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Abstract: This paper suggests a design of an optimal fractional adaptive Neuro- Fuzzy inference system 

(ANFIS-FOPID) controller for dealing with the dynamics of the wheeled mobile robot (WMR).Tuning 

parameters of the controller is a challenging task , a hybrid meta-heuristic optimization algorithm has 

been introduced. This evolutionary technique is known as the hybrid whale grey wolf optimizer 

(HWGO). Simulation results in MATLAB–Simulink environment revealed the highest efficiency of the 

proposed ANFIS-FOPID technique compared to the fractional proportional integral derivative (FOPID) 

and the adaptive Neuro- Fuzzy inference system (ANFIS), in terms of settling and rise time, overshoot, as 

well as steady-state error. A five shape path and zigzag path have highlighted the over performance of 

mentioned controller. Finally, to accomplish our work a back-stepping control technique is added for the 

kinematic control, a quadrifolium path was made to illustrate the capability of the mentioned controller. 

Keywords: wheeled mobile robot (WMR), trajectory tracking, fractional order proportional integral 

derivative controller (FOPID), Adaptive neuro-fuzzy inference (ANFIS), hybrid whale grey wolf 

optimizer (HWGO). 

1. INTRODUCTION 

Nowadays the research interests related to the robotics field 

have growing up rapidly. Especially in designing, and 

controlling wheeled mobile robots (WMRs), since this lately 

cover a various civil and military applications such as space 

exploration, manufacturing, services, medical, agriculture, 

rescue and combat (Baskoro et al., 2020; Catalan et al., 2021; 

Emmi et al., 2014; Fue et al., 2020; Ikeda et al., 2018;  

Ravankar et al., 2021). 

Currently, the tracking control problem still challenging and 

attracts many researchers. Each application has a specific 

constraint related to the internal dynamics of the robot (non-

holonomic properties of WMRs). Moreover, WMRs are 

influenced by working conditions, such as external load 

disturbance, wheel slips, feedback sensors, which lead to 

undefined uncertainties (Cen & Singh, 2021). For that reason, 

developing more precise control strategies is required. 

Many modern control methods have been proposed in the last 

decade. a sliding mode dynamic controller proposed in 

(Moudoud et al., 2020; Nikranjbar et al., 2018; Phuc et al., 

2021; Wang, Zhou, et al., 2019; Wu et al., 2019), an online 

physical parameters adaptation of the robot dynamics 

proposed in (Martins et al., 2008), an adaptive back-stepping 

controller in (Binh et al., 2019), using  neural network 

controller for dealing with unmodeled dynamics in (Bozek et 

al., 2020; Khnissi et al., 2020; Rossomando et al., 2011;  

 

Wang, Liu, et al., 2019), using fuzzy logic controller in (Das 

and Kar, 2006; Štefek et al., 2021). 

The strategy of PID control has been one of the most 

practical and most often used technique in industry because 

of its simplicity form and strong robustness in large working 

condition. However, the fixed parameters generally degrade 

the control performance (Bingul and Karahan, 2018; Kumar 

et al., 2017; Slama et al., 2019). In order to overcome this 

issue, Several researches papers concentrate on designing 

new types of modified PID, like fusing the neural network 

with a conventional PID controller (NN-PID) (Pei et al., 

2021; Xu et al., 2019; Ye, 2008). The approach takes the 

simplicity of a PID controller and the powerful capability of 

learning, adaptability and tackling nonlinearity of neural 

networks. Many researches papers use an adaptive tuning 

methods by combining the fuzzy logic controller with PID 

(Ben Jabeur and Seddik, 2021; Mai et al., 2021; Tiep et al., 

2018; Zhou et al., 2019), However, the demand for new 

control methods becomes more intense according to 

applications complexity and progress. 

A fractional-order proportional integral derivative (FOPID) 

controller has already taken over the place of the traditional 

PID. This controller gained an important popularity from 

several researchers in many areas, including robotics 

engineering (Bernardes et al., 2019; Erkol, 2018; 

Kankhunthodl et al., 2019; Mishra and Chandra, 2014; 

Orman et al., 2016; Zhang et al., 2020). The major reason  
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behind this attention is that the five parameters (Kp, Ki, Kd, 

λ, µ) of the FOPID controller can be more adapted for 

designing better controllers, as being faster with less 

overshoot compared with the integer- order PID controller, 

which has only three parameters to be adjust (Bernardes et 

al., 2019; Erkol, 2018; Kankhunthodl et al., 2019; Mishra and 

Chandra, 2014; Orman et al., 2016; Zhang et al., 2020). 

Naturally, a controller with more parameters to be tuned 

means more its design becomes difficult. This makes it 

optimization a challenging task. 

According to various studies, nature inspired algorithms have 

already proved their capability in scaling the FOPID 

controller factors. We distingue, particle swarm optimizer 

(PSO) (Abdelhamid et al., 2013; Rajesh, 2019), whale 

optimizer (WOA) (Abood and Oleiwi, 2021), grey wolf 

optimizer (GWO) (Verma et al., 2017), using sine-cosine 

algorithm (SCA) in (Bhookya and Jatoth, 2019). 

The major benefit from the FOPID controllers is the rapidity 

in terms of rise time and settling time. On the other hand, 

some specific trajectory like the sharp chap one makes the 

robot instantaneously changing its orientation (a case of 

square trajectory), which leads to a large overshoot. This 

problem could harm the robot’s actuators, due to the robot’s 

high coupled nonlinearity, which means the FOPID controller 

with fixed parameter cannot handle some special trajectory, 

and a new controller that can deal with all types of path is 

required (Arpaci and Özgüven, 2011; Saxena et al., 2021). 

The concept of combining fuzzy logic controller with a 

neural network has attracted a remarkable attention in various 

fields especially in control engineering (Al-Mayyahi et al., 

2014; Bendary et al., 2021; El-Hasnony et al., 2020; Elsisi et 

al., 2021; Imen et al., 2011; Pang et al., 2021; Premkumar 

and Manikandan, 2014; Selma et al., 2020).The reason 

behind this popularity is that the adaptive neuro-fuzzy 

inference system (ANFIS) mixes the efficiency of fuzzy logic 

to deal with the uncertainties and the ability of neural 

networks to learn from plants/processes. 

The aim of this work is to design an optimal hybrid adaptive 

fractional neuro-fuzzy inference controller, abbreviated as 

ANFIS-FOPID controller, this robust controller merges the 

advantages of the FOPID controller with the ANFIS 

controller and benefiting from the powerful hybrid whale 

grey wolf optimizer (HWGO), for adjusting the parameters of 

the proposed controller, based on the cost function namely 

integral square error (ISE). 

This paper is organized as follows: The complete model of 

the wheeled mobile robot is presented in Section 2. The 

controller design and strategy are described in Section 3, as 

well as the simulation findings and discussions are 

summarized in Sections 4 and 5, respectively. 

2.  ROBOT’S MATHEMATICAL MODEL 

The WMR in Fig. 1 contains two pairs of DC motors with 

driving wheels of radius R, where φL and φ R are the left and 

right rotating angles of wheels, respectively. θ is the robot 

orientation and L is the width of the robot body. At the 

distance d from the mind-point A, where (Xa,Ya) is the 

coordinate of A in the inertial frame (X,Y), and the 

coordinates of any point in the robot frame are defined by 

(Xr, Yr). 

 

Fig. 1. Schematic design of the WMR. 

There are three essential steps to reach the mathematical 

model of the robot mobile: kinematic modeling, dynamic 

modeling, and actuator modeling, which are described as 

follows 

2.1 Kinematic Model 

This section focuses on illustrating the relationship between 

the linear and angular speeds of the mechanical systems 

without taking into account the forces affecting the motion 

(Mohareri et al., 2012). The linear velocity of each driving 

wheel is: 

{
𝑣𝑅 = 𝑅�̇�𝑅
𝑣𝐿 = 𝑅�̇�𝐿

                                                                                     (1) 

The linear and angular velocities of the WMR are given by 

Eqs. (2) and (3), respectively: 

𝑣 =
𝑣𝑅 + 𝑣𝐿
2

= 𝑅
(�̇�𝑅 + �̇�𝐿)

2
                                                    (2) 

ɷ =
𝑣𝑅 − 𝑣𝐿
2𝐿

= 𝑅
(�̇�𝑅 − �̇�𝐿)

2𝐿
                                                    (3) 

The kinematic constraint can express by the following 

equations (Ben Jabeur and Seddik, 2021): 

No slip constraint: 

−�̇�𝑎 sin 𝜃 + �̇�𝑎 cos 𝜃 = 0                                                           (4) 

Pur rolling constraint: 

�̇�𝑎 cos 𝜃 + �̇�𝑎 sin 𝜃 + 𝐿�̇� = 𝑅�̇�𝑅
�̇�𝑎 cos 𝜃 + �̇�𝑎 sin 𝜃 − 𝐿�̇� =  𝑅�̇�𝐿

                                             (5) 

The three constraint equations (4) & (5) are assembled as: 

𝛬(𝑞)�̇� = 0                                                                                      (6) 

Where: 

(𝑞) = [
− sin 𝜃 cos 𝜃     0        0 0
cos 𝜃 sin 𝜃     𝐿  − R 0
cos 𝜃 sin 𝜃 − 𝐿      0 −𝑅

]                                (7) 

And: 

�̇� = [�̇�𝑎  �̇�𝑎 𝜃 ̇ �̇�𝑅 �̇�𝐿]
𝑇
                                                                  (8) 



59                                                                                                                   CONTROL ENGINEERING AND APPLIED INFORMATICS 

So, the kinematic model obtained is: 

[
 
 
 
 
�̇�𝑎
�̇�𝑎
�̇�
�̇�𝑅
�̇�𝐿]
 
 
 
 

=

[
 
 
 
 
 
𝑐𝑜𝑠 𝜃
𝑠𝑖𝑛 𝜃
0 
1

𝑅
1

𝑅

0
0
1
−𝐿

𝑅
−𝐿

𝑅 ]
 
 
 
 
 

[
𝑣
ɷ
] =

1

2

[
 
 
 
 
𝑅 𝑐𝑜𝑠 𝜃   
𝑅 𝑠𝑖𝑛 𝜃   

𝑅

𝐿

2  
0  

𝑅 𝑐𝑜𝑠 𝜃
𝑅 𝑠𝑖𝑛 𝜃

−
𝑅

𝐿

0
2 ]

 
 
 
 

[
�̇�𝑅
�̇�𝐿
]             (9) 

This may be written as: 

q̇ = S(q)η                                                                           (10) 

Where, η = [
φ̇R
φ̇L
]

̇
  is the vector of the angular velocities of 

two wheels. 

2.2. Dynamical Model 

 The purpose of dynamic modeling is to examine all different 

forces and energies that influence the motion of mechanical 

process. The motion equation of the WMRs is given by (Ben 

Jabeur and Seddik, 2021; Fierro and Lewis, 1995): 

𝑀(𝑞)�̈� + 𝑉(𝑞, �̇�)�̇� + 𝐹(�̇�) + 𝐺(𝑞) + 𝜏 𝑑 = 

                 𝐵(𝑞)τ − ΛT(q)λ                                        (11)  

Where, M(q) an nxn symmetric positive definite inertia 

matrix, V(q, q̇)  is the centripetal and coriolis matrix,  F(q̇)is 

the surface friction matrix, G(q) is the gravitational vector, τd 

is the vector of bounded unknown disturbances including 

unstructured unmodeled dynamics, B(q) is the input matrix, τ 

is the input vector, ΛT(q)  is the associated matrix to the 

kinematic constraints, and λ is the Lagrange multipliers 

vector. For simulation purpose and control, equation (11) 

should be transformed in to an alternative form, using the 

kinematic model (10).We have: 

𝑆𝑇(𝑞)𝛬𝑇(𝑞) = 0                                                               (12) 

The new matrices are express as fellow: 

{

�̅�(𝑞) = 𝑆𝑇(𝑞) 𝑀(𝑞)𝑆(𝑞),

�̅� = 𝑆𝑇(𝑞)𝑀(𝑞)�̇�(𝑞) + 𝑆𝑇(𝑞)𝑉(𝑞, �̇�)𝑆(𝑞)                       (13)

�̅� = 𝑆𝑇(𝑞)𝐵(𝑞)

 

The reduced form of the dynamic equations is given by: 

�̅�(𝑞)η̇ + �̅�(𝑞, �̇�)η = B̅(q)τ                                               (14) 

Where: 

  �̅�(𝑞) = [
𝐼𝑤 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼)

𝑅2

4𝐿2
(𝑚𝐿2 − 𝐼) 𝐼𝑤 +

𝑅2

4𝐿2
(𝑚𝐿2 + 𝐼)

] 

�̅�(𝑞, 𝑞)̇ =

[
 
 
 0

𝑅2

2𝐿
𝑚𝑐𝑑�̇�

−
𝑅2

2𝐿
𝑚𝑐𝑑�̇� 0 ]

 
 
 

,   �̅�(𝑞) = [
1 0
0 1

] 

The dynamics in Equation (14) are based only on the right 

and left wheel angular velocities(�̇�𝑅, �̇�𝐿), the angular 

velocity of the robot �̇� and the dc motor torques (𝜏𝑅 , 𝜏𝐿) .The 

equations (14) can be rewritten in a compact form: 

 

{
(𝑚 +

2𝐼𝑤

𝑅2
) �̇� − 𝑚𝑐𝑑𝜔

2 =
1

𝑅
(𝜏𝑅 + 𝜏𝐿)

(𝐼 +
2𝐿2

𝑅2
𝐼𝑤)𝜔 + 𝑚𝑐𝑑𝜔𝑣 =

𝐿

𝑅
(𝜏𝑅 − 𝜏𝐿)

̇                          (15)  

Where,  𝑚 = 𝑚𝑐 + 2𝑚𝑤     is the total mass of the robot, and 

𝐼 = 𝐼𝑐 +𝑚𝑐𝑑
2 + 2𝑚𝑤𝐿

2 + 2𝐼𝑚  is the total equivalent inertia.  

2.3 Actuator modeling 

Two pairs of dc motors are considered as actuators for 

producing the torque to control the inputs for driving the 

wheels of the WMR as presented by Fig 2. 

 

Fig. 2. Equivalent electrical scheme for dc motor. 

The dynamic model of the actuators can be represented 

as(Ben Jabeur and Seddik, 2021)  

{
 
 

 
 𝑣𝑎 = 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎

𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑒𝑎(𝑡)

𝑒𝑎(𝑡) = 𝐾𝑏𝜔𝑚(𝑡)

𝜏𝑚 = 𝑗
𝑑𝑤𝑚(𝑡)

𝑑𝑡
+ 𝑓𝑤𝑚(𝑡) + 𝐾𝑡𝑖𝑎(𝑡)

𝜏 = 𝑁𝜏𝑚

                                (16) 

Where, all these parameters are explained in Table 1. 

Since the robot motors are mechanically coupled to wheels 

through the gears. Therefore, each dc motor will have: 

{
𝜔𝑚𝑅 = 𝑁�̇�𝑤𝑅𝑎𝑛𝑑𝜏𝑅 = 𝑁𝜏𝑚𝑅
𝜔𝑚𝐿 = 𝑁�̇�𝑤𝐿𝑎𝑛𝑑𝜏𝐿 = 𝑁𝜏𝑚𝐿

                                              (17) 

For both motors, the dynamic model is expressed as: 

{
 

 
1

(R + 𝐿𝑎P)
(𝑒𝑎𝑟 − 𝐾𝑏𝑁�̇�𝑤𝑅) = 𝑖𝑅𝑤𝑖𝑡ℎ𝜏𝑅 = 𝑁𝑘𝑡𝑖𝑅

1

(R + 𝐿𝑎P)
(𝑒𝑎𝑙 − 𝐾𝑏𝑁�̇�𝑤𝐿) = 𝑖𝐿𝑤𝑖𝑡ℎ𝜏𝐿 = 𝑁𝑘𝑡𝑖𝐿

       (18) 

The robot physical (real data) parameters are taken from (Ben 

Jabeur and Seddik, 2021) : 

Table 1. Robot physical parameters. 

Parameters Value and Unit 

Distance between two wheels, 2 L 0.75 m 

Distance of point Pc from point Po, D 0.3 m 

Driving wheels radius, R 0.15 m 

Mass of the mobile robot without the 

driving wheels and DC motors, mc 

30 kg 

Mass of each driving wheel (with 

actuator), mw 

1 kg 

Moment of inertia of the mobile robot 

about the vertical axis through the 

center of mass, Ic 

 

15.625 kg∙m2 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                            60      

Moment of inertia of each driving 

wheel with a motor about the Wheel 

axis, Iw 

0.005 kg∙m2 

Moment of inertia of each driving 

wheel with a motor about the Wheel 

diameter, Im 

 

0.0025 kg∙m2 

Armature winding resistance, Ra 1.6 Ω 

Armature winding inductance, La 0.048 H 

Torque constant, Kt 0.2613 N∙m/A 

Back emf constant, Kb 0.19 rad/s 

Gear ratio, N 62.55 

3.  CONTROLLER DESIGN AND STRATEGY 

Fig. 3 shows the schematic form of the control approach 

based on the dynamic and kinematic of the wheeled mobile 

robot. The trajectory generator supplies the desired 

coordinate x, y and θ. 

 

Fig. 3. Control scheme of WMR. 

A back-stepping kinematic controller is detected in the 

external loop, here the controller examines the difference 

between the reference data (obtained from the bloc trajectory 

generator) and physical value from the robot then develop his 

own angular and linear velocities that are delivered into the 

internal loop, where two blocks of ANFIS-FOPID controller 

deal with the dynamics. Here, the two dynamic controllers 

provide their own signals of angular and linear speeds based 

on the values taken from the kinematic controller.  

3.1 Kinematic Controller Design 

One of the objectives here is to realize path tracking. The 

back-stepping technique has been commonly used, and it is 

classified as a stable tracking control law, which makes it 

supported for this purpose (Mai et al., 2021). The controller 

structure is introduced in Fig. 3, where the input error and 

velocity vector (vc) are: 

[

𝑒𝑥
𝑒𝑦
𝑒𝜃
] = ⌊

𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0
− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

⌋ [

𝑋𝑟 − 𝑋
𝑌𝑟 − 𝑌
𝜃𝑟 − 𝜃

] = 𝑇𝑒𝑒𝑟              (19) 

𝑣𝑐 = ⌊
𝑣𝑟𝑐𝑜𝑠(𝑒𝜃) + 𝑘𝑥𝑒𝑥

𝑤𝑟 + 𝑘𝑦𝑣𝑟𝑒𝑦 + 𝑘𝜃𝑣𝑟𝑠𝑖𝑛(𝑒𝜃)
⌋                                     (20) 

where kx, ky and kθ are the tuning parameters. 

3.2 The FOPID  Controller description 

The fractional proportional integral derivative FOPID was 

first proposed in 1999 by Podlubny (Magdy et al., 2020). 

Introducing the two new fractional components λ and μ to the 

classic PID controller under the name of Fractional integrator 

and differentiator respectively, the operator of non-integer-

order is provided in Eq. (21) (Bhookya and Kumar Jatoth, 

2020). 

𝐷𝑛
𝑡 = {

𝑑𝑛

𝑑𝑡𝑛
𝑛 > 0

1            𝑛 = 0

∫ 𝑑𝑡𝑛𝑛 < 0
𝑎

𝑡

                                                         (21) 

Where, t and a are the lower limit and upper limit of the 

process and 𝑛∈ℝ the constant integral differential operator. 

The fractional calculus has three main definitions Riemann 

Liouville (RL), GrünwaldL et Nikov (GL), and Caputo. The 

most common definition utilized in engineering applications 

is the Caputo method (Bhookya and Kumar Jatoth, 2020) 

given in Eq. (22). 

𝐷𝑛
𝑡𝑓(𝑡) =

1

Γ(α−n)
∫

𝑓𝑛(𝜏)

(𝑡−𝜏)𝑛−𝛼+1
𝑑𝜏

𝑡

𝑎
                                        (22) 

                                    𝑓𝑜𝑟  𝑛 − 1 ≤ 𝑛 ≤ 𝛼  

The term sα doesn’t have an analytical solution, but it has a 

fractional order, which is hard to implement. Therefore, 

numerical solutions such as Oustaloup approximation are 

adopted (Bhookya and Kumar Jatoth, 2020). 

𝑠𝛼 ≈ 𝐾 ∏
1+

𝑠

𝜔𝑧,𝑛

1 +
𝑠

𝜔𝑝,𝑛

𝑁

𝑛=−𝑁

𝛼 > 0                                                    (23) 

Where, N is the number of poles/zeros. 

Fig. 4 presents the parallel structure of the FOPID controller 

block diagram, with input E(S) and output U(S). 

 

Fig. 4. Block diagram of fractional order. 

The representation of the transfer function for the Fractional 

Order PID (FOPID) in the time domain is given by Eq. (24), 

and in the Laplace domain by Eq. (25). 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝑘𝑖𝐷𝑡
−𝜆𝑒(𝑡) + 𝐾𝑑𝐷𝑡

𝜇
𝑒(𝑡)                         (24) 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝐾𝑝 +

𝐾𝑖

𝑆𝜆
+ 𝐾𝑑𝑆

𝜇                                          (25) 

where, Kp, Ki and Kd are proportional, integral and derivative 

gains constants, respectively, λ and μ are factional order of 

the integral and derivative term. 

3.3 Tuning Parameters for FOPID 

The WMR block diagram for tuning parameters of the Two 

FOPID controllers is highlighted in Fig. 5.  
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Fig. 5. Bloc diagram for parameters tuning. 

The first controller treats the difference between the reference 

and actual velocity from the right wheel as an input where the 

desired velocity is constant: Ur =1 m/s. 

The second controller for the left wheel treats the difference 

between the actual and desired orientations as input. Where 

the reference angle was represented by a constant 

value:θr=0.785rad. 

The following equations (26) represent the relation between 

the input voltage of the right and left DC actuators, 

respectively UR,UL with the outputs of the first and second 

controller UV,Uθ ,respectively. 

{
𝑈𝑅 =

𝑈𝑉+ 𝑈𝜃
2

𝑈𝐿 =
𝑈𝑉−𝑈𝜃
2

                                                                          (26) 

The cost function used in the study is the integral square error 

(ISE) which is demonstrated by equation (27):  

𝐼𝑆𝐸 = (∫ [𝑒𝑣(𝑡)]
2𝑑𝑡 + ∫ [𝑒𝜃(𝑡)]

2𝑑𝑡
∞

0

∞

0
)                            (27)   

where:            {
𝑒𝑣 = 𝑈𝑟 − 𝑈𝑚
𝑒𝜃 = 𝜃𝑟 − 𝜃𝑚

                                            (28)           

Ur is the desired velocity, Um the actual velocity, ev the 

velocity error, θr the desired orientation,θm the measured 

orientation, and eθ is the orientation error. 

The optimization algorithms used to tune the parameters (Kp, 

KI, Kd, λ, µ) are described in the next section. 

3.4 Meta-heuristics Algorithms 

A comparative study has been made to demonstrate the 

capability of the hybrid whale grey wolf optimizer (HWGO), 

compared to the grey wolf optimizer (GWO) and whale 

optimizer algorithm (WOA). Therefore, a brief description of 

all algorithms is given: 

A. Grey wolf optimizer (GWO) 

The Grey wolf optimizer was inspired by the hunting 

mechanism and leadership hierarchy of grey wolves in 

nature. Its mathematical models consist of social hierarchy, 

enriching prey, search for prey, attacking prey, and hunting 

that is described down below ( Mirjalili et al., 2014; Mittal et 

al., 2016): 

Social hierarchy: The leader of wolves is called alpha(𝛼). 

Beta (𝛽) and delta (𝛿) are the second and third level in the 

group respectively.  

Encircling prey: the grey wolves encircle the prey for 

hunting, which can be mathematically represented as  

𝑑 = |𝑐 ∙ 𝑥𝑝(𝑛) − 𝑥(𝑛)|                                                             (29)

𝑥(𝑛 + 1) = 𝑥𝑝(𝑛) − 𝑎 ∙ 𝑑.                                                       (30)
 

Where, 𝑥𝑝 is the position vector of the prey, n indicates the 

current iteration, and 𝑥 indicates the position vector of a grey 

wolf. 

The vectors 𝑎 and 𝑐 are mathematically formulated as 

follows: 

�⃗�(.) = 2𝑙 ∙ 𝑟1 − 𝑙                                                                          (31)

𝑐(.) = 2 ∙ 𝑟2.                                                                                  (32)
 

Where, 𝑟1 and 𝑟2 are random numbers in [0, 1] and a 

parameteris linearly decreased from 2 to 0 . 

• Hunting 

The following mathematical equations are developed in this 

regard: 

{

𝑑𝛼 = |𝑐1 ∙ �⃗�𝛼 − �⃗�|,

𝑑𝛽 = |𝑐2 ∙ �⃗�𝛽 − �⃗�|,

𝑑𝛿 = |𝑐3 ∙ �⃗�𝛿 − �⃗�|.

                                                                (33.a) 

{

�⃗�1 = �⃗�𝛼 − �⃗�1 ∙ (𝑑𝛼),

�⃗�2 = �⃗�𝛽 − �⃗�2 ∙ (𝑑𝛽),

�⃗�3 = �⃗�𝛿 − �⃗�3 ∙ (𝑑𝛿),

                                                            (33.b) 

𝑥(𝑛 + 1) =
𝑥1+𝑥2+𝑥3

3

 

                                                       (33.c) 

The mathematical simulation of hunting behavior is possible 

after supposing that the alpha (𝛼), beta (𝛽), and delta (𝛿) have 

better knowledge about the potential location of prey. 

• Searching for Prey and Attacking Prey 

𝐴 is a random value in the gap [−2𝑎, 2𝑎]. When, |𝐴| <1, the 

wolves are forced to attack the prey. Searching for prey is the 

exploration ability and attacking the prey is the exploitation 

ability. The arbitrary values of 𝐴 are utilized to force the 

search to move away from the prey. When, |𝐴| > 1, the 

members of the population are enforced to diverge from the 

prey. 

B. Whale optimization algorithm (WOA) 

This algorithm was first introduced by Mirjalili and Lewis 

(Mirjalili and Lewis, 2016) .Its main inspiration comes from 

the social behavior of humpback whales .As they have 

special hunting behavior, they use to hunt schools of fish in 

which whales create a 9-shaped net with bubbles that traps 

the fish and makes the whale capable of eating them with 

ease (Hemeida et al., 2020).This Algorithm consists of three 

stages. 

• Encircling prey: 

The humpback whales encircle the prey and modify their 

position towards the best solution over a course of iterations. 

This behavior can be mathematically represented using (29) 

and (30). 
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• Bubble-net attacking method: 

Using the bubble-net strategy the humpback whales attack 

the prey, this is shown in the following two methods: 

1. Shrinking encircling mechanism: This technique is 

applicable by decreasing the value of 𝑙 in (31). 

2. Spiral updating position: The mathematical description of 

the helix-shape movement of humpback whales is as follows: 

X⃗⃗⃗(n + 1) = D⃗⃗⃗′ ∙ ebv ∙ cos(2πv) + X⃗⃗⃗∗(n)                               (34) 

D⃗⃗⃗′ = |X⃗⃗⃗∗(n) − X(n)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |                                                                  (35) 

Where,𝑣 is a random number in [-1], b is constant for 

defining the shape of the logarithmic spiral, X⃗⃗⃗∗is the position 

vector of the prey position, and X⃗⃗⃗is the position vector of the 

humpback whale. 

The humpback whales swim around the prey within a 

shrinking circle and along a spiral-shaped path. A probability 

of 50% to choose either a shrinking mechanism or a helical 

path down below the mathematical formula: 

X⃗⃗⃗(n + 1) = {
X⃗⃗⃗∗(n) − A⃗⃗⃗ ∙ D⃗⃗⃗                            if p < 0.5

D⃗⃗⃗′ ∙ ebv ∙ cos(2πv) + X⃗⃗⃗∗(n)   if p > 0.5
        (36) 

Where, p is a random number in [0,1]. 

c- Search for prey: 

The humpback whales search randomly for prey. Exploitation 

phase fellow those rules: 

D⃗⃗⃗ = |C⃗⃗ ∙ X⃗⃗⃗rand − X⃗⃗⃗|                                                             (37) 

X⃗⃗⃗(n + 1) = X⃗⃗⃗rand − A⃗⃗⃗ ∙ D⃗⃗⃗                                                  (38)  

C. Hybrid Whale grey wolf optimizer (HWGO)   

The HWGO algorithm aims to improve the performance of 

the WOA algorithm by applying the leadership hierarchy of 

GWO. The next step is to apply the outcome to the attacking 

strategy of the WOA. the HWGO selected three best 

candidate solutions; the first level alpha (a), the second, and 

third-level in the group is beta (b) and delta (d), respectively 

from whole search agents, and the other search agents will 

modify their positions according to the position of the best 

search agents to improve the performance of the WOA 

algorithm ( Korashy et al., 2019). 

The mathematical model for updating the position of whales 

using the leadership hierarchy of GWO during optimization 

is represented mathematically as follows: 

The updating of the position of whales using the hierarchy 

leadership of GWO is formulated using (33). 

The updating of the position along of a spiral-shape path of 

humpback whales as follows: 

{

D⃗⃗⃗α
′ = |X⃗⃗⃗α(n) − X⃗⃗⃗|,

D⃗⃗⃗β
′ = |X⃗⃗⃗β(n) − X⃗⃗⃗|,

D⃗⃗⃗δ
′ = |X⃗⃗⃗δ(n) − X⃗⃗⃗|

                                                           (39) 

{

X⃗⃗⃗1(n) = X⃗⃗⃗α(n) + D⃗⃗⃗α ∙ e
bv ∙ cos(2πv) ,

X⃗⃗⃗2(n) = X⃗⃗⃗β(n) + D⃗⃗⃗β ∙ e
bv ∙ cos(2πv) ,

X⃗⃗⃗3(n) = X⃗⃗⃗δ(n) + D⃗⃗⃗δ ∙ e
bv ∙ cos(2πv)

                           (40) 

X⃗⃗⃗(n + 1) =
X⃗⃗⃗1+X⃗⃗⃗2+X⃗⃗⃗3

3
                                                          (41) 

3.5  The ANFIS Controller descreption 

The adaptive Network-Based Fuzzy Inference System 

(ANFIS) is a hybrid combination of artificial neural network 

(ANN) and fuzzy inference system (FIS). This algorithm was 

firstly introduced by Jang (Jang, 1993) and it is based on the 

first-order Sugeno fuzzy model (Buragohain and Mahanta, 

2008). The ANFIS approaches integrates the best feature of 

neural networks and fuzzy systems by exercising learning 

capability of neural network while the learning ability is a 

advantage in terms of a fuzzy system (Bektas Ekici and 

Aksoy, 2011). However, this combined system offers more 

benefits from the aspect of a neural network. The ANFIS 

structure consists of if-then rules and couples of input-output 

data of fuzzy while for training ANFIS uses neural network’s 

learning algorithms. Also, ANFIS apply the neural network 

training process to fine-tune the membership function (MF) 

and the associated parameter that methods the desired data 

sets (Bektas Ekici and Aksoy, 2011; Boyacioglu and Avci, 

2010). 

For simplifying, a Sugeno fuzzy model with two inputs, x and 

y, and one output f is considered. Usually, the fuzzy rules are 

reported as following (Bektas Ekici and Aksoy, 2011; 

Boyacioglu and Avci, 2010; Buragohain and Mahanta, 2008; 

Jang, 1993): 

Rule I: if x=A1 and y= B1, then 

𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1                                                    (42) 

Rule II: if x=A2 and y=B2, then 

 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2                                             (43) 

where,  f is an output parameter (response), p, q, & r are 

linear parameters, and A&B are nonlinear parameters. Fig.6. 

Shows the five layers used to construct ANFIS structure 

while the function of each layer is described below: 

 

Fig. 6. The ANFIS architecture with two input parameters x 

and y. 

Layer 1. input nodes: Every node in this layer generates 

membership grades to which they belong to each of the 

appropriate fuzzy sets using MFs. 
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{
𝑂𝑖
1 = µ𝐴𝑖(𝑥)

𝑂𝑖
2 = µ𝐵𝑖(𝑦)

                                                                               (44) 

Where, i= 1, 2 ,x, yare the crisp inputs to node i, and Ai &Bi. 

The linguistic label (small, large, etc.) associated with the 

node function. µAi , µBi respectively. 

Usually, µAi ( or µBi) is selected as: 

µ𝐴𝑖(𝑥) =
1

1+[(𝑥−
𝑐𝑖
𝑎𝑖⁄ )

2
]
𝑏𝑖
                                                            (45) 

Or 

µ𝐴𝑖(𝑥) = 𝑒𝑥𝑝 {− (
𝑥−𝑐𝑖

𝑎𝑖
)
2

}                                                         (46) 

Here, {ai, bi, ci} are the premise parameter set. 

Layer 2. rule nodes: Using mathematical multiplication, the 

firing strength of each rule is calculated. For instance, 

𝑂𝑖
2 = 𝑤𝑖 = µ𝐴𝑖(𝑥) ∙ µ𝐵𝑖(𝑦)                                                       (47) 

Each node output represents the firing strength of a rule. 

Layer 3.average nodes: In the third layer, The ith node 

calculates the ratio of the ith rule firing strength to the 

summation of the firing strengths of all rules Consequently, 

as given in (48): 

𝑂𝑖
3 = �̅�𝑖 =

𝑤𝑖

𝑤1+𝑤2
                                                                        (48) 

wi is taken as the normalized firing strength. 

Layer 4. consequent nodes: The node function of the fourth 

layer calculates the contribution of each ith  rules toward the 

overall output, defined as: 

𝑂𝑖
4    = �̅�𝑖𝑓𝑖 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                                     (49) 

where, �̅�𝑖isthe output of the layer 3, and {pi, qi, ri} the 

parameter set. 

Layer 5. Output nodes:The single-node computes the overall 

output by adding all the incoming signals from the 4th layer : 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ �̅�𝑖𝑓𝑖 =

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
𝑖                             (50) 

The final output of ANFIS can be expressed as a linear 

combination of consequent parameter, the output can be 

written as: 

𝑓𝑜𝑢𝑡 = �̅�1 𝑓1 + �̅�2𝑓2 =
𝑤1

𝑤1+𝑤2
𝑓1 +

𝑤2

𝑤1+𝑤2
𝑓2 = (�̅�1𝑥)𝑝1 +

(�̅�1𝑦)𝑞1 + (�̅�1)𝑟1 + (�̅�2𝑥)𝑝2 + (�̅�2𝑦)𝑞2 + (�̅�2)𝑟2          (51)                                  

3.6  Designing the ANFIS-FOPID Dynamic Controller 

The implementation of the full control strategy that handles 

the dynamics of the WMR based on the ANFIS-FOPID, can 

be divided into three steps: 

The first step is represented by Fig. 7, which shows the 

training phase of the ANFIS controller. The ANFIS utilize 

their adaptive and learning capacities to learn and to predict 

the best required control actions based on the available data. 

These data are obtained from the already designed FOPID 

controllers (see figure 7).  

The second step: the gained training data were stored in a 

file, from MATLAB/SIMULINK using the command 

anfisedit, these data were taken for training. 

The ANFIS training used hybrid training algorithm, with the 

input nodes (2, 2, 2),using the gaussmf membership function 

for the inputs and linear membership function for the output, 

each having 8 rules, the epoch length was used is 50 

iterations for each sample, with, 0.01s as the Simulink 

sampling time. 

 

Fig. 7. The ANFIS in training phase. 

At the end of the training the result was saved as a fis file 

with respect to Sugeno-style, where the root mean square 

error (RMSE) was found to be 0.1053 and be 0.094977 for 

ANFIS-FOPID1 and ANFIS-FOPID2, respectively. 

Third step: after the training phase is complete and the 

optimal value of the data are obtained, the designed ANFIS-

FOPID controller should be ameliorated by adjusting the 

gains, i.e., Kp, KI, Kd, λ, µ,  as shown in Fig.8.Where the final 

version of the controller is represented in Fig 9. 

 

Fig. 8. Bloc diagram for parameters tuning. 

 

Fig. 9. Final version of the ANFIS-FOPID controller. 
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4. RESULTS AND DISCUSION 

4.1 Convergence Curve of the Algorithms 

The three meta-heuristics optimizations algorithms are used 

for the FOPID controller design. Fig. 10 presents the 

convergence curve obtained by these optimization’s 

algorithms applied to FOPID and ANFIS-FOPID controllers 

The obtained values of the ISE for all algorithms used in the 

test, are shown in Table 2.  

From fig. 10 and Table 2, it quite obvious that the HWGO 

optimizer gives the lowest ISE value compared to the whale 

optimization algorithm (WOA) and the grey wolf optimizer 

(GWO).  

Table 2. ISE values for all controllers. 

Methods GWO-

FOPID 

WOA-

FOPID 

HWGO-

FOPID 

HWGO-

ANFIS-

FOPID 

ISE 

value 

0.0477 0.0533 0.0452 0.0268 

 

Fig. 10. Convergence curve of the algorithms. 

4.2 Step Response Performance of Speed Controller 

Fig 11 presents the comparative findings for the linear 

velocity step responses that were designed with the three  

controllers. 

Table 3 shows the gain details of the controllers, for the 

speed control of the WMR, tuned by HWGO optimizer. 

Table.4 shows the characteristics obtained in time domain. 

 

Fig. 11. Step response Comparison for velocity controllers. 

 

 

Table 3.The tuned gain details of linear velocity.  

Methods Speed controller 

𝐾𝑝 𝐾𝑖 𝐾𝑑 λ µ 

FOPID 500 145 149 0.10 0.56 

ANFIS / / / / / 

ANFIS-FOPID 2 1.01 1 0.2046 0.8674 

Table 4. Performance characteristics for velocity 

Controller. 

Methods  Characteristics of the speed controllers 

𝑡𝑟 Mp% Peak 𝑡𝑝 𝑡𝑠 

FOPID 0.0026 13.1268 0.4525 0.0014 0.2182 

ANFIS 0.0451 0 0.3993 0.3240 0.0562 

ANFIS-

FOPID 
0.0242 1.3500 0.4097 0.1000 0.0357 

The FOPID controller only advantage is the fast rise time 

obtained, but a high overshoot and slow settling time. 

The ANFIS-FOPID controller advantage is the best settling 

and rise time value with a nearly zero overshoot. 

The ANFIS controller major advantage is the zero-overshoot 

obtained value and an acceptable settling time and rise time 

4.3  Step Response Performance of Angle Controller 

Fig. 11 presents the comparative findings for angle step 

responses that were designed using the three controllers, by 

applying the HWGO optimization techniques. Table 4 reveals 

the gain details of all controllers selected for the orientation 

angle control of the WMR. In contrast, the comparative 

results of transient response are highlighted in Table 5. 

Table 5.The tuned parameters for angle control. 

Methods Angle controller parameter tuning 

𝐾𝑝 𝐾𝑖 𝐾𝑑 λ µ 

FOPID 63.97 26.4 81.95 0.36 0.95 

ANFIS / / / / / 

ANFIS-

FOPID 

6.00 4.92 1.21 0.02 1 

Table 6. Performance characteristics for angle control. 

Methods Transition parameter for angle controller 

𝑡𝑟 Mp% Peak 𝑡𝑝 𝑡𝑠 

FOPID 0.4184 3.4084 0.4136 0.9600 0.4309 

ANFIS 1.6633 2.2710 0.4091 4.0512 1.6942 

ANFIS-

FOPID 

0.3470 0.1822 0.4007 0.7466 0.3770 

From Fig. 12, Table 5 and 6, we can say that the lowest 

amounts of peak percentage, overshoot (Mp%), rise time (tr 

for 10% → 90%), and settling time (ts for ±2% tolerance) 

were observed for the suggested ANFIS-FOPID controller. 
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Fig. 12. Comparison of step Response for the orientation. 

4.4  Five (5) chape trajetory 

The five (5) shaped trajectory is a straightforward example of 

a non-continuous gradient trajectory. The major problem of 

such as paths is the sharp and a non-continuous motion, 

which requires a high-level control effort.  here the FOPID 

controller  gives a very high overshoot, that might produce an 

unstable and a disturbed motion, which could harm the DC 

actuators (see Fig. 14), which makes it unsupported for this 

kind of paths. 

The ANFIS-FOPID controller has an acceptable overshoot 

compared to the FOPID and faster time response and lower 

distance error than the ANFIS , which makes it suitable for 

this  trajectory. 

 

Fig. 13. Five shaped path in XY plane. 

 

Fig. 14. Linear velocity corresponding to the path. 

 

Fig. 15. Distance error of the 5 shaped path. 

4.5  Zigzag trajetory 

Here both linear and angular velocity changes progressivly 

(see Fig. 17  and 18), the ANFIS-FOPID controller felows 

the desired path with a minimum distance error and fast time 

response (error less than 0.05 m),compared to FOPID and the 

ANFIS. 

 

Fig. 16.  Zigzag path. 

 

Fig. 17.  The angle coresponding to the Zigzag path. 

 

Fig. 18. The linear speed corresponding to zigzag path. 
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4.6 Adding the back-stepping controller in the external loop 

The ANFIS-FOPID controller was designed to handle with 

the dynamics, which need a kinematic controller. Therefore, a 

back-stepping controller was proposed to guarantee a 

minimum distance error that already has been proved in 

fig.21. The error is less than 0.002 m. To illustrate the 

robustness of the Back-stepping combined with ANFIS-

FOPID controller, a quadrifolium trajectory was selected. 

In order to generate this path, the following equations were 

applied: 

𝑥𝑅(𝑛) = 5 ∗ 𝑠𝑖𝑛
2 (2 ∗ 𝜋 ∗

𝑡

30
)* 𝑐𝑜𝑠 (2 ∗ 𝜋 ∗

𝑡

30
)               (52) 

𝑦𝑅(𝑛) = 5 ∗ 𝑐𝑜𝑠2 (2 ∗ 𝜋 ∗
𝑡

30
) ∗ 𝑠𝑖𝑛 (2 ∗ 𝜋 ∗

𝑡

30
)              (53) 

Where the gains are chosen as: kx=10, ky=80 and kθ=15. 

 

Fig.19. Quadrifolium path. 

 

Fig. 20. Distance error of the quadrifolium path. 

The influence of the added kinematic controller in external 

loop is highlighted in Fig.20. The minimum tracking error is 

less than 0.002 meter. for that purpose, we can see that the 

two paths are identical in Fig. 19. 

5. CONCLUSIONS 

The actual study shows the efficiency given by hybridizing 

the fractional order PID controller (FOPID) with an adaptive 

neuro-fuzzy inference system (ANFIS), abbreviated as 

ANFIS-FOPID controller. Tuning parameters of the proposed 

controller is challenging. Therefore, a powerful nature 

inspired algorithm is introduced, namely hybrid whale grey 

wolf optimizer (HWGO) which is  a hybridization between 

the whale optimizer algorithm (WOA) and the grey wolf 

optimizer (GWO),  based on the integral square error cost 

function. A comparative study has been made between the 

ANFIS-FOPID against separated FOPID and ANFIS, In 

terms of convergence curve obtained with lowest error 

values, and a minimum overshoot observed, rise time, and 

settling time. As well as several case studies were made for 

both smooth and sharp-shaped trajectories. Simulation in 

MATLAB environment has given the following 

demonstration and judgment between these three controllers: 

The FOPID controller advantage is the fast rise time and 

settling time value obtained, this controller is ideal for 

smooth trajectories, but when it comes to sharp shaped 

trajectories, a high overshoot is observed, which could harm 

the dc actuators .The ANFIS controller major advantage is 

the zero-overshoot obtained value, but a slow settling time 

and rise time value (especially in controlling the angle). The 

ANFIS-FOPID controller mixes the two advantages of the 

previous controllers by giving the best settling and rise time 

value, with an acceptable overshoot, which makes it ideal for 

both smooth and sharp chapped trajectories. Moreover, a 

better convergence performance is accomplished when a 

back-stepping technique for the kinematic control is applied 

as external loop robot control. This practically guarantees a 

nearly zero tracking error, where a quadrrifolium trajectory 

used for test. 
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