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Abstract: Controlling a swarm robot is a way of handling the behaviour of individual robots inspired by 

the organization of animal societies. Through local rules and interactions, swarm robotics aims to build 

sustainable collective behaviour, with an open and flexible mechanism to coordinate with large numbers of 

individuals. This paper proposes a solution for attractive/repulsive functions with clear mathematical 

descriptions with Mamdani fuzzy method, which is more flexible and closer to natural logic. Conditions 

for stabilizing the convergence process are introduced based on Lyapunov theory with swarm model and 

its interaction coefficients. Simulation results verify the important characteristics of the system through 

Matlab software. 
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1. INTRODUCTION 

Characteristics of the swarm robot are using a large number of 

relative simple robots to perform tasks that a single robot 

cannot do or do not perform effectively. Swarm behavior is 

performed based on the mechanism of the collaboration 

between individuals. Typical behaviors of swarm robots are 

divided into four major groups: aggregation, search, transport, 

and obstacle avoidance. 

Swarms of animals and insects tend to aggregate in the swarm, 

which will help them avoid enemies and deal with the changes 

of nature. One of the early applications of robot aggregation 

behaviors was proposed in 1994 (Kube and Zhang). In this 

research, a mechanism, used to invoke the group behavior, 

allow the system of robots to perform tasks without centralized 

control or explicit communication. (Bruemmer et al., 2002) 

addressed issues surrounding deployment and tasking of a 

real-world collective of cost-effective, small mobile robots.  

This research mentions on the use of social potential fields as 

a means to coordinate group behavior and promote the 

emergence of swarm intelligence as seen in a colony of ants or 

swarm of bees. (Correll et al., 2009) considered a case study 

concerned with the inspection of a jet turbine engine by a 

swarm of miniature robots. The research summarizes efforts 

that include multi-robot path planning, modeling of self-

organized robotic systems, and implementation of proof-of-

concept experiments with real miniature robots. Moreover, the 

emphasis of the work is on explicitly incorporating the 

potential limitations of the individual robotic platform in terms 

of sensor and actuator noise into the modeling and design 

process of collaborative inspection systems. Another 

contribution proposed a decentralized method for controlling 

a homogeneous swarm of autonomous mobile robots that 

collectively transport a single palletized load. The small tank-

like robots have no advanced sensory or communication 

capabilities as well as information on the position or number 

of other robots transporting the small pallet. Instead, all 

information needed by the robots is derived from the dynamics 

inherent when the system of robots is contacting a common 

rigid body (Stilwell and Bay, 1993). Parker described the 

design issues of key importance in these real-world 

cooperative robotics applications - fault tolerance, reliability, 

adaptivity and coherence. The work presents a general 

architecture addressing these design issues - called 

ALLIANCE - that facilitates multi-robot cooperation of small- 

to medium-sized teams in dynamic environments, performing 

missions composed of loosely coupled subtasks (Parker, 

1996). Another robotic implementation of the cooperation to 

retrieve large prey of ants is described in (Kube and Bonabeau, 

2000). This is an example of decentralized problem-solving by 

a group of robots, and it provides the first formalized model of 

cooperative transport in ants. 

Balch et al., described the design and implementation of these 

reactive trash-collecting robots as a multi-robot cooperating 

team. The multi-agent cooperation includes color vision for the 

detection of perceptual object classes, temporal sequencing of 

behaviors for task completion, and a language for specifying 

motor schema-based robot behaviors (Balch et al., 1995). 

When researching on the swarm robot, it is necessary to clarify 

the mechanism of cooperation and the stability of the swarm. 

The stability here is the ability to ensure the formation, the 

distance between individuals while moving. Specifically, 

individuals in the swarm move together toward a certain target 

and they would converge around the target at a certain 

distance. 

The stability of the robot swarm plays a role in ensuring that 

the algorithm is efficient, applicable, and moreover optimal in 

cooperation. There are many studies on the stability of swarm 

robots presented in (Gazi and Passino, 2003; Wang and Fang, 

2010; Chen et al., 2006; Yang et al., 2008). This stability is 

mainly based on the attraction/repulsion mechanism between 

individuals in the swarm. Each work presents a different 

attraction/repulsion function with explicit mathematical 
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equations. They have specific characteristics, including: 

magnitude depends on the distance between pairs of 

individuals in the swarm; the longer the distance between the 

pairs of individuals, the greater the attraction force, the closer 

the distance, the greater the repulsion force and vice versa. 

As for the use of fuzzy logic for complex systems, there have 

been many studies applied at different levels. (Hanchevici et 

al., 2012) proposed one networked control strategy for linear 

SISO systems affected by variant communication delays. The 

purpose of the research is to adjust, by using the fuzzy logic, 

the command provided by the PID controller. The input for the 

fuzzy logic controller is represented by the delay and the 

variation of delay, and the output is used to adjust the PID 

controller’s command to the new value of the communication 

delay which occurs in the network. Another contribution 

proposes a novel artificial intelligence based Evolved Bat 

Algorithm controller with machine learning matched 

membership functions in a complex nonlinear system (Chen et 

al., 2020). The proposed transformed membership functions 

are adopted and stabilized. As a result, closed-loop 

performance criteria TS fuzzy systems are obtained through a 

new parametric linear matrix inequality technology rearranged 

by a capacity function member that fits with machine learning. 

(Pozna et al., 2022) presented a hybrid metaheuristic 

optimization algorithm that combines Particle Filter (PF) and 

Particle Swarm Optimization (PSO) algorithms. The Particle 

Filter-Particle Swarm Optimization (PF-PSO) algorithm 

consists of two stages, generating randomly the particle 

population, and zooming the search domain. An application of 

this algorithm to the optimal tuning of Proportional-Integral-

fuzzy controllers for the position control of a family of 

integral-type servo systems. One contribution related to fuzzy 

logic to swarm robots is mentioned by (Mısır et al., 2020). This 

approach utilizes fuzzy logic controllers to evaluate limited 

sensor data. Experimental results were obtained on different 

number of swarm robots with different detection areas in 

arenas of different sizes. However, the stability properties for 

the swarm robot's operation have not been clearly considered. 

As can be seen, the above studies indicate that herd behavior 

is based on the interactions between individuals in the swarm, 

as well as between them and the environment. These 

interacting forces are often well-defined mathematical 

functions, but without convincing arguments. In addition, due 

to the complexity and variability of the swarm robot's 

behavior, mathematical models are often difficult to satisfy. 

In order to make the robot's operation closer to natural reality, 

this paper proposes a new swarm model, in which the 

interaction force between individual robots is built on the basis 

of fuzzy logic. Fuzzy logic has flexibility in input/output 

selection, fuzzy rules, defuzzification, etc. Therefore, using 

fuzzy logic to determine attraction/repulsion can be more 

generalized than the use of explicit attraction/repulsion. 

Simulation results using Matlab software are presented to 

verify the operating properties of the robots based on the 

proposed method. 

In part 2, the attraction/repulsion function for the convergence 

problem of the swarm robot is built based on the fuzzy logic 

approach. The stability of this approach is proven in section 3. 

The results of verification through simulation are presented in 

section 4. 

2. BUILDING ATTRACTION/REPULSION FUNCTION 

Consider a swarm including N individuals in n dimensional 

Euclidean space (n3). The position of the individual i in the 

swarm is represented by 

 pi =

[
 
 
 
𝑝1
i

𝑝2
i

⋮
𝑝n
i ]
 
 
 

∈ Rn  (1) 

The movement of individuals in an identical environment 

would depend on the interaction between each individual and 

the others in the swarm. An identical environment is one that 

is free of obstacles, with no external disturbance affecting the 

swarm. When pairs of individuals are far apart, they need to 

move toward each other by attraction force to maintain the 

swarm, and conversely, when close, they need to move away 

from each other by repulsion force to avoid collisions. This 

means that the force of interaction between individuals in the 

swarm would depend on the distance between pairs of 

individuals. Let f be the force of interaction between pairs of i 

and j 

 𝑓 = 𝑓(‖𝑝j − 𝑝i‖)  (2) 

where ‖𝑝j − 𝑝i‖ being the distance between two individuals i 

and j. Call s is actual distance between the pair of individuals, 

so: 

s = ‖𝑝j − 𝑝i‖ =

√(𝑝1
j
− 𝑝1

i )2 + (𝑝2
j
− 𝑝2

i )2 +⋯+ (𝑝n
j
− 𝑝n

i )2 (3) 

Let: 

𝑔(‖𝑝j − 𝑝i‖) =
𝑓(‖𝑝j−𝑝i‖)

‖𝑝j−𝑝i‖
=

𝑓(s)

s
= 𝑔a(s) − 𝑔r(s) (4)

                                   

 

where g(.) being attraction/repulsion function between 

individuals i and j, 𝑔a(. ) being repulsion force, 𝑔r(. ) being 

attraction force. 

Let s
∗R be the distance between two objects i and j with the 

force of attraction and repulsion between these two objects in 

equilibrium. This force is represented by 

 𝑓(s) {

= 0 if s = s
∗         

< 0 if 0 < s < s
∗

> 0 if 0 < s
∗ < s

           (5)                                 

Call ̃s the difference between the actual distance and the 

desired distance: 

 ̃s = s − s
∗   (6)                                                                       

The interaction force between individuals f(s) is a nonlinear 

function that depends on the distance between pairs of 

individuals (i, j), so that function 𝑓(s) can be built using the 

Mamdani fuzzy system with SISO structure as follows: 

- Step 1:  

The input signal is 
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𝑢 = ̃s = s − s
∗  (7) 

Assuming that u has the value range of [αb, βb] R. Divide u 

into 2Nf+1 membership functions, denoted by Bk with k = 

1,2,…, 2Nf+1 as shown in Figure 1.  

 

Fig. 1. Fuzzification of input signal of the fuzzy controller. 

The output signal is A= 𝑓(s − s
∗) = 𝑓(𝑢) with its value 

range of [αa, βa] (Figure 2). Divide A into 2Nf+1 membership 

function, denoted by Ak
 with k = 1, 2, …, 2Nf+1. Center of 

gravity 𝑎k of Ak is determine by 

  𝑎k {

< 0 if 𝑘 = 1, 2, … , 𝑁f                
= 0 if 𝑘 = 𝑁f + 1                      
> 0 if 𝑘 = 𝑁f + 2,… , 2𝑁f + 1

               

(8) 

- Step 2: Build 2Nf+1 rules IF… THEN… with form: 

 IF 𝑢 = 𝐵k  THEN  𝐴 = 𝐴k 

 

Fig. 2. Defuzzification of output signal of the fuzzy controller. 

- Step 3: Select fuzzy laws and defuzzificate by the weighted 

average method, according to (Wang, 1997), output control 

value is determined by 

𝑓(𝑢) =
∑ 𝑎k𝜇

Bk
(𝑢)

2𝑁f+1

𝑘=1

∑ 𝜇
Bk
(𝑢)

2𝑁f+1

𝑘=1

   (9)                                                               

With the above three-step fuzzy set design, it can be seen that 

the input signal is the distance of the individuals and the output 

signal is the interaction between the individuals. This 

relationship has the following properties 

𝑓(𝑢) {

> 0, if   s > s
∗      

< 0, if  0 < s < s
∗

= 0, if s = s            
∗  

   (10) 

The fuzzy function 𝑓(𝑢) is a continuous function that satisfies 

the conditions: 

- Upper and lower limit: 

𝐴min ≤ 𝑓(𝑢) ≤ 𝐴max    (11) 

where 𝐴min = 𝑎1, 𝐴max = 𝑎
2Nf+1      

- Applying linearization equation:  

𝑓(𝑢) =
(𝑎k+1−𝑎k)𝑢+𝑎k𝑢k+1−𝑎k+1𝑢k

𝑢k+1−𝑢k
 

    

(12) 

where 𝑢 ∈ [ 𝑢k, 𝑢k+1], with 𝑘 ∈ {1, 2, … ,2𝑁f} 

Let 𝐺amin  and 𝐺amax be the smallest and largest value of the 

attraction function, 𝐺rmin and 𝐺rmax be smallest and largest 

value of the repulsion function, respectively. From (12), the 

limits of the function g(s) are determined as follows 

{
0 ≤ 𝐺amin ≤ 𝑔(s) ≤ 𝐺amax nếu s > s

∗

−𝐺rmin ≤ 𝑔(s) ≤ 𝐺rmax < 0 nếu 0 < s < s
∗  (13) 

with 

{
 
 
 

 
 
 𝐺amax = max

𝑁f+2≤𝑘≤2𝑁f+1
[
𝑎k+1−𝑎k

𝑢k+1−𝑢k
]

𝐺amin = min
𝑁f+2≤𝑘≤2𝑁f+1

 [
𝑎k+1−𝑎k

𝑢k+1−𝑢k
]

𝐺rmax = max
1≤𝑘≤𝑁f

[
𝑎k+1−ik

𝑢k+1−𝑢k
]

𝐺rmin = min
1≤𝑘≤𝑁f

[
𝑎k+1−𝑎k

𝑢k+1−𝑢k
]

 (14) 

The properties of (10) can be represented by different 

nonlinear functions as shown in Table 1. According to the data 

in this table, three types of membership functions for input and 

output (middle column) generate attractive and repulsive 

function relations (right column), respectively. Depending on 

the actual use, these functions can be fully adjusted to meet 

different requirements. 

As can be seen from Table 1, the graph of the nonlinear 

functions is similar to the graph of the explicit functions 

described in (Gazi and Passino, 2003; Wang and Fang, 2010; 

Chen et al., 2006; Yang et al., 2008). This means that the 

explicit functional forms are special cases of the fuzzy function 

constructed by (9) satisfying the condition (10). 

3. STABILITY ANALYSIS STABILITY ANALYSIS OF 

CONVERGING PROCESS 

Stability of converging process is considered as the ability to 

ensure the formation and distance between individuals while 

moving. Specifically, the individuals in the herd always move 

together towards a certain goal and they will converge around 

the target with a definite distance. In our previous study (Le 

and Le, 2013), the swarm robot model was only considered to  

have the same interaction ability between individuals. 

However, for a real bio-swarm, the mobility of each individual 

is finite and determined by the neighboring individuals, scope 

of observation and the communication ability of the individual 

in the operating environment. Assume that individual robots 

are considered as points and interactions among individuals in 

the swarm are the same. Thus, the velocity of each individual 

in the flock is determined as follows: 

𝑝̇i = ∑ 𝑤ij𝑓(‖𝑝
j − 𝑝i‖)

(𝑝j−𝑝i)

‖𝑝j−𝑝i‖

𝑁
𝑗=1,𝑗≠i     (15) 
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Table 1. Types of interaction forces between individual i and j based on fuzzy logic. 

No. Fuzzy set parameters for input and output Input/output relationship 

1 

 
 

   
2 

 

 
 

   

3 
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where 𝑤ij ∈ R being the quantity that characterizes the 

interaction between the pairs of individuals, with 𝑤ij = 𝑤ji ≥

0. 

Let W = [𝑤ij] ∈ R
N×Nbe the interaction matrix between 

individuals. Assuming that 𝑤ii = 0, if 𝑤ij = 0. This means that 

the interaction between the pair of individuals does not exist, 

and 𝑤ij ≠ 0 means that there exists a interaction between 

individual i and individual j. For (15), to simplify the 

calculation, it is possible to approximate 𝑤ij = 1 with j=1, 

2,...., N. 

Let L=[lij]RNN be the Laplace representation of the 

interaction matrix W, in which 

 𝑙ij = {
−𝑤ij if 𝑖 ≠ 𝑗

∑ 𝑤ij
𝑁
𝑗=1,𝑗≠𝑖  if 𝑖 = 𝑗

   (16) 

L is the Laplace matrix whose sum of elements on a row or on 

a column is always 0. 

The center 𝑝w
c  of the swarm is defined by: 

𝑝w
c =

1

𝑁
∑ 𝑝i𝑁
i=1     (17)          

Take the derivative of pw
c

 with respect to time 

 𝑝̇𝑤
𝑐 =

1

𝑁
∑ ∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)(𝑝𝑗 − 𝑝𝑖)𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1  

 =
1

𝑁
∑ ∑ 𝑤𝑖𝑗[𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)(𝑝𝑗 − 𝑝𝑖) + 𝑔(‖𝑝𝑖 −𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1

              𝑝𝑗‖)(𝑝𝑖 − 𝑝𝑗)] = 0                      (18)

 

Formula (18) shows that 𝑝w
c  of a swarm described by the 

model (15) with attraction/repulsion function g(.) as given in 

(9) is always identical with every t and does not depend on the 

interaction between the pairs of individual in the swarm.  

Theorem: The individuals of the swarm are described as (15) 

with an attraction/repulsion function built according to the 

control law (9), satisfying condition (10), over time, all 

individuals of the swarm will converge and maintain in the 

restricted area  

 𝜎𝑤 = {∑‖𝑝
𝑗 − 𝑝𝑖‖

2
≤𝜎𝑤

2}   (19) 

in which  𝜎𝑤 = 𝑠
∗√

𝐴𝑚𝑖𝑛𝑛

𝛼𝑤2
 , with 2, 𝑛 being smallest and 

largest individual values of L, respectively. 

Prove theorem: 

Let 𝑒w
i  be the difference between the position of the robot i and 

the center: 

𝑒w
i = 𝑝i − 𝑝w

c    (20) 

Take the derivative of the position deviation 𝑒w
i  in (20) over 

time:  

𝑒̇w
i = 𝑝̇i − 𝑝̇w

c = 𝑝̇i   (21) 

Select Lyapunov function for individual i: 

𝑉iw =
1

2
‖𝑒w

i ‖
2
=

1

2
𝑒w
iT𝑒w

i    (22) 

Take the derivative of 𝑉iw function over time, the result is 

 V̇iw = ėw
iTew

i = ṗiTew
i = ∑ wijg(‖p

j − pi‖)(pj − pi)Tew
iN

j=1

   (23)

 Definition of total potential function Lyapunov: 

𝑉𝑤 = ∑ 𝑉𝑖𝑤
𝑁
𝑖=1 =

1

2
∑ 𝑒𝑤

𝑖𝑇𝑒𝑤
𝑖𝑁

𝑖=1     (24) 

Taking the derivative of Vw with respect to time t 

𝑉̇𝑤 =∑∑𝑤𝑖𝑗𝑔(‖𝑝
𝑗 − 𝑝𝑖‖)(𝑝𝑗 − 𝑝𝑖)𝑇𝑒𝑤

𝑖

𝑁

𝑗=1

𝑁

𝑖=1

 

= ∑ ∑ 𝑤𝑖𝑗[𝑔(‖𝑝
𝑗 − 𝑝𝑖‖)(𝑝𝑗 − 𝑝𝑖)𝑇𝑒𝑤

𝑖

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

+ 𝑔(‖𝑝𝑖 − 𝑝𝑗‖)(𝑝𝑖 − 𝑝𝑗)𝑇𝑒𝑤
𝑗
] 

= −∑ ∑ 𝑤𝑖𝑗𝑔(‖𝑝
𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖

2
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

= −
1

2
∑∑𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑁

𝑗=1

𝑁

𝑖=1

 

= −
1

2
∑𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆1

−
1

2
∑𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2

 

=−
1

2
[∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆1 + ∑ −𝑤𝑖𝑗𝑔(‖𝑝
𝑗 −𝑆2

𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖‖𝑝𝑗 − 𝑝𝑖‖
2
 ] −

1

2
[∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 −𝑆2

𝑝𝑖‖
2
− ∑ −𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2  ] 

=−
1

2
[∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆1 + ∑ −𝑤𝑖𝑗𝜇(‖𝑝
𝑗 −𝑆2

𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2
 ] −

1

2
[∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2 −

∑ −𝑤𝑖𝑗𝜇(‖𝑝
𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖

2
𝑆2  ]  (25) 

Set:  

𝑉1 = −
1

2
[∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆1 ] −

                        
1

2
[∑ −𝑤𝑖𝑗𝑓(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2
]     (26) 

𝑉2 =
1

2
[∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2
] +

                          
1

2
[−∑ −𝑤𝑖𝑗𝑓(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2
 ]    (27) 

Combine (26), (27) to (25): 

𝑉̇w = 𝑉1 − 𝑉2  (28) 

The result is  

{
∑ −𝑤𝑖𝑗𝑓(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2
≤ 𝐴𝑚𝑖𝑛 ∑ 𝑤𝑖𝑗‖𝑝

𝑗 − 𝑝𝑖‖
2

𝑆2

∑ 𝑤𝑖𝑗𝑔(‖𝑝
𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖

2
𝑆1 ≥ 𝐺𝑎𝑚𝑖𝑛 ∑ 𝑤𝑖𝑗‖𝑝

𝑗 − 𝑝𝑖‖
2

𝑆1

  

  (29) 

Hence from (27), the following relation is determined 
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𝑉2 ≥
1

2
∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆2 −

                            
1

2
∑ 𝑤𝑖𝑗𝐴𝑚𝑖𝑛‖𝑝

𝑗 − 𝑝𝑖‖
2

𝑆2                             (30) 

The right-hand side of the inequality (30) can be rewritten as 

follows: 

1

2
∑ wijg(‖p

j − pi‖)‖pj − pi‖
2

S2 −
1

2
∑ wijAmin‖p

j − pi‖
2

S2   

=
1

2
∑ 𝑤𝑖𝑗

𝑓(‖𝑝𝑗−𝑝𝑖‖)−𝐴𝑚𝑖𝑛‖𝑝
𝑗−𝑝𝑖‖

‖𝑝𝑗−𝑝𝑖‖
‖𝑝𝑗 − 𝑝𝑖‖

2
𝑆2   

= −
1

2
∑ {−𝑓(‖𝑝𝑗 − 𝑝𝑖‖) + 𝐴𝑚𝑖𝑛‖𝑝

𝑗 −𝑆2

𝑝𝑖‖}
(𝑝𝑗−𝑝𝑖)

𝑇

‖𝑝𝑗−𝑝𝑖‖
𝑤𝑖𝑗‖𝑝

𝑗 − 𝑝𝑖‖
(𝑝𝑗−𝑝𝑖)

‖𝑝𝑗−𝑝𝑖‖
  

= −
1

2
∑ {−f(‖pj − pi‖) + Amin‖p

j − pi‖}1Twij‖p
j − pi‖S2 1  

  (31) 

Note that: 

βw = max
S2
{−f(‖pj − pi‖) + Amin‖p

j − pi‖} = Amins
∗   (32) 

Combine (31) and (32) infer that (30) is equivalent to:  

𝑉2 ≥ −
1

2
𝐴𝑚𝑖𝑛𝑠

∗2∑ ∑ 1𝑇 . 𝑤𝑖𝑗 . 1
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1     (33) 

From (33) infer that: 

−𝑉2 ≤
1

2
𝐴𝑚𝑖𝑛𝑠

∗2∑ ∑ 1𝑇 . 𝑤𝑖𝑗 . 1
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1         (34) 

Return to formula (26), the result is 

𝑉1 ≤ −
1

2
∑ 𝑤𝑖𝑗𝑔(‖𝑝

𝑗 − 𝑝𝑖‖)‖𝑝𝑗 − 𝑝𝑖‖
2

𝑆1 −

                          
1

2
∑ 𝑤𝑖𝑗𝐴𝑚𝑖𝑛‖𝑝

𝑗 − 𝑝𝑖‖
2

𝑆2     (35) 

Set: 𝛼𝑤 = min{𝐺𝑎𝑚𝑖𝑛 , 𝐴𝑚𝑖𝑛} 

So:  

𝑉1 ≤ −
1

2
𝛼𝑤 ∑ 𝑤𝑖𝑗‖𝑝

𝑗 − 𝑝𝑖‖
2

𝑆1∪𝑆2 =

                 
1

2
𝛼𝑤 ∑ ∑ (𝑝𝑗 − 𝑝𝑖)𝑇𝑤𝑖𝑗(𝑝

𝑗 − 𝑝𝑖) 𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1            (36) 

From (16), the following equation is determined 
1

2
∑ ∑ (pj − pi)Twij(p

j − pi)N
j=1,j≠i

N
i=1 = ew

T (L In)ew       (37) 

and 

  
1

2
∑ ∑ 1𝑇𝑤𝑖𝑗1

𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1 = 1𝑇(𝐿 𝐼𝑛)1   (38) 

in which 

𝑒𝑤 = 𝑝
𝑗 − 𝑝𝑖 = (𝑝𝑗 − 𝑝̇𝑤

𝑐 ) − (𝑝𝑖 − 𝑝̇𝑤
𝑐 ) = 𝑒𝑤

𝑗
− 𝑒𝑤

𝑖           (39) 

In (37) and (38), the notation  is Kronecker product, L In is 

the matrix of NNNN dimension created from NN block, in 

which block (i, j) is the matrix lijIn, specifically as follows:  

 L In = [

𝑙11𝐼𝑛 𝑙12𝐼𝑛
𝑙21𝐼𝑛 𝑙22𝐼𝑛

   
… 𝑙1𝑁𝐼𝑛
… 𝑙2𝑁𝐼𝑛… …

𝑙𝑁1𝐼𝑛 𝑙𝑁2𝐼𝑛   
… …
… 𝑙𝑁𝑁𝐼𝑛

] ∈ 𝑅𝑁𝑁×𝑁𝑁  (40) 

Combine (36), (37) and (38), the result is 

𝑉1 ≤ −𝛼𝑤𝑒𝑤
𝑇 (L In)𝑒w     (41) 

When interaction matrix is symmetric and there exists a link 

between the robots, all the values of the matrix L are denoted 

by h, h=1, 2, 3,…, n and satisfy: 

 0 = 1 < 2 ≤ ⋯ ≤ 𝑛  (42) 

1, 2, … , n is the solution of the system of equations: 

det(L − I) = 0, 2 is the smallest of the non-zero values of 

the matrix L, I is the unit matrix. 

Hence, from (41), following relationship is formulated 

 𝑉1 ≤ −𝛼𝑤𝑒𝑤
𝑇(𝐿 𝐼𝑛)𝑒𝑤 ≤ −𝛼𝑤2‖𝑒𝑤‖

2       (43) 

Combined (34) and (43), the result is 

  𝑉̇𝑤 = 𝑉1 − 𝑉2 ≤ −𝛼𝑤2‖𝑒𝑤‖
2 + 𝐴𝑚𝑖𝑛𝑠

∗2𝑛‖1‖   (44) 

From (44) infer that to make 𝑉̇w < 0 then: 

‖𝑒𝑤‖
2 >

𝐴𝑚𝑖𝑛𝑠
∗2𝑛

𝛼𝑤2
 

Set: 

σw = s
∗√

Aminn

αw2
   (45) 

then: 

‖𝑝𝑗 − 𝑝𝑖‖
2
> 𝜎𝑤

2          (46) 

Theorem is proven  

From (46) draws the influence of the parameters to the 

convergent limit of σw of the swarm: 

- When increasing 𝐴minmeans increasing the repulsive 

force, which will increase the convergence limit of the 

swarm.  

- On the contrary, if increasing 𝛼w, the convergence limit 

of the swarm will be decreased. 

4. SIMULATION RESULTS 

To simulate the moving process of swarm robots, the 

algorithm is implemented through the following steps: 

Step 1: 

 Determining the number of robots in the swarm N. 

 Creating the initial position of the robots in the 

simulation space. 

 Entering the interaction matrix W between the 

individual robots in the swarm. 

 Providing the safe distance between the robots. 

 Enter the number of calculating steps K and the 

calculation interval t and the total time for moving 

being calculated by t = K * t. 

Step 2: 

 Calculating the distance between the robots (i, j) 

according to (3) with j≠i and j=1÷N. 

 Determining the fuzzy attractive/repulsive force f(.) 

according to the law (9) and satisfying condition (10). 
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Step 3: 

 Determining the moving speed of individual i at step k 

(with k=1÷K) 

𝑣𝑖[𝑘] = 𝑤ij ∗  𝑓[𝑘] ∗
(𝑝j[k]−𝑝i[k])

‖𝑝j[k]−𝑝i[k]‖
 (47) 

 The distance traveled corresponding to a calculated 

step is described by: 

∆𝑝𝑖[𝑘 + 1] = ∆𝑝𝑖[𝑘] + 𝑣𝑖[𝑘] ∗ ∆𝑡 (48) 

 The new coordinates of the i-th instance after (k+1) 

moves are updated as follows: 

𝑝𝑖[𝑘 + 1] = 𝑝𝑖[𝑘] + ∆𝑝𝑖[𝑘 + 1] ∗ ∆𝑡 (49) 

The loop consisting of steps 2 and 3 is executed until K steps 

are completed. The operating process of robots is simulated 

through fuzzy logic features presented as follows. 

4.1 Fuzzy attraction/repulsion function simulation 

As discussed above, the f(.) is a nonlinear function depending 

on the distance between the robots, so it is possible to calculate 

approximately of the f(.) based on the Mamdani fuzzy model 

by the structure SISO as shown in Figure 3: 

 

Fig. 3. The fuzzy structure of the attraction/repulsion 

calculations between robot individuals. 

(a) 

(b) 

Fig. 4. Function of input signal (a) and of output signal (b) of 

fuzzy set f(u). 

With the steps presented in section 2, the fuzzy set is designed 

flexibly and needs to satisfy conditions (8), (9) and (10). From 

there, the input/output values of the simulated fuzzy set are set 

as follows: 

- Input signal is u = 𝜎s − s
∗, u = [-10, 10] R, divide u 

into 5 spaces Bk as figure 4a. 

- Output signal is 𝐴 = 𝑓(𝜎s − s
∗) with the value range of 

[-1, 1], divided into 5 spaces Ak as figure 4b. 

- Build 5 laws with form:  

     If  u = Bk Then A = Ak with k=1, 2, …, 5. 

- Select law MAX-MIN, defuzzification by the weighted 

average method. 

With the solution of the design of fuzzy sets to calculate 

interactive force between the individual robots as the above 

steps, the relation between the input/output signals of the fuzzy 

set f(.) is obtained as shown in Figure 5.  

 

Fig. 5. The relationship between the input and output signals 

of the fuzzy set f(.) 

4.2 Simulation of the converging process of the swarm robot 

In the simulations: the symbols , ,  represent the initial 

position, the final position, and the path of the robot, 

respectively (Figure 6). Matrix W is symmetric with 𝑤ij =

𝑤ji ∈ [0,1] if j≠i, 𝑤ij = 0 if j=i. Assuming that the interaction 

matrix W has the following specific values: 

W = [𝑤ij]

=

[
 
 
 
 
 
 
 
 
 
0 0.70
0.70 0

      
0.51 0.63
0.32  0.43

     
0.14 0.12
0.98 0.18

    
0.40 0.41
0.24 0.76

   
0.28 0.59
0.75 0.99

0.51 0.32
0.63   0.43

    
0 0.83

0.83  0
    
0.27 0.98
0.70 0.69

    
0.41 0.82
 0.21 0.59

   
0.75 0.74
0.89 0.86

0.14 0.98
0.12 0.18

      
 0.27 0.70
0.98 0.69

     
0 0.31
0.31 0

    
 0.90 0.72
0.18 0.90

   
0.62  0.49
0.16 0.52

0.40 0.24
0.41 0.76

      
0.41 0.21
 0.82 0.59

     
0.90 0.18
0.72 0.90

    
0 0.15
0.15 0

   
0.93 0.60
0.82 0.34

0.28 0.75
0.59 0.99

      
0.75 0.89
0.74 0.86

     
0.62 0.16
0.49 0.52

    
0.93 0.82
0.60 0.34

   
0 0.77
0.77 0 ]

 
 
 
 
 
 
 
 
 

 

  (50) 

The converging process of the swarm robot is shown in Figure 

6. 

Figure 7 shows the converging process of the swarm including 

5 robots with interaction ability 𝑤ij between the different pairs 

of individuals (i, j).  

 W15 = [𝑤ij] =

[
 
 
 
 
0.00 0.75
0.75 0.00
0.35 0.52

     
0.35 0.57
0.52 0.84
0.00 1.00

    
0.15
0.91
0.21

0.57 0.84 1.00    0.00 0.34
0.15 0.91 0.21    0.34 0.00]

 
 
 
 

 (51) 
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W25 = [𝑤ij] =

[
 
 
 
 
0.00 0.32
0.32 0.00
0.56 0.50

     
0.56 0.66
0.50 0.32
0.00 0.71

    
0.13
0.30
0.83

0.66 0.32 0.71    0.00 0.25
0.13 0.30 0.83    0.25 0.00]

 
 
 
 

 (52) 

W35 = [𝑤ij] =

[
 
 
 
 
0 1
1 0
1 1

     
1 1
1 1
0 1

    
1
1
1

1 1 1    0 1
1 1 1    1 0]

 
 
 
 

 (53) 

  

Fig. 6. The converging process of the swarm robot with the 

communication model when the number of N robots in the 

swarm changes. 

a) N=10, s
∗ = 30 

b) N=30, s
∗ = 30 

The simulation results of Figure 8 show that: the converging 

process of the swarm robot based on interaction between 

individuals.  

 

(a) 
 

(b) 

 

(c) 

Fig. 7. The converging process of the swarm robot with the 

communication corresponding to the interaction matrix W15 (a), W25 

(b) and W35 (c). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8. The converging process of the swarm robot 

corresponding to the case of that the number of robots in the 

swarm and the ability to communicate between individual 

change. 

a) N=11, s
∗ = 30,2 = 3.97,n = 8.29, 𝜎w = 23.8, R=14.79 

b) N=31, s
∗ = 30, 2 = 13.4,n = 21.05, 𝜎w = 15.93, R=11.31 

c) N=31, s
∗ = 50, 2 = 12.6,n = 19.93, 𝜎w = 26.6, R=20.95 

d) N=51, s
∗ = 50,2 = 21.98,n = 2.28, 𝜎w = 22.67, R=17.69 

From Figure 8, commented: 

 The actual radius of convergence R is always smaller 

than the satisfied calculated radius 𝜎w  

 As the number of robots in the swarm increases, the 

radius of convergence decreases. 

 Safe distance s
∗ increases, the radius of convergence 

increases. 

The simulation results of the swarm robot show that the 

solution of building up the attraction/repulsion force between 

the robot individuals in the fuzzy logic was achieved: after a 

large enough time of moving, the robots in the swarm have 

converged around an area with a definite radius. Radius of 

convergence depends on the following factors:  

- The observation of each individual, 

- Number of individuals in the swarm,  

- Safe distance between individuals,  

- The ability to interact between pairs of individuals. 

The above conclusions are consistent with the content of the 

theorem stated in section 3. 
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5.  CONCLUSIONS 

This paper develops an algorithm to calculate the attraction/ 

repulsion force between individual robots in a swarm based on 

Mamdani fuzzy model with SISO structure. The theorem on 

convergent stability of the system was stated and proven, 

which contributed to the theoretical control of nonlinear 

dynamics. Matlab simulation results confirm that the proposed 

algorithms ensure reliability, improve controllability and 

stability of the swarm robot. This result promotes the 

application of this type of robot in practice, improves the 

ability to solve complex problems, and further enhances the 

system's ability to respond to various random external 

influences. 
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