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Abstract: Iterative learning control enables high precision performance through observed historical data
in previous iterations. Several techniques for designing iterative learning controllers have been developed
in the existing literature. However, evidence to support the design’s efficiency in real applications is,
unfortunately, missing in some designs. This paper presents a practical iterative learning controller
design, so-called the dual design, combining two existing controller designs using the weighted sum
technique. The two controllers are designed using data-driven and frequency response approaches,
distinctively selected to take benefits from each. A single gain controller designed from the gain
adjustment mechanism usually has slow learning behavior but can be very robust to external uncertainty.
The other design imitating the inverse of the frequency response of the system can learn extremely fast.
However, its performance may not be as effective as desired when the frequency response of the system is
incorrectly perceived. By taking advantage of both controllers, the dual design can achieve fast-learning
behavior as well as robustness to external disturbances. Simulation and experiments were carried out to
demonstrate the design efficiency.

Keywords: Iterative learning control, gain adjustment mechanism, inverse frequency response, robotic
manipulator.

1. INTRODUCTION

Today, robotic manipulators are widely used in industry and
hospitals. The industrial application of robot arms includes
welding, gluing, and polishing. Most commonly, healthcare
robot arms are used for neurorehabilitation. These tasks usually
require high precision in all repeated executions. Various tech-
niques are proposed to minimize the tracking error. In general,
robot arm developers tend to design both the mechanical and
electrical hardware to minimize error. However, other develop-
ers focus on the control algorithms to achieve the same purpose
without adding extra cost. A Proportional Integral Derivative
(PID) control is the most common technique for addressing
tracking problems. Many researchers have proposed different
techniques to adjust the PID gains. Among them, fuzzy logic
control (FLC) is the most popular for tuning the gains. Li et al.
(2020) proposed the gain tuning technique using a fuzzy neural
network algorithm. A similar concept, proposed by Elmogy et
al. (2020), uses an adaptive fuzzy logic controller. Other control
techniques for PID tuning include optimal control Long et al.
(2021), adaptive sliding mode Ejaz et al. (2019), and adaptive
neural network tracking control Yang et al. (2018).

Rather than attempting to tune the PID gains, iterative learning
control (ILC) is an alternative technique for improving the
tracking error without adjusting the internal parameters inside
the feedback control system. Based on the observed error and
control input signal from the previous iteration, ILC adjusts the
control input signal to the feedback control system with the aim
of reducing tracking error. However, a bad learning transient
can easily be observed in practical ILC implementation. Robust
ILC is therefore proposed to handle the problem.

In general, there are three main categories in the design of a
robust ILC: a Q-filter design, an optimization-based design, and
a robust learning gain design. In the first category, the Q-filter
is formulated based on a lowpass filter Tomizuka (1987). It is
basically constructed using an infinite impulse response (IIR),
where its cut-off frequency is determined from the spectrum of
the bad learning transient. Hock and Schoellig (2019) Demon-
strates the use of a Q-filter together with a D-type ILC to elimi-
nate high-frequency disturbance in robotic applications. Huang
et al. (2019) Implements a Q-filter in an active disturbance re-
jection control and constructs a current-cycle iterative learning
control to eliminate nonlinearities and dynamic uncertainties.
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Bristow et al. (2007) Develops a linear time-varying (LTV) Q-
filter for ILC that incorporates time-frequency analysis. Feng
et al. (2017) Combines a wavelet transform technique with a
linear time-varying Q-filter to remove high-frequency errors.
Lin et al. (2015) Presents another design of nonparametric Q-
filter that does not require any explicit specification of the non-
repetitive disturbances.

The second class of robust ILC is designed based on the opti-
mization technique. This class is more general and extensively
developed in many aspects. The original technique is known as
the norm-optimal ILC Amann et al. (1996), where the optimal
criterion is a trade-off between the minimization of the tracking
error and input update. The cost function can be developed to
include the input effort Volckaert et al. (2013) or the error rate
Zhu et al. (2020). Recent implementation of the norm-optimal
ILC has been presented in Johansen et al. (2019), Allahverdy
et al. (2021) and Jonnalagadda and Elumalai (2021) to improve
non-repetitive trajectory tracking performance.

In the optimization-based robust ILC, another type of cost func-
tion has been proposed in the frequency domain. In considering
the error propagation from one iteration to the next one in the
frequency domain, the cost function is minimized by assuming
that all transients occur in a relatively short period of time. The
frequency domain behavior of the controller produces a similar
result as the system inverse, except that it does not include an
unstable part like the system inverse may have Panomruttanarug
and Longman (2006). The effectiveness of the design is experi-
mentally demonstrated in Panomruttanarug (2020).

In the final robust ILC category, the learning control matrix is
designed to achieve robustness without the assistance of an ad-
ditional filter. Various techniques have been proposed to design
and adjust the gains in the learning control matrix to robustify
the ILC system. Zheng et al. (2017) proposed a robust learning
filter using H∞ optimal control, while Panomruttanarug and
Longman (2009) directly designs a robust learning filter based
on the frequency response data. Chotikunnan and Panomrutta-
narug (2022) propose a gain adjustment mechanism to adjust
the learning gains based on FLC.

Since each of the three methods has pros and cons, it is of
interest to investigate the potential of combining a few of
them together and utilizing their advantages. Even though the
robust learning control matrix can assure system robustness,
it usually causes non-zero tracking error due to neglect of the
high-frequency components. In contrast, the frequency domain
optimization-based robust ILC can provide a fast-learning rate
with a substantially low level of final tracking error. However,
it can produce a bad learning transient before reaching the
converging stage, making it impractical when implemented in a
real experiment.

One needs to trade-off between tracking performance and the
robustness of the system. Inspired by Thor and Manoonpong
(2019), a combining technique using dual integral learners is
considered. By fusing a fast learner with a slow learner, the
dual combining concept can produce a better result than using
either one individually. Similar combining techniques for dual
controllers in ILC are proposed in Li et al. (2021), Lai et al.
(2021), He et al. (2017) and Zhu and Xu (2018). In Li et al.
(2021), a Plug-in ILC design is constructed in parallel with a
feedforward signal. Whereas Lai et al. (2021) proposes a dual-
loop ILC design for repetitive human-robot interaction. The
first loop generates the desired joint angle trajectory for the

Fig. 1. Seiko D-Tran RT3200 and the interface equipment.

robot to follow. The second loop is designed using an adaptive
iterative learning algorithm to iteratively follow the desired
path. A dual-loop ILC design for a Timoshenko beam system
is proposed in He et al. (2017), where a typical ILC loop is
embedded into the adaptive boundary control loop to cancel
the effect of external disturbance, input backlash, and output
constraint. In Zhu and Xu (2018), a dual internal model-based
ILC design is proposed consisting of two loops. Using high
order ILC laws, the first loop learns the control input from
previous iterations, while the second loop learns the control
input from previous times at the current iteration. The results
from all these works demonstrate the effectiveness of using a
dual design ILC.

This work benefits from the use of a dual design ILC to combine
the authors’ previous controller designs. The robust learning
control matrix, proposed in Chotikunnan and Panomruttanarug
(2022), is considered to be a slow learner, while the frequency
domain optimization-based robust ILC, proposed in Panomrut-
tanarug (2020), is treated as a fast learner. A weighting func-
tion is also investigated to analyze the behaviors when placing
unequal weight on both learners. To verify the effectiveness
of the dual design ILC, both simulation and experiments are
conducted based on a real robotic manipulator.

2. TRACKING PROBLEM IN ROBOTIC MANIPULATORS

This section demonstrates the tracking problem usually appear-
ing in robotic manipulators. The cylindrical robot, Seiko D-
Tran RT3200, shown in Fig. 1, is used as a testbed to perform
a tracking task. It has been modified to be programmable using
the LabVIEW program. The real-time controller, cRIO-9075,
from National Instruments, is used to compute and execute the
task.

2.1 Seiko D-Tran RT3200 and the interface equipment

The robotic arm consists of four movement joints: joint R,
sliding in and out of the X-axis plane, joints T and A as the
rotating angle pivot in the X-Y plane, and joint Z, respectively,
for lifting and lowering points of the robotic arm.

The robot can be commanded to perform a screw fastening
task by moving and rotating joints R, T, and Z simultaneously.
However, joint A is not being used to execute the task and
therefore omitted from the following analysis. The desired
movement versus the actual movement of all joints for 15.73s
is shown in Figs. 2 and 3. With a sampling time of 0.055 s,
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Fig. 2. Desired path versus actual path movement in 3D.
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Fig. 3. Desired path versus actual path movement in each joint.

there are 287 time steps in the paths. In Fig. 2, the 3D path
is created by moving the screw from one location to another
and pushing into a hole. The real performance using a feedback
control system is also illustrated to interpret the tracking error.
Fig. 3 demonstrates the desired trajectory versus the real path
in each joint. One can clearly see the tracking error along the
path, especially in joint Z. In the next section, iterative learning
control is introduced to eliminate the tracking error in all joints.

2.2 System models of the robotic manipulator

According to the input and output signals illustrated in Fig. 3,
one can approximate the three feedback control systems in
terms of discrete-time transfer functions as follows:

G (z)=
γ1z

z2 + β1z + β0
(1)

Fig. 4. Block diagram of ILC.

where G (z) represents a general form of the second-order
transfer function for all joints. The coefficients, γ1, β1, β0,
associated with each joint appear in Table 1.

Table 1. Parameters used in the system models

Joint γ1 β1 β0

Joint R 0.1413 -1.5458 0.6884
Joint T 0.1297 -1.5780 0.7111
Joint Z 0.0935 -1.6584 0.7526

3. ITERATIVE LEARNING CONTROLLER DESIGNS

In this section, ILC is constructed to improve the tracking
performance in each feedback control system. Fig. 4 presents
a block diagram of ILC added in between two successive
iterations, i.e., j and j + 1. The ILC mechanism updates the
learning control input in iteration j + 1, or uL

j+1, based on the
learning control input and the error from the previous iteration
by aiming for the output, y, to get closer and closer to the
desired trajectory, yd, when the iteration progresses. In other
words, the objective of using ILC is to eliminate the tracking
error, e = yd − y, in each iteration.

The feedback control system at iteration j in the block diagram
refers to the transfer function in (1), which can be rewritten in
the state space representation as

x j (k + 1) = Ax j (k) + Bu j(k)
y j (k) = Cx j (k) + Du j(k) (2)

where A, B,C, and D are the Markov parameters. For simplic-
ity, let us suppose that D = 0 for simplicity. The subscript j
denotes the iteration number j. One can formulate a relationship
between the input sequence u j and the output sequence y j in a
package form as


y j(1)
...

y j(N)

︸   ︷︷   ︸
y j

=


p1 . . . 0
...
. . .
...

pN . . . p1

︸          ︷︷          ︸
P


u j(0)
...

u j(N − 1)

︸         ︷︷         ︸
u j

+


q1
...

qN

︸︷︷︸
Q

x j(0)
(3)
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where pi=CAi−1B and qi=CAi, for i ∈ [1,N]. N and x j (0)
denote the total number of time steps in an iteration and the
initial condition, respectively. For simplicity, let us assume the
initial states are zero. This results in y j = Pu j where the matrix
P represents the feedback control system.

Referring to the block diagram in Fig. 4, the control input to
the feedback control system, u j, is a summation of the learning
control input uL

j and the desired trajectory yd. At the initial
trial, the learning algorithm has yet to activate. The input to
the feedback control system comes directly from the desired
trajectory, resulting in u j = yd. In later iterations when ILC
is activated, u j = yd + uL

j , its input is adjusted based on the
following ILC law:

uL
j+1 (k)=uL

j (k) + Le j(k + 1) (4)

where L is the learning gain matrix. Two existing learning gain
matrix designs are discussed in the following subsections: a
single gain design based on the GAM, and a multiple gain
design based on the IFR, as well as the proposed design that
integrates the advantages of both controllers.

3.1 A single gain design based on the GAM

In this controller design, only the gains along the main diagonal
in (5) are non-zero and set to a constant at the first learning
iteration. The learning control matrix can be expressed as

L=


l 0 · · · 0

0 l
. . .
...

...
. . .
. . . 0

0 · · · 0 l

 (5)

This leads to the following learning control law with a single
gain design:

uL
j+1 (k)=uL

j (k) + le j(k + 1) (6)

It can obviously be observed that gain l is associated with the
error at time step k + 1. The gains are adjusted all over the
main diagonal in the following trial using the gain adjustment
mechanism (GAM). The values of gains are slowly changed in
early learning iterations. However, they remain constant after
passing through some iterations.

In the GAM process, the gains are adjusted so that the output
can follow the desired trajectory as well as the desired learn-
ing control input. The desired learning control input, or uL

d , is
generated based on the system’s behavior. Starting with the ex-
ecution of ILC law in (6) and the learning control matrix in (5),
one can observe error decay during the early stage, followed
by error growth due to model mismatch or the propagation
of noise and non-repetitive disturbances. The desired learning
control input can be obtained from its input signal in the last
iteration before observing the error growth. The error due to the
mismatch of the learning control input signals can be calculated
as

eu
j (k) =


0 , f or ∥uL

d − uL
j ∥∞ = 0

|
uL

d (k) − uL
j (k)

∥uL
d − uL

j ∥∞
| , otherwise

(7)

Fig. 5. Surface plot for GAM.

While the tracking error can be computed by

ey
j(k) =


0 , f or ∥yd − y j∥∞ = 0

|
yL

d (k) − yL
j (k)

∥yd − y j∥∞
| , otherwise

(8)

The two errors are subsequently considered as the inputs of
a fuzzy logic control with the output as the learning gain.
The relationship between the two inputs and the output can be
illustrated by the surface plot in Fig. 5.

As evidenced by Chotikunnan and Panomruttanarug (2022),
even though the GAM can track the desired trajectory with
an acceptable final error level, the learning rate is rather slow
due to the simplicity of the learning control matrix, which
contains only the gains along the main diagonal. A compensator
design that fills the learning control matrix with a set of gains
is discussed in the following subsection.

3.2 A multiple gain design based on the IFR

This controller design makes use of multiple gains to form a
banded matrix with the same entries as

L =



lm · · · ln 0 · · · 0
... lm

. . .
. . .
. . .
...

l1 0
. . . 0

. . . 0

0 l1
. . .
. . .
. . . ln

...
. . .
. . .
. . .
. . .
...

0 · · · 0 l1 · · · lm


(9)

The notation m indicates the index associated with the error
at time step k + 1, whereas the notation n represents the total
number of gains used in the controller design.

To explicitly express the gains in the learning control law, one
can write

uL
j+1 (k) = uL

j (k) + l1e j (k + m − 1) + l2e j (k + m − 2)
+ · · · + lne j(k + m − n)

(10)
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The controller can be considered as a finite impulse response
(FIR) filter with the following discrete-time transfer function

F (z) = l1zm−1 + l2zm−2 + . . . + lnzm−n (11)

The frequency response of the FIR compensator can be ex-
pressed as

F
(
eiω
)
= l1eiω(m−1) + l2eiω(m−2) + . . . + lneiω(m−n) (12)

Similarly, the frequency response of the feedback control sys-
tem, G(z), can be written in terms of magnitude and phase as

G
(
eiω
)
= M (ω) eiϕ(ω) (13)

where M (ω) and ϕ (ω) represent the magnitude response and
the phase response of the system, respectively.

Based on the inverse frequency response design in Panomrutta-
narug (2020), one needs to find the optimal gains to minimize
the cost function

J =

√√√ NP∑
j=1

[
1 − F(eiω jT )G(eiω jT )

][
1 − F

(
eiω jT

)
G
(
eiω jT

)]∗
+

n∑
k=1

l2k (14)

where ω j represents the sample frequency from zero to Nyquist
with a total of NP points. It can be observed that the multi-
objective cost function is composed of the two terms: the first
term represents the effect of error from one iteration to the
next, while the second expresses the size of the gains used in
the FIR compensator. Minimizing only the first term can easily
result in gains that are too large to be implemented in the real
application. The second term is therefore needed for a practical
design.

To find the optimal gains associated with the cost function in
(14), one can equivalently solve the linear equation, αx = β,
where

α =
NP∑
j=1

M2
(
ω j

)


1 cos
(
ω jT
)

. . . cos
(
(n − 1)ω jT

)
cos
(
ω jT
)

1 . . . cos
(
(n − 2)ω jT

)
.
.
.

.

.

.
. . .

.

.

.

cos
(
(n − 1)ω jT

)
cos
(
(n − 2)ω jT

)
. . . 1


+NP × In×n

(15)

β =
NP∑
j=1

M(ω j)


cos((m − 1)ω jT ) + ϕ(ω j)
cos((m − 2)ω jT ) + ϕ(ω j)

...
cos((m − n)ω jT ) + ϕ(ω j)

 (16)

x =
[

l1 l2 · · · ln
]T

The compensator design based on the IFR provides a fast-
learning rate due to the set of gains used in the design. However,
it requires the magnitude response and phase response of the
system to achieve the optimal gains. The efficiency of this con-
troller design depends directly on the accuracy of the frequency
response obtained from the system.

Fig. 6. Block diagram of dual design ILC.

3.3 A dual design

This subsection introduces a dual design that integrates the
prior designs using the weighted sum technique. Its structure
is illustrated in Fig. 6.

The fast and slow learners in Fig. 6 refer to the multi-gain
design based on the IFR and the single gain design based on the
GAM, respectively. The learning control input and error from
the last iteration are fed to the two learners in the next iteration.
The outputs from the two learners are combined using the
weighted sum of each individual learner’s output. The weight
µ belongs to the fast learner, while the weight ν belongs to the
slow learner. In general, the sum of the weights is unity, i.e.,
µ + ν = 1. One can explicitly write the learning control input
from the dual design as

uL
j+1 (k) = µuL f

j+1(k) + νuLs
j+1(k) (17)

where uL f

j+1 and uLs
j+1 can be calculated from (10) and (6),

respectively. Using the weighted sum of the outputs from the
two learners allows designers to tune the weights to achieve
better tracking performance. It combines the advantages of the
two learners by providing a fast-learning rate without relying
too much on the frequency response.

Based on the linearity property in (17), it can be modified by
expressing the dual design controller in terms of the learning
matrix as

Ld = µL f + νLs (18)

where Ld is the learning matrix of the dual design developed
from the IFR in (9) and the GAM in (5).

The choice of weights µ and ν can be either constant or a
function with the summation of one. For fixed weight, one may
consider putting more weight on the slow learner to maintain
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stability while the fast learner has little influence. Therefore, µ
is set to 0.35, resulting in ν = 0.65.

Alternatively, the weighting function can be used, where the
weight of the fast learner can be expressed as

µ( j) =


1−

0.65
1+e(12.2−(2.2 j)) , f or j≤10

0.35 , otherwise

(19)

where j denotes the iteration number. The weighting function
is a sigmoid function gradually decreasing from one at the
first iteration to 0.35 at iteration 10. The weight is fixed to a
constant 0.35 after iteration 10. This technique takes advantage
of the fast learner in early iterations. However, the weight is
gradually decreased to slow down the learning process after
some iterations. The weight of the slow learner is associated
with ν ( j) = 1 − µ ( j) , ∀ j.

4. STABILITY ANALYSIS

It has been widely proven that the stability of ILC systems can
be considered using asymptotic and monotonic convergence
conditions. Both conditions are proven from the expression of
the error from one iteration to the next, which can be written as

e j+1 = (I − PL)e j (20)

According to (21) and (22), the asymptotic convergence condi-
tion can be expressed as

max
i
|λi(I − PL)| < 1 (21)

where λ is the eigenvalue of the matrix. Similarly, the mono-
tonic convergence condition can be written as

max
i
σi(I − PL) < 1 (22)

where σ represents the singular value of the matrix.

Table 2. Stability indicators

Type Joint R Joint T Joint Z
(21) (22) (21) (22) (21) (22)

1
0.9750 1.0191 0.9771 1.0235 0.9835 1.0324

(GAM)
2

0.9979 0.9988 0.9984 0.9993 0.9990 0.9994
(IFR-small)

3
0.9974 0.9975 0.9978 0.9979 0.9988 0.9989

(IFR-large)
4

0.9979 0.9988 0.9984 0.9993 0.9993 0.9998
(Dual-small, fixed)

5
0.9974 0.9975 0.9978 0.9979 0.9988 0.9989

(Dual-large, fixed)
6

0.9979 0.9988 0.9984 0.9993 0.9993 0.9998
(Dual-small, function)

7
0.9979 0.9974 0.9975 0.9978 0.9988 0.9989

(Dual-large, function)

To study and evaluate the stability of the aforementioned con-
trollers, three classes of ILC are designed to improve the track-
ing error from the three axes of the robotic manipulator. Seven
controllers are designed based on the GAM, IFR, and dual de-
sign as previously presented. Table 2 demonstrates the stability
indicators, or the left term in (21) and (22), using each type
of controller. To comply with the two conditions, the indicator
values must be less than one.

Controller 1 represents a slow learner using the single gain
design based on the GAM. The learning gain tuned by the GAM
is varied from 0 to 0.1769 in joint R, 0 to 0.1928 in joint T, and 0
to 0.2674 in joint Z. The indicator values shown in Table 2 are
subject to the worst cases when each learning matrix is filled
with the maximum gains along the main diagonal. It can be
observed that the values for the condition in (21) are all less than
one, implying that the error will eventually converge to a certain
value. In contrast to the asymptotic convergence condition, the
indicator values for the condition in (22) are slightly greater
than one, violating the monotonic convergence condition. This
is not an issue when using the GAM-based controller since the
gains are iteratively tuned to prevent transient growth.

Controllers 2 and 3, where the multiple gain design is based on
the IFR, are fast learners. The minimum number of gains for
stabilizing ILC systems are used in controller 2. Joints R and
T require at least six gains, while joint Z needs at least eight to
achieve stability. For comparison of robustness, many gains are
used in controller 3 with n = 30 in each joint. For simplicity,
the parameter m is set to be equal to n in all these types
of controllers. According to Table 2, all indicator values for
controllers 2 and 3 are less than one. Due to a greater number
of gains being used in the controller, the indicator values for
controller 3 are lower in all systems when compared with those
for controller 2. This implies that controller 3 is more robust
than controller 2.

For the dual design, four different controllers are used to study
the effectiveness of the proposed method. Controllers 4 and 5
combine the slow learner from controller 1 with the fast learners
from controllers 2 and 3, respectively. The fixed weights of
µ = 0.35 and ν = 0.65 are applied to these types of controllers.
Similarly, controllers 6 and 7 represent a combination of the
slow learner from controller 1 and the fast learners from con-
trollers 2 and 3 using the weighting function in (19). As can be
observed, the indicator values from the dual design are more or
less equal to those from its IFR-based design, no matter what
fixed weight or weighting function is used. One might wonder if
their tracking behaviors are similar. The tracking performance
using all addressed controllers is demonstrated in the following
section.

5. SIMULATION AND EXPERIMENTAL RESULTS

Seven controllers have been designed and evaluated to ensure
stability. This section shows their tracking performance in both
simulation and experiments.

To provide a clear demonstration, let us compare the addressed
controllers by separating them into two situations. The first sit-
uation demonstrates what happens to the tracking performance
when using a minimum number of gains in both IFR-based
controllers and dual design controllers. Therefore, controllers
1, 2, 4, and 6 are compared in the first case. The latter compares
tracking performance when using many gains in the IFR-based
controllers as well as dual design controllers. Controllers 1, 3,
5, and 7 are included in the comparison.

Fig. 7 displays the tracking performance from the first situation
when using a minimum number of gains in both IFR-based
controllers and dual design controllers in the simulation. Each
subfigure shows the root mean square error (RMSE) occurring
in each joint by executing controllers 1, 2, 4, and 6 up to 20,000
iterations. One can clearly see that the IFR-based controller
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Fig. 7. RMSE from simulation using controllers 1, 2, 4, and 6.

achieves the best tracking performance, followed by the dual
design controller and the GAM-based controller, respectively.
The tracking performance of the dual design controllers falls
in between the other two controllers. As previously discussed,
the tracking behavior from the dual design controller with
the weighting function appears to be exactly the same as that
exhibited by the IFR-based controller in some early iterations.
In later iterations, it slowly converges to the behavior of the dual
design controller with a fixed weight.

Fig. 8 demonstrates the tracking performance using a minimum
number of gains in both the IFR-based controllers and dual
design controllers from the experiment. Up to 60 iterations were
executed in each joint. The tracking performance from the IFR-
based controller does not perform as well as in the simulation.
Even though the IFR-based controller can learn faster than other
controllers at the beginning, it somehow generates error growth
in some later iterations. In joint R, the tracking error contin-
uously grows from iterations 10 to 20 and remains constant
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Fig. 8. RMSE from experiment using controllers 1, 2, 4, and 6.

after that, resulting in a larger tracking error than that of the
pure feedback controller. However, the IFR-based controller
can eventually get rid of the transient growth in joints T and Z.
The GAM-based controller performs similarly to the simulation
results. It iteratively lowers the error from one run to the next
with a slow learning rate. The final error level is larger than that
of the other controllers in joints T and Z. Interestingly, the dual
design controllers practically perform best in all systems. They
can learn much faster than the GAM-based controller without
any appearance of error growth. The design with weighting
function can even learn as fast as the IFR-based controller with
no evidence of error growth.

To analyze the final error level of RMSE, the error reduction
rates at iteration 60 are computed for comparison with its initial
iteration. The GAM-based controller can reduce the tracking
error by 67.09% in joint R, 33.55% in joint T, and 53.45%
in joint Z. The IFR-based controller can reduce the tracking
error by -111.32% in joint R, 68.44% in joint T, and 82.56%
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Fig. 9. RMSE from simulation using controllers 1, 3, 5, and 7.

in joint Z. It should be noted that the minus sign determines
the amplification of the error. Meanwhile, the dual design
controllers with the fixed weight and weighting function can
perform similarly, with a reduction rate of 76.95% and 77.99%
in joint R, 73.39% and 72.28% in joint T, and 80.87% and
78.84% in joint Z, respectively.

In the next situation, many gains are used in the IFR-based
controllers as well as dual design controllers to compare their
tracking efficiency. Controllers 1, 3, 5, and 7 were executed
in both simulation and the experiment. Fig. 9 compares the
tracking performance in each joint from the simulation. The
results look similar to those in Fig. 7 where the minimum
number of gains is used in the controller design. According
to Fig. 9, the IFR-based controller can still achieve the best
performance while the GAM-based performs slowest but is still
able to maintain stability. The dual design controller with the
weighting function can learn as fast as the IFR-based controller
in up to 10 iterations. However, its behavior slowly converges to
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Fig. 10. RMSE from experiment using controllers 1, 3, 5, and
7.

that of the dual design controller with the fixed weight in later
iterations.

Fig. 10 illustrates the tracking performance when executing
many gain controller designs in the experiment. By using many
gains in the IFR-based controller, one cannot obviously see the
error growth in its tracking result. In other words, the controller
is more robust when applying many gains in the design. Both
dual design controllers perform similar tracking results with
lower final RMSE values in comparison to the IFR-based
controller. The error reduction rates at iteration 60 are computed
to compare with its initial iteration. The IFR-based controller
can reduce the tracking error by 67.60% in joint R, 68.13%
in joint T, and 82.49% in joint Z. Meanwhile, the dual design
controllers with the fixed weight and weighting function can
perform similarly, with reduction rates of 79.52% and 77.14%
in joint R, 75.65% and 76.42% in joint T, and 82.23% and
81.83% in joint Z, respectively. For a clear illustration, Table 3
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summarizes the percentage of improvement in RMSE exhibited
by each controller. It can be clearly observed that not only can
the dual design controllers be robust to error growth, but also
achieve the lowest RMSE level with a small number of gains
used in the designs.

Table 3. Percentage of improvement in RMSE
exhibited by each controller design

Type Joint R Joint T Joint Z
(%) (%) (%)

1
67.09 33.55 53.49

(GAM)
2

-111.32 68.44 82.56
(IFR-small)

3
67.60 68.13 82.49

(IFR-large)
4

76.95 73.39 80.87
(Dual-small, fixed)

5 79.52 75.65 82.23
(Dual-large, fixed)

6
77.99 72.28 78.84

(Dual-small, function)
7

77.14 76.42 81.83
(Dual-large, function)

6. CONCLUSION

This paper proposes a dual design for an iterative learning
controller based on fast and slow learners. The fast learner is
designed based on the inverse of the frequency response from
the system that can learn very fast in early iterations. However,
by taking advantage of fast learning, the design might achieve
the desired robustness in practice, especially when using a small
number of gains. The slow learner designed from the gain
adjustment mechanism is therefore introduced and combined to
increase robustness from the fast learner. The dual design can
adaptively choose to learn as quickly as the fast learner up to the
desired iteration and slowly learn in later iterations to maintain
stability, thus imitating the slow learner. Two different learning
weights are proposed and demonstrated to adjust the learning
behavior, namely fixed weight and weighting function. One can
clearly see that with the use of the weighting function, the dual
design can learn as quickly as the fast learner. Based on the
results, even though the fast learner achieves the best tracking
performance in the simulation, robustness evidently becomes
an issue in the experiment, especially when using a minimum
number of gains. This issue can be solved by the dual design,
which is robust to error growth and efficiently reduces the error
to a decent level. An extension of the existing results includes
some other choices for the two learners that can practically
provide fast learning with low computational complexity.
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