝑦(𝑡)−𝐵21𝑢(𝑡)  can be used as a known 

output in Eq. (10). 𝐴11 is the state matrix of the subsystem, 

and 𝐴21 is the output matrix of Eq. (10). Next, Eq. (10) is the 

deformation of Eq. (4), and its dimension is reduced, then a 

state observer can be established according to Eq. (10), and 

this observer is the reduce-order observer of Eq. (4)  to 

estimate state vectors 𝑥𝑎(𝑡). According to the reduced-order 

observer design equation, we have:  

{
 

 
𝑤̇ = (𝐴11 −  𝐺𝐴21)𝑤 + (𝐵11 −  𝐺𝐵21)𝑢          

+[(𝐴11 −  𝐺𝐴21)𝐺 + 𝐴12 −  𝐺𝐴22]𝑦

= (𝐴11 −  𝐺𝐴21)(𝑤 + 𝐺𝑦) + 𝐵11𝑢          
𝑥̂𝑎 = 𝑤 + 𝐺𝑦                                                           

                 (11) 

where 𝐺  is a n×n feedback matrix of the reduced-order 

observer, and the eigenvalues of the subsystem matrix 
(𝐴11 −  𝐺𝐴21) can be arbitrarily configured through the pole 

configuration, while 𝑤 is the intermediate variables to obtain 

the reconstructed state vector 𝑥̂𝑎(𝑡). Combined with 𝑥𝑏(𝑡) =
𝑦(𝑡) , the estimate of the entire state vectors 𝑥̂(𝑡)  can be 

expressed as follows: 

 𝑥̂(𝑡) = [
𝑥̂𝑎(𝑡)

𝑥𝑏(𝑡)
] = [

𝑤(𝑡) + 𝐺𝑦(𝑡)

𝑦(𝑡)
]                                      (12) 

where 𝑤(𝑡), 𝐺, and 𝑦(𝑡) can be derived from Eq. (11), pole 

configuration, and detection sensor, respectively. Therefore, 

the state vector (tension fluctuation value) that cannot be 

measured can be estimated through these three known 

quantities. 

According to Eqs. (11) and (12), the structure diagram of the 

reduced-order observer is illustrated in Figure 3.  

Finally, the convergence of the reduced-order observer needs 

to be proved. Since the whole output vectors of the system can 

directly replace the half of state vectors, the error 𝑒𝑎(𝑡) 
between the real state vectors and the estimated state vectors 

of the remaining part is defined as:  

𝑒𝑎(𝑡) = 𝑥𝑎(𝑡) − 𝑥̂𝑎(𝑡)                                                             (13) 

Subsequently, taking the derivation of Eq. (13) and according 

to Eqs. (9), (11), and (12), we can obtain: 

𝑒𝑎̇(𝑡) = 𝑥𝑎̇(𝑡) − 𝑥̂𝑎̇(𝑡)                                                

= 𝐴11𝑥𝑎(𝑡) + 𝐴12𝑦(𝑡)+𝐵11𝑢(𝑡) − 𝑤̇(𝑡) − 𝐺𝑦̇(𝑡)

= 𝐴11𝑥𝑎(𝑡) + 𝐴12𝑦(𝑡)+𝐵11𝑢(𝑡)𝑤̇(𝑡)                      

−[(𝐴11 −  𝐺𝐴21)(𝑤 + 𝐺𝑦) + 𝐵11𝑢]              

−𝐺[𝐴21𝑥𝑎(𝑡) + 𝐴22𝑦(𝑡)+𝐵21𝑢(𝑡)]              

= 𝐴11𝑥𝑎(𝑡) − (𝐴11 −  𝐺𝐴21)𝑥̂𝑎(𝑡) − 𝐺𝐴21𝑥𝑎(𝑡)  

= (𝐴11 −  𝐺𝐴21)𝑒𝑎(𝑡)                                                  

            (14) 

Eq. (14) indicates that 𝑒𝑎(𝑡) can converge to 0 as long as the 

matrix (𝐴11 −  𝐺𝐴21)  is configured as a negative diagonal 

matrix, suggesting that the gain matrix 𝐺 of the reduced-order 

observer should be configured at a suitable position through 

the pole configuration. In this study, the main considerations 

are the rapid convergence of the tension estimation and the 
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good poles. The pole configuration of the reduced-order 

observer in this paper is based on engineering practice.  

 

Fig. 3. The structure diagram of the reduced-order observer. 

3. CONTROL METHOD 

3.1 LQR control 

Without considering the influence of coupling factors, each 

printing unit can be regarded as an independent individual, and 

the required control amount can be separately calculated. 

Initially, each printing unit of R2R printing systems is 

separately divided to calculate the basic control amount, and 

then the decoupling control amount is calculated according to 

the basic control amount. Finally, the total control amount of 

each printing unit is calculated, which consists of the basic 

optimal control amount and the decoupling control amount. 

First, calculate the basic control amount of each printing unit. 

The state space equation and state feedback control law of 

arbitrary No.i printing unit can be written as: 

𝑥̂𝑖̇(𝑡)
= 𝐴𝑖𝑥̂𝑖(𝑡) + 𝐵𝑖∆𝜔𝑖(𝑡)                                                              (15) 

∆𝜔𝑖(𝑡) = −𝐾𝑖𝑥̂𝑖(𝑡) = −𝐾𝑖1∆𝑇̂𝑖−1(𝑡) − 𝐾𝑖2𝐸𝑖(𝑡)               (16) 

where 𝑥̂𝑖(𝑡) is the state vector of No.i printing unit which is 

estimated by reduced-order observer, 𝑥̂𝑖(𝑡) = [
∆𝑇̂𝑖−1(𝑡)

𝐸𝑖(𝑡)
] , 

𝐴𝑖 = [
−𝑎𝑖 0
𝑐 0

] , 𝐵𝑖 = [
𝑏𝑖
0
] , and 𝐾𝑖 = [𝐾𝑖1 𝐾𝑖2]  is the state 

feedback gain matrix for No.i printing unit, while ∆𝑇̂𝑖−1(𝑡) 
denotes the tension fluctuation estimated by the reduce-order 

observer. 

The value of the state feedback gain matrix can be obtained by 

configuring the poles, but it is difficult to select the appropriate 

poles. Further, it is impossible to guarantee that the poles can 

achieve optimal control. Therefore, the state feedback control 

method in this study adopts the LQR to obtain the optimal 

control. It is necessary to set a performance function 𝐽𝑖  and 

make this performance function a minimum value: 

𝐽𝑖 =
1

2
𝑥̂𝑖
𝑇(𝑡𝑠𝑡𝑎𝑟𝑡)𝐿𝑖𝑥̂𝑖(𝑡𝑠𝑡𝑎𝑟𝑡)                                              

    +
1

2
∫ [𝑥̂ 𝑖

𝑇(𝑡)𝑄𝑖 𝑥̂𝑖(𝑡) + ∆𝜔𝑖
𝑇(𝑡)𝑅𝑖∆𝜔𝑖(𝑡)]𝑑𝑡

𝑡𝑒𝑛𝑑

𝑡𝑠𝑡𝑎𝑟𝑡

    (17) 

where 𝐿𝑖 is a semi-positive definite terminal weighting matrix, 

𝑄𝑖  is a semi-positive definite state weighting matrix, and 𝑅𝑖 is 
a positive definite control weighting matrix. According to the 

minimum value principle, a 2-dimensional Lagrange 

multiplier vector 𝜆𝑖(𝑡)  is introduced to construct a 

Hamiltonian function to obtain the basic optimal control 

variable ∆𝜔𝑖
∗(𝑡): 

𝐻𝑖[𝑥, ∆𝜔, 𝜆, 𝑡] =
1

2
[𝑥̂ 𝑖

𝑇(𝑡)𝑄𝑖 𝑥̂𝑖(𝑡) + ∆𝜔𝑖
𝑇(𝑡)𝑅𝑖∆𝜔𝑖(𝑡)] 

      +𝜆𝑖
𝑇(𝑡)[𝐴𝑖𝑥𝑖(𝑡) + 𝐵𝑖∆𝜔𝑖(𝑡)]

   (18) 

Likewise, 𝐻𝑖  should obtain an extreme value under optimal 

control. According to the method for finding the extreme value 

of the multivariate function, the partial derivative function of 

∆𝜔𝑖(𝑡) is obtained by Eq. (18):  

𝜕𝐻𝑖
𝜕∆𝜔𝑖(𝑡)

= 𝑅𝑖∆𝜔𝑖(𝑡)
      

+ 𝐵𝑖
𝑇𝜆𝑖(𝑡)                                            (19) 

Let Eq. (19) be 0, since the matrix 𝑅𝑖 is positive definite and 

symmetric, we have: 

∆𝜔𝑖
∗(𝑡) = −𝑅𝑖

−1𝐵𝑖
𝑇𝜆𝑖(𝑡)                                                          (20) 

and 𝜕2𝐻𝑖/𝜕[∆𝜔𝑖(𝑡)]
2 = 𝑅𝑖 , 𝑅𝑖  is positive definite, thus 

Eq. (20)  is the desired optimal control which causes 

performance function 𝐽𝑖 to reach a minimum value.  

The relationship between 𝑥̂𝑖(𝑡) and 𝜆𝑖(𝑡) can be solved by the 

canonical equation: 

𝜆𝑖̇(𝑡) = −
𝜕𝐻𝑖
𝜕𝑥̂𝑖

= −𝑄𝑖 𝑥̂𝑖(𝑡)−𝐴𝑖
𝑇𝜆𝑖(𝑡)                                   (21) 

The initial and equilibrium conditions are: 

{
 

 
𝑥̂𝑖(𝑡𝑠𝑡𝑎𝑟𝑡) = 𝑥0                                                      

𝜆𝑖(𝑡𝑒𝑛𝑑) =
𝜕

𝜕𝑥𝑖(𝑡𝑒𝑛𝑑)
[
1

2
𝑥 𝑖
𝑇(𝑡𝑒𝑛𝑑)𝐿𝑖𝑥𝑖(𝑡𝑒𝑛𝑑)]

 = 𝐿𝑖𝑥𝑖(𝑡𝑒𝑛𝑑)                          

                 (22) 

Eq. (21) can be solved according to the initial and equilibrium 

conditions as Eq. (22). 

It is clear that ∆𝜔𝑖
∗(𝑡) is a linear function of 𝜆𝑖(𝑡) from Eq. 

(20) . The transformation matrix 𝑃𝑖(𝑡)  is a real symmetric 

positive definite matrix of 2×2-dimensional, then:  

𝜆𝑖(𝑡) = 𝑃𝑖(𝑡)𝑥̂𝑖(𝑡)                                                                     (23) 

Substitute Eq. (23) into Eq. (20): 

{
∆𝜔𝑖

∗(𝑡) = −𝐾𝑖𝑥̂𝑖(𝑡) = −𝑅𝑖
−1𝐵𝑖

𝑇𝑃𝑖(𝑡)𝑥̂𝑖(𝑡) 

𝐾𝑖 = [𝐾𝑖1 𝐾𝑖2] = 𝑅𝑖
−1𝐵𝑖

𝑇𝑃𝑖(𝑡)                     
                       (24) 

According to Eq. (24), the closed-loop system of No.i printing 

unit from Eq. (15) is: 

𝑥̂𝑖̇(𝑡) = [𝐴𝑖 − 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑃𝑖(𝑡)]𝑥̂𝑖(𝑡)                                       (25) 

Eq. (25) implies that the optimal control can be realized by the 

optimal linear feedback composed of state vectors. Then the 

basic optimal control quantity of the state feedback is 

calculated below. 

Substituting Eq. (23) into Eq. (21) and eliminating 𝜆𝑖(𝑡), we 

can obtain: 

𝜆𝑖̇(𝑡) = −𝑄𝑖(𝑡)𝑥̂𝑖(𝑡)−𝐴𝑖
𝑇𝑃𝑖(𝑡)𝑥̂𝑖(𝑡)                                      (26) 

At the same time, the derivation of Eq. (23) is as follows: 
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𝜆𝑖̇(𝑡) = 𝑃𝑖̇(𝑡)𝑥̂𝑖(𝑡)+𝑃𝑖(𝑡)𝑥̂𝑖̇(𝑡)                                                (27) 

By substituting Eqs. (25) and (26) into Eq. (27), we get: 

−𝑄𝑖(𝑡)𝑥̂𝑖(𝑡)−𝐴𝑖
𝑇𝑃𝑖(𝑡)𝑥̂𝑖(𝑡)                                              

= 𝑃𝑖̇(𝑡)𝑥̂𝑖(𝑡) + 𝑃𝑖(𝑡)[𝐴𝑖 − 𝐵𝑖𝑅𝑖
−1𝐵𝑖

𝑇𝑃𝑖(𝑡)]𝑥̂𝑖(𝑡)         
        (28)   

After arranging Eq. (28), the result is as follows: 

𝑃𝑖̇(𝑡) = −𝑄𝑖−𝐴𝑖
𝑇𝑃𝑖(𝑡) − 𝑃𝑖(𝑡)𝐴𝑖 + 𝑃𝑖(𝑡)𝐵𝑖𝑅𝑖

−1𝐵𝑖
𝑇𝑃𝑖(𝑡)   (29) 

The value of the transformation matrix 𝑃𝑖(𝑡) can be obtained 

combined with condition 𝑃𝑖(𝑡𝑒𝑛𝑑) = 𝐿𝑖 . Finally, substituting 

𝑃𝑖(𝑡) back into Eq. (24), the optimal control amount ∆𝜔𝑖
∗(𝑡) 

and state feedback gain matrix 𝐾𝑖 of No.i printing unit can be 

calculated. ∆𝜔𝑖
∗(𝑡) is the basic optimal control quantity of No.i 

printing unit required in this subsection. 

3.2 Decoupling control 

Then, we should calculate the decoupling control amount 

according to the basic control amount in 3.1. Since the 

upstream control quantities can induce the downstream 

register errors, it is necessary to eliminate the downstream 

register errors caused by the upstream control quantities. The 

decoupling compensation of No.3 printing unit based on the 

model of Eq.  (1) is as follows (Chen et al., 2021):  

{
∆𝜔3

𝐷𝐶(𝑠) = ∆𝜔32
𝐷𝐶(𝑠) = 𝐹2(𝑠)∆𝜔2

∗(𝑠)

𝐹2(𝑠) =
𝑠

𝑠 + 𝑎1
                                          

                               (30) 

Similarly, the decoupling compensation of No.4 printing unit 

is as follows: 

{
 

 
∆𝜔4

𝐷𝐶(𝑠) = ∆𝜔42
𝐷𝐶(𝑠) + ∆𝜔43

𝐷𝐶(𝑠)                           

      = 𝐹2(𝑠)∆𝜔2
∗(𝑠) + 𝐹3(𝑠)∆𝜔3

∗(𝑠)

𝐹2(𝑠) =
𝑠

𝑠 + 𝑎1
 , 𝐹3(𝑠) =

𝑠

𝑠 + 𝑎2
                            

            (31) 

Accordingly, the decoupling compensation of No.j printing 

unit is as follows: 

{
  
 

  
 
∆𝜔𝑗

𝐷𝐶(𝑠) = ∑ ∆𝜔𝑗𝑚
𝐷𝐶(𝑡)

𝑗−1

𝑚=2

, 𝑗 ≥ 3

                                                  

                   

∆𝜔𝑗𝑚
𝐷𝐶(𝑡) = 𝐹𝑚(𝑠)∆𝜔𝑚

∗ (𝑠), 2 ≤ 𝑚 ≤ 𝑗 − 1

𝐹𝑚(𝑠) =
𝑠

𝑠 + 𝑎𝑚−1
                                            

                      (32) 

where 𝑗  represents any printing unit other than the No.1 

printing unit and the No.2 printing unit, 𝑚 represents the No.m 

printing unit before the No.j printing unit. ∆𝜔𝑗
𝐷𝐶(𝑠) represents 

the total decoupling control amount of No.j printing unit. And 

∆𝜔𝑗𝑚
𝐷𝐶(𝑠)  represents the decoupling control amount for the 

No.j printing unit to eliminate the register errors caused by the 

register control amount of No.m printing unit. ∆𝜔𝑚
∗ (𝑠) is the 

optimal control quantity calculated based on the measured 

register errors of No.m printing unit. Then the calculation 

formula of a single optimal control quantity is: 

 

{

𝑢1
∗(𝑡) = 0, 𝑖 = 1                                 

𝑢2
∗(𝑡) = ∆𝜔2

∗(𝑡), 𝑖 = 2                      

𝑢𝑖
∗(𝑡) = ∆𝜔𝑖

∗(𝑡) + ∆𝜔𝑖
𝐷𝐶(𝑡), 𝑖 > 2 

                                     (33) 

If we assume that the entire system has n+1 printing units, and 

defining total optimal control amount 𝑢∗(𝑡) = [𝑢2
∗(𝑡), 𝑢3

∗(𝑡), 
⋯⋯ ,𝑢𝑛+1

∗ (𝑡)]𝑇 . According to Eqs. (32) and (33), the total 

optimal control amount 𝑢∗(𝑡) for all printing unit is: 

𝑢∗(𝑡)

=

[
 
 
 
 
 
1 0 0 ⋯ 0 0

𝐹2(𝑡) 1 0 ⋯ 0 0

𝐹2(𝑡) 𝐹3(𝑡) 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐹2(𝑡) 𝐹3(𝑡) 𝐹4(𝑡) ⋯ 1 0

𝐹2(𝑡) 𝐹3(𝑡) 𝐹4(𝑡) ⋯ 𝐹𝑛(𝑡) 1]
 
 
 
 
 

[
 
 
 
 
 
∆𝜔2

∗(𝑡)

∆𝜔3
∗(𝑡)

∆𝜔4
∗(𝑡)
⋮

∆𝜔𝑛
∗(𝑡)

∆𝜔𝑛+1
∗ (𝑡)]

 
 
 
 
 

     (34) 

By combining the LQR control of 3.1 and the decoupling 

control of 3.2, the structure diagram of the control method 

proposed in this study is illustrated in Figure 4.  

Therefore, the state space model of R2R printing systems after 

decoupling can be written as: 

{
𝑥̇(𝑡) = [

𝐴1
𝐷𝐶 𝐴2

𝐷𝐶

𝐴3
𝐷𝐶 𝐴4

𝐷𝐶] 𝑥(𝑡) + [
𝐵1
𝐷𝐶

𝐵2
𝐷𝐶] 𝑢(𝑡)

𝑦(𝑡) = [𝐶11 𝐶12]𝑥(𝑡)                            

                              (35) 

where 𝐴1
𝐷𝐶 , 𝐴2

𝐷𝐶 , 𝐴3
𝐷𝐶 , 𝐴4

𝐷𝐶 , 𝐵1
𝐷𝐶  and 𝐵2

𝐷𝐶  both are square 

matrices of n order after decoupling control: 

𝐴1
𝐷𝐶 =

[
 
 
 
 
 
−𝑎1 0 0 ⋯ 0 0
0 −𝑎2 0 ⋯ 0 0
0 0 −𝑎3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝑎𝑛−1 0
0 0 0 ⋯ 0 −𝑎𝑛]

 
 
 
 
 

   

𝐴2
𝐷𝐶 = 𝑐 ∗ 𝐼(𝑛), 𝐴3

𝐷𝐶 = 𝐴4
𝐷𝐶 = 𝑂(𝑛),                        

𝐵1
𝐷𝐶 =

[
 
 
 
 
 
𝑏1 0 0 ⋯ 0 0
0 𝑏2 0 ⋯ 0 0
0 0 𝑏3 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑏𝑛−1 0
0 0 0 ⋯ 0 𝑏𝑛]

 
 
 
 
 

, 𝐵2
𝐷𝐶 = 0   

                      

           (36) 

𝑢(𝑡)

=

[
 
 
 
 
 
∆𝜔2

∗(𝑡)

∆𝜔3
∗(𝑡)

∆𝜔4
∗(𝑡)
⋮

∆𝜔𝑛
∗(𝑡)

∆𝜔𝑛+1
∗ (𝑡)]

 
 
 
 
 

                                                                             (37) 

It can be easily observed that Eq. (35) is a simple non-coupled 

multiple-input-multiple-output system after decoupling 

control, where ∆𝜔𝑛
∗(𝑡)  is the LQR control quantity of No.i 

printing unit designed based on the reduced-order tension 

observer.  
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Fig. 4. Structure of the proposed control method. 

4. INDUSTRIAL APPLICATION 

The Eq. (1) has been validated by (Chen et al., 2021), thus it 

can be considered a real situation for R2R printing systems. In 

this study, a seven-printing unit electronic shaft gravure 

printing machine is used as an example to verify the 

effectiveness and superiority of the LQRC algorithm. Tables 2 

and 3 present the system parameters and the poles of the 

designed reduced-order tension observer, respectively. The 

feedback gain matrix 𝐺  of the reduced-order observer 

calculated from the configured poles is: 

𝐺 =

[
 
 
 
 
 
4399.2 0 0 0 0 0
702.18 4026.4 0 0 0 0
0 702.18 3932.2 0 0 0
0 0 702.18 1269.8 0 0
0 0 0 702.18 1095.9 0
0 0 0 0 702.18 1682]

 
 
 
 
 

 

Table 2. System parameters. 

Parameters Values 

Printing speed 100 (m/min) 

Web length 𝒍𝒊 6.48 (m) 

Circumference of gravure cylinder 𝒓 0.53 (m) 

Web tension at steady state 𝑻∗ 100 (N) 

Elasticity coefficient 𝑴 2.3×10-4 (1/N) 

Table 3. The poles of reduced-order observer. 

Unit Pole 

No.2 printing unit -1.8686 

No.3 printing unit -1.7320 

No.4 printing unit -1.6975 

No.5 printing unit -0.7223 

No.6 printing unit -0.6586 

No.7 printing unit -0.8732 

4.1 Closed-loop control 

Given an initial disturbance with 3 mm to No. 2 printing unit, 

Figure 5 depicts the register errors of No. 2-7 printing units. It 

can be seen from Figure 5(a) that the register errors can be 

reduced to 0.1 mm after 42 sampling cycles and be kept at 

±0.01 mm after 55 sampling cycles. The adjustment time is 

only 55 sampling cycles, and there is no excessive overshoot. 

Similarly, it can be observed from Figure 5(b) that the 

decoupling algorithm eliminates the register errors of 

downstream printing units caused by the control quantities of 

upstream printing units, and the register errors of No. 3-7 

printing units can be kept at ±0.006 mm. The closed-loop 

register control of No. 2-7 printing units proves the 

effectiveness of the LQR control method.  

 

(a) 

 

(b) 

Fig. 5. Closed-loop register control errors of No. 2 printing unit 

to No. 7 printing unit. 

4.2 Comparisons and analysis 

Figure 6 presents the comparisons of the LQRC algorithm 

proposed in this study and the fully decoupled proportional-

derivative (FDPD) algorithm. It can be seen from Figure 6(a) 

that the adjustment time of the No.2 printing unit of the LQRC 

algorithm and the FDPD algorithm is similar, but the LQRC 

algorithm has a smaller overshoot compared to the FDPD 

algorithm. Regarding the performance of the two algorithms 

in No. 3-5 printing units in Figure 6(b), the LQRC algorithm 

exhibits a 2-5 times improvement in register errors compared 

with the FDPD algorithm. In terms of adjustment time, the 

adjustment time of the LQRC algorithm is only 50% of that of 

the FDPD algorithm. As shown in Figure 6(c), the adjustment 
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time of the LQRC algorithm on No. 6 and No. 7 printing units 

is only 30% of that of the FDPD algorithm. 

It was shown that the violent change of control signal can exert 

a huge impact on the motor, serious bearing wear, and energy 

waste. The absolute values of each printing unit control for the 

LQRC and FDPD are summed up, respectively, and the results 

are shown in Figure 7. The sum of the absolute values of each 

printing unit control based on the FDPD method is kept at 

about 21 mm, while that of the LQRC method can be kept 

below 13 mm. The results reveal that the LQRC method is 

more stable and smoother compared to the FDPD method, 

which is more economical and applicable.  

4.3 Anti-noise performance analysis 

The bounded white noise module is used as the noise inputs to 

No. 2-4 printing units to analyze the anti-noise ability of 

LQRC. Figure 8 shows the comparisons of the register errors 

of No. 2-4 printing units with and without noise. It is evident 

from Figure 8(a) that the register errors of No. 2 printing unit 

also drop rapidly to the range of ±0.01 mm in the presence of 

noise, and the control curve is close to the curve without noise. 

Further, Figure 8(b) indicates that the register errors of No. 3 

and No. 4 printing units can be controlled within ±0.006 mm 

with or without noise, and the control performances bear 

certain similarities. The results further indicate that LQRC 

method is robust for bounded noise disturbances. 

 

(a) 

 

(b) 

 

(c) 

Fig. 6. Comparison of register error between LQRC and 

FDPD. 

Note. LQRC: Linear quadratic regulator control; FDPD: 

Fully decoupled proportional-derivative 

4.4 Parameter sensitivity analysis 

The web length in Eq. (1) is a key system parameter and is 

obtained by manual measurement. Hence, there is inevitably a 

certain range of measurement noise. Therefore, it is necessary 

to verify the sensitivity of the LQRC algorithm to the key 

parameter. In this simulation, the web length of No. 5 and No. 

6 printing units are both 6.48 m. The web length of No. 5 and 

No. 6 printing unit printing units change within the range of 

86-118% and the range of 93-126%, respectively. Moreover, 

Figure 9 depicts the calculated register errors results using the 

LQRC algorithm. It can be found from Figure 9 that although 

the web length is not very accurate, the register errors of No. 5 

and No. 6 printing units can be controlled within ±0.005 and 

±0.0025 mm, respectively. Even if the web length has 

measurement errors, it will not affect the control effect of the 

LQRC, indicating that the LQRC has good fault tolerance and 

robustness for the measurement error of the web length.  

 

Fig. 7. Comparison of the sum of absolute value of the control 

value of each printing unit of FDPD and LQRC (mm). 

Note. LQRC: Linear quadratic regulator control; FDPD: Fully 

decoupled proportional-derivative 
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(a) 

 

(b) 

Fig. 8. Comparisons of register errors from No. 2 printing unit 

to No. 4 printing unit with and without noise. 

Note. LQRC: Linear quadratic regulator control 

 

(a) 

 

(b) 

Fig. 9. Comparison of register error to No. 5 printing unit and 

No. 6 printing unit under inaccurate web length li. 

5. CONCLUSIONS 

In this study, a reduced-order observer-based LQRC is 

proposed. Compared with the newly published FDPD method, 

the LQRC method has the rapidity of the adjustment time, the 

stability of the control process, and the relative smoothness of 

control quantities. Further, the control accuracy of LQRC 

improves by at least 50% compared with that of the FDPD 

algorithm. At the same time, the sum of the absolute value of 

each printing unit control quantity is less than 60% of that of 

the FDPD, meaning that it not only impacts less wear and tear 

on the mechanical systems but also saves large energy for 

production process. The results further suggested that 

experiments and comparison experiments verify the control 

accuracy performance, anti-noise performance, and parameter 

sensitivity. The above analysis results showed that the LQRC 

method has good robustness and great advantages in the 

practical application of industry.  
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