
CEAI, Vol.24, No.3, pp. 96-107, 2022                                                                                                               Printed in Romania 

An Online Admittance Control for Asymmetric Teleoperated Arm Robot 

Interacting with Unknown Environment  
 

Adel Mohamed Outayeb*, Farid Ferguene*, Rabah Mellah**, Redouane Toumi* 

 

* University of Science and Technology Houari Boumediene, Bab Ezzouar, Algiers, Algeria (e-mail: 

aoutayeb@usthb.dz, fferguene@usthb.dz, rtoumi@usthb.dz) 

** Faculty of Electrical and Computer Engineering, University of Tizi-Ouzou,                                                            

Algeria. (e-mail: mellah.rab@gmail.com) 

Abstract: In many telerobotic tasks, robot manipulators interact with unknown environments. Moreover, 

the manipulators are high-coupled Asymmetric nonlinear multi-degrees of freedom (DOF) systems that 

present uncertainties and errors in modeling, which may affect safety and performance responses. In this 

paper, a novel adaptive control scheme is designed to achieve a trajectory and force tracking performance 

based on a three-channel teleoperation control framework. The adopted approach is based on an admittance 

control law combined with an inverse dynamics control strategy that avoids the use of force control loop 

and permits to deal with nonlinear terms. To cope with robots’ uncertainties, neural network compensators 

(NNC) are implemented on both sides. Whereas the integration of weighted recursive least squares (WRLS) 

estimation method permits the identification of dynamic impedance of an unknown environment. Human 

in the loop experiment using a real Omni phantom, remote virtual PUMA560 and an environment show the 

effectiveness of the proposed approach. 

Keywords: Admittance control, Environment, Estimation method, Neural network, Teleoperation, 

Workspace mapping. 

1. INTRODUCTION 

The considerable development of computer tools and 

technological evolutions have allowed the evolution of locally 

controlled systems to remotely controlled systems. Indeed, 

bilateral teleoperation allows robotic systems to benefit from 

advanced human problem-solving skills, which are necessary 

in many scenarios such as performing difficult tasks in 

inaccessible environments. Today, applications of 

teleoperation systems can be found in many areas including 

space technologies, underwater exploration, nuclear/toxic 

waste handling, surgery, and more recently training and virtual 

reality (Manocha et al., 2001; Guthart and Salisburg, 2000; 

Karan et al., 2018).  

However, in many teleoperation tasks, robot manipulators 

interact with unknown environments. Due to the lack of 

dynamic information about the remote environment, the safety 

and performance response of such systems is potentially 

affected. Moreover, the presence of internal disturbances such 

as the uncertainties in dynamic high coupled robots, human 

operator, and communication networks of telerobotic systems 

may degrade the tracking performance and stability of the 

whole system either in free or constrained space. 

Teleoperation control systems are designed for stable and 

transparent performance. The four-channel control 

architecture that was firstly proposed by Lawrence (Lawrence, 

1993) offers perfect transparency under ideal conditions and 

compromising goals with robust stability under given 

communication delays. 

In (Hashtrudi and Salcudean, 2002), the effect of local force 

feedback is evaluated, and ideal transparency conditions are 

revised. A global transparency analysis of Extended Lawrence 

Architecture (ELA) is provided in (Naerum and Hannaford, 

2009). In (Sakai et al., 2017), two channel F-P architecture 

with compliance control is proposed to provide stability in 

different modes with occurred small position error in the hard 

environment. However, in a teleoperation system, perfect 

knowledge of the leader and the follower dynamics may not be 

available due to the models uncertainties. Moreover, due to the 

existing time delays in the communication channel and under 

disturbances due mainly to unknown characteristics of the 

environment, stability and transparency are significantly 

compromised (Hashtrudi and Salcudean, 2001). 

In the recent years, another alternative for a better trade-off 

between stability, robustness, and performance is the use of 

adaptive controllers. This type of control design is deployed to 

deal with uncertainties in the leader/follower model and 

operator dynamics. It is also well suited for situations with 

unstructured or time varying environment dynamics.         

Considering linear models for both the leader and follower 

robots, in (Hashtrudi and Salcudean, 1996) have proposed an 

indirect adaptive controller that uses position, velocity, and 

acceleration of master and slave robots, instead of the slave 

robot force sensing. This architecture provides a good 

parameter convergence for applications with slow time-

varying environments. Considering nonlinear models for the 

leader and follower, (Ryu and Kwon, 2001) assumed to have 

uncertainties in both robots. Moreover, by ignoring 

uncertainties of the operator and environment in the adaptation 

laws, position and force tracking performance were achieved.  

Other adaptive control strategies are developed in the 

literature, (Love et al., 2004) offered an impedance adaptive 

controller using the RLS identification method to decrease 
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operator energy for stability, based on the estimated 

impedance. In (Liu and Tavakoli, 2011), the authors proposed 

a four-channel adaptive control scheme for force and position 

tracking based on the inverse dynamics approach, under the 

assumption of uncertain dynamics in both robots, operator and 

environment, and also without considering any 

communication delay. In (Yang et al., 2019), an adaptive 

admittance control approach combined with the radial basis 

function neural-networks (RBFNN) is developed to deal with 

uncertain robot manipulator interacting with human arms in 

the absence of a force sensor. According to the Lyapunov 

theory, a switching adaptive controller is designed to cope with 

the input saturations and nonhomogeneous models of the 

human operator and environment (Zhai and Xia, 2016). In 

(Wang et al., 2017), authors developed an adaptive neural 

control using radial basis function neural network 

approximation capabilities to deal with the backlash 

uncertainties. Under the four-channel architecture framework, 

guaranteed trajectory and force tracking performance is 

ensured. The control laws developed is based on adaptive 

parallel force/position control and inverse dynamic control 

strategies, under the assumption of uncertainties in follower 

robot, unknown environment, and noisy force sensor 

measurement (Adel et al., 2016). Later, in (Mohamed et al., 

2017), the authors achieved the same performance by applying 

an adaptive external force control approach. Park and Lee 

applied an adaptive fuzzy control and new workspace mapping 

to improve the tracking performance on the discontinuous 

trajectory resulting from the mode transformation of the 

workspace (Park et al., 2020). In (Mellah et al., 2017), the 

authors proposed adaptive Neuro-fuzzy techniques to enhance 

teleoperation performance under the assumption of the 

dynamics uncertainties of leader and flower system. In (Kebria 

et al., 2020), an adaptive type-2 fuzzy neural-networks 

controller is developed and verified their effectiveness to learn 

the nonlinear model and uncertainties. In (Huang et al., 2019), 

a novel adaptive sliding mode control laws based on RBFNN 

is proposed to deal with nonlinear models when considering 

transmission delays and uncertainties. 

In this paper, a novel adaptive bilateral controller approach is 

proposed for position tracking and force applied performance 

with linear human operator model, uncertain nonlinear leader 

and follower robots, and unknown linear dynamic of the 

environment. The considered approach is based on an 

admittance control law combined with inverse dynamics 

control strategy incorporated into the three-channel bilateral 

teleoperation control framework. The main advantages of this 

contribution are: 

•  The proposed approach uses only position control laws 

which is based on an admittance control strategy. It permits to 

generate a modified position in the direction of the constraint 

to overcome the absence of the force control law. The 

parameters of the admittance model (Damper and Stiffness) 

are obtained by using an online environment identification 

method based on the WRLS algorithm. 

• Integration of the NNC on both the leader and follower 

controllers to cope with uncertainties due mainly to errors in 

modeling of robots and effects of end-effector payload. 

• The use of Butterworth filter and limit function of boundaries 

permits to deal with the transient phase of the trajectories 

generated by the WRLS algorithm. 

• We consider asymmetric robots that involve the problem of 

different scale and workspace mapping. 

The reminder of this paper is organized as follows. In section 

2, the mathematical formulation of the nonlinear multi-DOF 

teleoperation system is presented. Section 3 describes the 

methodology of the workspace mapping for the Omni 

PHANTOM device with respect to the PUMA560 robot. In 

Section 4, control laws for both the leader and follower sides 

using admittance controller and inverse dynamic approach are 

developed. Additionally, NNC and WRLS identification 

method are demonstrated in this Section. Human in the loop 

experiment results using a real Omni interface and a virtual 

PUMA560 are carried out in Section 5 to show the 

effectiveness of the proposed control method. Finally, a 

conclusion is drawn in Section 6.  

2. TELEOPERATED SYSTEM DESCRIPTION AND 

MODELING 

In this section, a presentation of a leader/fellow teleoperated 

system is given in both the sense of intuitive and a 

mathematical level. The system is composed of real haptic 

PHANTOM Omni handled by an operator and a virtual 

PUMA560 robot interacting with a virtual environment, as 

illustrated in Fig. 1. 

 

Fig. 1.  The Leader/Follower system.  

2.1 Human modeling 

In general, the dynamic characteristics of a human arm in 

interaction with a haptic interface can be modeled as a second-

order system (Tzafestas et al., 2008). However, in this paper, 

the human arm impedance is approximately simplified as a 

spring-damper system, described by the following equation: 

𝐵ℎ . �̇�𝑙 + 𝐾ℎ. (𝑋𝑙 − 𝑋ℎ) = 𝐹ℎ .                                                     (1) 

where 𝐹ℎ is the force exerted by the human arm on the haptic 

device, 𝑋ℎ refers to the desired position issued from the                 

central nervous system, whereas 𝑋𝑙 and  �̇�𝑙 represent the posit

ion and velocity of the haptic interface, respectively. 

2.2 Leader device 

The leader device employed here is the PHANTOM Omni, 

which is a positional and sensing haptic device developed by 

SensAble Technologies. It is considered under actuated robot, 

composed of 6 DOF revolute joints that have a reachable 

workspace of 12cm×16cm. The initial condition corresponds 
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to the posture shown in Fig. 2 (Silva and al., 2009). The 

dynamic model of a leader robot in joint space establishes the 

relationship between the driving torque and joint motion, and 

it can be written in the following form 

𝑀𝑙(𝑞𝑙)�̈�𝑙 + 𝐶𝑙(𝑞𝑙 , �̇�𝑙)�̇�𝑙 +  𝐺𝑙(𝑞𝑙) = 𝜏𝑙 + 𝐽𝑙
𝑇𝐹ℎ                      (2) 

where the subscript “𝑙” is used to indicate the leader. 𝑀𝑙𝜖𝑅6×6 

is the inertia matrix, 𝐶𝑙𝜖𝑅6×6 is the Coriolis and centrifugal 

coupling matrix, and 𝐺𝑙𝜖𝑅6 represent the gravity acting on the 

joints, while 𝑞𝑙, �̇�𝑙 and �̈�𝑙  𝜖𝑅6 are the joint position, velocity 

and acceleration, respectively. 𝐽𝑙
𝑇 is the transpose of Jacobian 

matrix. 𝐹ℎ is the force exerted by the human operator and 𝜏𝑙  is 

the generalized torque control signal acting on joints. 

 

Fig. 2. The initial posture of Omni (Silva and al., 2009).  

2.3 Follower device 

The virtual teleoperated robot employed here is the PUMA560 

robot. It has 6-DoF revolute joints. The first three joints are 

mounted in the arm which determine the position and the three 

last joints are mounted on the end effector (spherical wrist) 

which gives the orientation. The virtual scene is created by 

using V-realm editor under Matlab/Simulink environment. 

Table 1 gives the standard Denavit-Hartenberg (DH) 

parameters considered in Matlab Robotics Toolbox that 

represents the structure characteristics of the robot. 

Table 1.  Standard DH parameters of PUMA560. 

𝐿𝑖𝑛𝑘𝑖  (𝜃𝑖) 𝑑𝑖(m) 𝑎𝑖(m) 𝛼𝑖  (ra
d

) 

Range of joint 

(deg) 

1 (𝜃1)  0 0 𝜋/2 -160 to +160 

2 (𝜃2) 0 0.4318 0 -225 to +45 

3 (𝜃3) 0.15005 0.0203 −𝜋/2 -45 to +255 

4 (𝜃4) 0.4318 0 𝜋/2 -110 to +170 

5 (θ5) 0 0 −π/2 -100 to +100 

6 (θ6) 0 0 0 -266 to +266 

The dynamics model of a follower robot in joint space could be 

formulated as follows: 

𝑀𝑓(𝑞𝑓)�̈�𝑓 + 𝐶𝑓(𝑞𝑓 , �̇�𝑓)�̇�𝑓 + 𝑁𝑓(�̇�𝑓 , 𝑞𝑓) = 𝜏𝑓 − 𝐽𝑓
𝑇𝐹𝑒          (3) 

where the subscript ‘𝑓’ used to indicate the follower, 𝑀𝑓𝜖𝑅6×6 

is the inertia matrix, 𝐶𝑓𝜖𝑅6×6 is the Coriolis and centrifugal 

coupling matrix, and 𝑁𝑓𝜖𝑅6 represent the gravity and other 

forces acting on the joints (Coulomb friction, load changes), 

while 𝑞𝑓, �̇�𝑓 and �̈�𝑓 𝜖𝑅6  are the joint position, velocity and 

acceleration, respectively. 𝐽𝑙
𝑇 is the transpose of Jacobian 

matrix. 𝐹𝑒 is the force exerted by the remote environment and 

𝜏𝑓 is  the generalized torque control signal acting on joints.  

2.4 Environment modeling 

Different models have been proposed in the literature, in order 

to provide a continuous representation of the contact level with 

a follower robot. In this paper, we use the simplest and the 

most common model (Fig. 3), which is the dynamic of a linear 

damper-spring system. 

𝐹𝑒 = 𝐵𝑒�̇�𝑓 + 𝐾𝑒(𝑥𝑓 − 𝑥𝑒)                                                           (4) 

where 𝑥𝑓 and 𝑥𝑒 are the cartesian position of the follower robot 

and the contact position with  the environment, respectively. 

𝐾𝑒 and 𝐵𝑒  are a (3 × 3) constant diagonal stiffness and damping 

matrices, respectively. 

 

Fig. 3. Damper-spring environment. 

2.5 Communication channel 

In this work, a delay in the communication channel was 

neglected and considered very small, which is the case in many 

applications in which the distance between the follower 

manipulator and the operator is not too long. Also, in the case 

where the communication infrastructure is very effective such 

as fiber optics or 5G.  

3. WORKSPACE MAPPING 

The workspace of a robot manipulator is defined as the total 

locus of points at which the end-effector can be placed. 

Analyzing and mapping the workspace is extremely 

significant for improving follower robot working reliability 

and controllability, as it allows overlap between the leader and 

follower workspaces as much as possible. Before applying the 

mapping of workspace, it is necessary to adjust the frame axis 

direction of the PHANTOM Omni device that is different from 

the frame direction of PUMA560. Also, to correct the shift 

position of base coordinates of the Omni, the modified 

transform matrix could be calculated by using the relation 

below: 

𝐴′ = 𝑅𝑧 (
𝜋

2
) ∗ 𝑅𝑥 (

𝜋

2
) ∗ (𝑇𝑟𝑧(𝐿4) ∗ 𝑇𝑟𝑥(𝐿3) ∗ 𝐴) ∗ 𝑅𝑦 (

𝜋

2
) ∗

          𝑅𝑧 (
𝜋

2
) ∗ (

1 0 0
0 −1 0
0 0 −1

)                                             (5) 

where 𝐴 is the homogeneous matrix of Omni device that gives 

the relationship between the position expressed on end-

effector frame and base frame that could be formulated as 

follows: 
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𝐴 = 𝑇 
0

1 𝑇 
1

2 𝑇 
2

3 𝑇 
3

4 𝑇 
4

5 𝑇 
5

6                                                           (6)  

with  

𝑇 
𝑖−1

𝑖 = 𝐷𝑧𝑖−1,𝑑𝑖
𝑅𝑧𝑖−1,𝜃𝑖

𝐷𝑥𝑖−1,𝑎𝑖
𝑅𝑥𝑖−1,𝛼𝑖

 

=  [

𝑐𝜃𝑖   − 𝑠𝜃𝑖𝑐𝛼𝑖     𝑠𝜃𝑖𝑐𝛼𝑖      𝑎𝑖𝑐𝜃𝑖

𝑐𝜃𝑖     𝑐𝜃𝑖𝑐𝛼𝑖   − 𝑐𝜃𝑖𝑐𝛼𝑖    𝑎𝑖𝑠𝜃𝑖

0            𝑠𝛼𝑖            𝑐𝛼𝑖           𝑑𝑖

0             0               0              1

]                                       (7) 

where ‘c’ indicates the function ‘cos’ and ‘s’ is for ‘sin’.      

𝑇 
𝑖−1

𝑖 is obtained from the product of four basic 

transformations based on DH parameters (Craig, 2009) using 

the parameters of link (i) and joint (i). 

Moreover, the position related to modified cartesian axis 

coordinates is given by: 

 𝑋0
′ = A′ ∗ 𝑋6                                                                                (8) 

where 𝑋0
′ = [𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙]𝑇 represent the modified Cartesian 

coordinates of the end-effector. 𝑋6 is a Cartesian coordinates 

of the end effector in the Omni frame.  

3.1 Generating approximate workspace 

The Monte Carlo method of random sampling is a widely used 

method for its simplicity since it involves no inverse Jacobian 

calculation. Especially well adapted for complex robots or 

even in presence of kinematic redundancy (Zhao and al., 

2018). Consequently, in this work, the strategy considered is 

inspired from (Ju et al., 2014), in which we use homogeneous 

radial distribution to generate 7000 points to approximate 

separately the workspaces of the leader/follower robots. Then 

the cloud point that gives the volume ratio between the 

leader/follower workspaces is drawn in Fig. 4(a). The result 

indicates that the Omni workspace is of the order of one-tenth 

from the PUMA560 workspace.  

As emphasized above, the aim is to let the workspace of each 

other overlap as much as possible, without being near to 

boundaries as it may cause singularity configurations. Toward 

this end, a simple method for mapping process of a haptic 

interface is employed, which includes scaling factors, 

rotational factors and translations terms that are given by: 

[

𝑥𝑓

𝑦𝑓

𝑧𝑓

] = [
𝑐𝑜𝑠𝛿 −𝑠𝑖𝑛𝛿 0
𝑠𝑖𝑛𝛿 𝑐𝑜𝑠𝛿 0

0 0 1
] ∗ ([

𝑆𝑥 0 0
0 𝑆𝑦 0

0 0 𝑆𝑧

] [

𝑥𝑙

𝑦𝑙

𝑧𝑙

]  + [

𝑇𝑥

𝑇𝑦

𝑇𝑧

])         (9) 

where [𝑥𝑙 , 𝑦𝑙 , 𝑧𝑙]
𝑇 and [𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓]𝑇 represent the cartesian 

coordinates of the end effector of Omni and PUMA560 

respectively. [𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧]𝑇 and [𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧]𝑇 represent the 

scaling factors, and translations terms about the X, Y and Z 

axes, whereas 𝛿 is the rotation angle of a Z axis for the base of 

a leader device. Thus, we get the matching parameters for the 

PUMA560 robot as: [𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧]𝑇 = [2.8, 2.9, 4.3]𝑇 ,  

[𝑇𝑥 , 𝑇𝑦 , 𝑇𝑧]𝑇 = [0,0,0]𝑇 and 𝛿 = 0. Hence, the results are 

illustrated in Fig. 4(b) and indicate the overlapped area after 

the mapping process obtained without being near to the 

boundaries that may cause singularity configuration. 

(a) 

(b) 

Fig. 4.   (a) cloud point before workspace mapping, 

  (b) cloud point after workspace mapping. 

4. CONTROL STRATEGY 

In this section, an adaptive online admittance control approach 

is presented for the follower device. The approach avoids the 

use of a force control loop and uses the WRLS method and 

boundaries function to generate modified trajectories that will 

be fed to proportional-integral-derivative PID position control 

law. Moreover, the position control laws in both leader and 

follower devices are combined with the nonlinear dynamic 

decoupling approach and integrated NNCs to cope with 

uncertainties raised by errors in modeling and effects of the 

end-effector payload. The scheme is based on three-channel 

architecture, where the force applied by the operator, the 

position of the leader robot after being converted by workspace 

mapping is transmitted to the follower side, and the position of 

the follower robot after being processed by inverse workspace 

mapping is reflected to the leader.  

4.1 Leader controller 

The human operator manipulates the haptic interface by 

applying a given force that is dependent on the voluntary 

motion desired. the leader output trajectory is converted into 

the desired trajectory through workspace mapping. Then all 

signals, force, and generated trajectory are measured and sent 

to the slave robot. On the other hand, the reflected trajectory 

of the follower robot after being processed by the inverse 

function of workspace mapping is used as inputs to subsequent 

torque controller. This signal is useful in producing a haptic 

sensation when interacting with an environment and also to 

correct the errors in positioning between the leader and 

follower robots.  The adopted controller system is based on a 

classic PID (Oudjida et al., 2014) controller combined with the 

nonlinear dynamic decoupling approach and NNC based on 

feedback error learning control. Fig. 5(a) shows the block 

diagram of the leader controller. 

Define the model of position error as 

 𝑒𝑝_𝑙 =  𝑞𝑙 − 𝑞𝑓                                                                           (10) 

 

 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                                                                                             100      

 

 

 

 

 

 

 

 

 

Considering PID control law as 

𝜏𝑃𝐼𝐷_𝑙 = �̈�
𝑓

+ 𝐾
𝑝_𝑙

𝑒𝑝_𝑙 + 𝐾𝑖_𝑙 ∫  𝑒𝑝_𝑙 𝑑𝑡 + 𝐾𝑣_𝑙�̇�𝑝_𝑙                 (11) 

where �̈�𝑓 is the desired acceleration joints of the follower 

robot, 𝐾𝑝_𝑙 , 𝐾𝑣_𝑙 and  𝐾𝑖_𝑙  are diagonal matrices with constants 

positives parameters chosen to approach zero asymptotically 

error  𝑒𝑝_𝑙 between the desired and the actual endpoint 

positions. The controller law governing the system is 

expressed as 

𝜏𝑙 = 𝑀𝑙(𝑞
𝑙
)𝜏𝑃𝐼𝐷_𝑙 +  �̂�𝑙(𝑞

𝑙
, �̇�

𝑙
)�̇�

𝑙
+ �̂�𝑙(𝑞

𝑙
) + 𝐽𝑙

𝑇𝐹ℎ − 

𝐾𝑁𝑙_𝑝𝜏𝑁_𝑙 − 𝐾𝑁𝑙_𝑖 ∫ 𝜏𝑁_𝑙 𝑑𝑡                                                         (12)  

where 𝑀𝑙, �̂�𝑙, �̂�𝑙  denote the nominal and available terms of the 

dynamic model of Omni, �̂�ℎ is the available force applied by 

the operator,  𝐽𝑙
𝑇
 is the Jacobian transpose, 𝐾𝑁𝑙_𝑝 and 𝐾𝑁𝑙_𝑖 are 

diagonal matrices with positives parameters and 𝜏𝑁_𝑙 is the 

output of the NNC. Consequently, the closed loop control law 

is given as  

�̈�𝑝_𝑙 + 𝐾𝑣_𝑙�̇�𝑝_𝑙 + 𝐾𝑝_𝑙𝑒𝑝_𝑙 + 𝐾𝑖_𝑙 ∫ 𝑒𝑝_𝑙 𝑑𝑡 

= �̂�𝑙
−1

(∆𝑀𝑙�̈�𝑙 + ∆𝐶𝑙(𝑞𝑙 , �̇�𝑙)�̇�𝑙 + ∆𝐺𝑙(𝑞𝑙) + 𝐽𝑓
𝑇∆𝐹ℎ) 

−𝐾𝑁𝑙_𝑝𝜏𝑁_𝑙 − 𝐾𝑁𝑙_𝑖 ∫ 𝜏𝑁_𝑙 𝑑𝑡                                              (13) 

where  ∆(. ) denotes the uncertainty terms. 

The objective of the NNC compensator output 𝜏𝑁_𝑙 is to 

minimize the uncertainties in (13). It is done by taking the 

desired trajectory as the input signal and the output of a 

stabilizing feedback controller 𝛷𝑙  as a training signal for the 

neural network. 

𝛷𝑙 = �̈�𝑝_𝑙 + 𝐾𝑣_𝑙�̇�𝑝_𝑙 + 𝐾𝑝_𝑙𝑒𝑝_𝑙 + 𝐾𝑖_𝑙 ∫ 𝑒𝑝_𝑙 𝑑𝑡                     (14) 

In the ideal case, the right-hand side of (13) becomes zero and 

the output of the neural compensator is required to be 

𝐾𝑁𝑙_𝑝𝜏𝑁_𝑙 + 𝐾𝑁𝑙_𝑖 ∫ 𝜏𝑁_𝑙 𝑑𝑡 = 𝑀𝑙
−1

(∆𝑀𝑙�̈�𝑙
 

+∆𝐶𝑙(𝑞𝑙 , �̇�𝑙)�̇�𝑙 + ∆𝐺𝑙(𝑞𝑙) + 𝐽𝑙
𝑇∆𝐹ℎ)                                 (15) 

as a result, the NNC  realizes a nonlinear mapping between  𝑞
𝑙
, 

�̇�
𝑙
, �̈�

𝑙
 and 𝐹ℎ to 𝜏𝑁_𝑙. 

The structure of the neural network is shown in Fig 6. Its three-

layer network is composed of an input and output layer of a 

linear processing unit and a non-linear hidden layer of sigmoid 

type that is expressed by the following equation: 

 

 

 

𝑓(𝑢𝑗) =
1 − 𝑒𝑥𝑝−𝑢𝑗

1 + 𝑒𝑥𝑝−𝑢𝑗
                                                                (16) 

 

Fig. 6.  Structure of NNC. 

The inputs 𝑢𝑖 in each layer are connected through weights, and 

the output of each layer is obtained by the following equation 

𝑦 = 𝑓 (∑ 𝑢𝑖

𝑛

𝑖=1

𝑤𝑖 + 𝑤0)                                                          (17) 

where 𝑤𝑖 are the weights of connections from the preceding 

layer to this output, 𝑤0 is the bias parameter. The function 𝑓(. )  

is called the activation function where the type is depending 

on the problem. Therefore, the input-output relationship of the 

network is expressed as 

𝜏𝑁_𝑙 = ∑ 𝑊𝑗𝑘
2

𝑁𝑐

𝑗=1

(
1 − 𝑒𝑥𝑝−(∑ 𝑢𝑖

𝑁𝑒
𝑖=1 𝑊𝑖𝑗

1 +𝑏𝑗
1

)

1 + 𝑒𝑥𝑝−(∑ 𝑢𝑖
𝑁𝑒
𝑖=1 𝑊𝑖𝑗

1 +𝑏𝑗
1

)
) + 𝑏𝑘

2                     (18) 

where 𝑁𝑒, 𝑁𝑐 present the number of neurons in input and 

hidden layers respectively. 𝑊𝑖𝑗
1

 , 𝑊𝑗𝑘
2  denote the weights of  

connections from the input layer to the hidden layer and 

connections from the hidden layer to the output layer. 𝑏𝑗
1
 is the 

bias of the j-th neuron in the hidden layer and 𝑏𝑘
2
 is the bias of 

the k-th neuron in the output layer. Training proceeds with the 

back-propagation algorithm of the gradient (Mohamed et al., 

2017), which is based on the minimization of candidate 

function of quadratic form calculated as 

𝐽 =
1

2
𝐸𝑇𝐸                                                                                    (19) 

with  𝐸 = 𝛷𝑙 − 𝜏𝑁_𝑙 

This algorithm consists of adjusting the output of Neural 

Network  𝜏𝑁_𝑙 in the opposite direction to the derivative 

function of the error, which yields a gradient of 𝐽 as : 

(a) Leader side 

                                                               Fig. 5. Control diagram of whole teleoperated system. 

 
 

(b)      Follower side 
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𝛿𝐽

𝛿𝑊
=

𝛿𝐸𝑇

𝛿𝑊
𝐸 = −

𝛿𝜏𝑁𝑙
𝑇

𝛿𝑊
𝐸                                                         (20) 

Therefore, the weight adaptation law is updated by the 

following equation at every sampling period. 

∆𝑊(𝑡)  = 𝜂
𝛿𝜏𝑁_𝑙

𝑇

𝛿𝑤
𝐸 + 𝜇∆𝑊(𝑡 − 1)                                    (21) 

where η is called the learning rate and μ is the momentum 

coefficient. Finally, the resulting weight adaptation 

coefficients can be derived by making use of (20). 

∆𝑊𝑖𝑗
1(𝑡)  = 𝜂0.5(1 − 𝑌𝑗

1)
2

𝑢i[∑ 𝐸𝑘𝑊𝑗𝑘
2𝑛

𝑘=1 ] + 𝜇∆𝑊𝑖𝑗
1(𝑡 − 1)     (22) 

∆𝑊𝑗𝑘
2 (𝑡)  = 𝜂𝐸𝑘𝑌𝑗

1 + 𝜇∆𝑊𝑗𝑘
2 (𝑡 − 1)                                       (23)   

∆𝑏𝑗
1(𝑡)  = 𝜂0.5(1 − 𝑌𝑗

1)
2
[∑ 𝐸𝑘𝑊𝑗𝑘

2𝑛
𝑘=1 ] + 𝜇∆𝑏𝑗

1(𝑡 − 1)        (24) 

∆𝑏𝑘
2(𝑡)  = 𝜂𝐸𝑘 + 𝜇∆𝑏𝑘

2(𝑡 − 1)                                                     (25) 

4.2 Follower Controller 

Fig. 5(b) shows the block diagram of the follower side, the 

control system consists of a PID controller that is mounted on 

the output of Selection Matrix, which gives the decision about 

the type of desired trajectories input signals to be tracked, 

according to each of a direction X, Y and Z. The input to 

Selection Matrix is composed of two vectors: one indicates the 

desired trajectories position, velocity and acceleration issued 

from the online admittance model. The other vector is the 

desired trajectories of position, velocity and acceleration 

issued from the interaction of human operator on the Omni 

interface after having been converted by the mapping process. 

In the following, a proposed adaptive admittance model and 

online parameter estimation method of an unknown 

environment are presented. 

4.2.1 Adaptive admittance model 

Admittance control is developed to let a robot acts like 

specified admittance model. In our case, the admittance model 

is selected in adaptive fashion under the following form:  

𝐹ℎ = �̂�𝑒�̇�𝑟 + �̂�𝑒𝑥𝑟                                                                      (26) 

where �̂�𝑒, �̂�𝑒 are the estimated damping and stiffness matrices, 

respectively issued from an online environment estimation. 

The function of the admittance model is to generate desired 

robot trajectories in constrained space, which are passed 

through a Butterworth filter and limiter function, then it passes 

through inverse geometric and kinematics models to obtain 

equivalent trajectories  in joint space as needed to subsequent 

control torque unit.  

4.2.2 Butterworth  filter and boundaries function 

To suppress the jitter signals at the output of the admittance 

model, third-order low-pass Butterworth filters is used to 

adjust generating desired trajectories when passing the 

transient phase of an online estimation of the environment 

parameters. Hence, the transfer function can be expressed as 

follows 

𝐻(𝑠) =
1

(
𝑠

𝑤𝑐
)

3

+ 2 (
𝑠

𝑤𝑐
)

2

+ 2 (
𝑠

𝑤𝑐
)

1

+ 1
                            (27) 

where 𝑤𝑐 = 8𝐻𝑧 is the cutoff frequency.  

This choice is made as part of general information states that 

teleoperated system is mainly distributed in low frequency 

bandwidth, while noises are in high frequencies, also as part of 

work in (Geng et al., 2020), in which is concluded that a good 

position tracking is localized between 2Hz and 8Hz 

frequencies. Hence, the information above this limit should be 

suppressed.  

The limiter function aims to limit the upper and lower 

boundaries of transient trajectories generated by the adaptive 

admittance model in the constrained space. High and low 

limits are chosen to avoid excessive contact when interacting 

with a rigid environment. These limits are given as logic 

conditions in the form:  

•  If transient position among the X direction exceeds a given 

constant limit, the penetration beyond this value is not 

considered and fixed within the upper limit. Furthermore, if 

the transient position among the X direction is negative, the 

position lower limit is fixed to zero. In similar manner, we 

consider the limit boundaries of Y and Z axis of both position 

and velocity transient signals.  

To design a control torque that makes the follower (3) 

dynamics behave like the proposed adaptive admittance model 

(26). The nonlinear dynamic decoupling approach can be 

adopted, based on a conventional PID controller that is widely 

used to achieve complex position tracking. 

Define the model of position error as 

 𝑒𝑝_𝑓 = 𝑞
𝑙

− 𝑞
𝑓
                                                                            (28)  

Consider PID control law as 

𝜏𝑃𝐼𝐷_𝑓 = �̈�
𝑙

+ 𝐾𝑝_𝑓𝑒𝑝_𝑓 + 𝐾𝑖_𝑓 ∫  𝑒𝑝_𝑓 𝑑𝑡 + 𝐾𝑣_𝑓�̇�𝑝_𝑓            (29) 

where �̈�
𝑙
 is the desired acceleration joint, 𝐾𝑝_𝑓, 𝐾𝑣_𝑓 and 𝐾𝑖_𝑓 

are diagonal matrices with constants parameters for the 

follower, the controller law governed the system is expressed 

as 

 𝜏𝑓 = 𝑀𝑓 (𝑞
𝑓

) 𝜏𝑃𝐼𝐷_𝑓 + �̂�𝑓 (𝑞
𝑓
, �̇�

𝑓
) �̇�

𝑓
+ �̂�𝑓 (�̇�

𝑓
, 𝑞

𝑓
) 

        +𝐽𝑓
𝑇�̂�𝑒 − 𝐾𝑁𝑓_𝑝𝜏𝑁_𝑓 − 𝐾𝑁𝑓_𝑖 ∫ 𝜏𝑁_𝑓 𝑑𝑡                          (30) 

where 𝑀𝑓, �̂�𝑓,�̂�𝑓 denote the nominal and available terms of 

the dynamic model of PUMA560, �̂�𝑒 is the force sensor 

measurement, 𝐽𝑓
𝑇
 is the Jacobian transpose, and 𝜏𝑁_𝑓 is the 

output of NNC. Consequently, the closed loop control law is 

given by  

�̈�𝑝_𝑓 + 𝐾𝑣_𝑓�̇�𝑝_𝑓 + 𝐾𝑝_𝑓𝑒𝑝_𝑓 + 𝐾𝑖_𝑓 ∫ 𝑒𝑝_𝑓 𝑑𝑡 = 𝑀𝑓
−1

∗ 

(∆𝑀𝑓�̈�
𝑓

+ ∆𝐶𝑓 (𝑞
𝑓
, �̇�

𝑓
) �̇�

𝑓
+ ∆𝑁𝑓 (�̇�

𝑓
, 𝑞

𝑓
) + 𝐽𝑓

𝑇∆𝐹𝑒) − 

𝐾𝑁𝑓_𝑝𝜏𝑁_𝑓 − 𝐾𝑁𝑓_𝑖 ∫ 𝜏𝑁_𝑓 𝑑𝑡                       (31) 

By applying the same strategy as before, the NNC here is 

minimizing the uncertainties in (31). It is done by taking the 

desired trajectory as the input signal and the output of a 
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stabilizing feedback controller 𝛷𝑓as a training signal for the 

neural network 

𝛷𝑓 = �̈�𝑝_𝑓 + 𝐾𝑣_𝑓�̇�𝑝_𝑓 + 𝐾𝑝_𝑓𝑒𝑝_𝑓 + 𝐾𝑖_𝑓 ∫  𝑒𝑝_𝑓 𝑑𝑡              (32) 

In the ideal case, the right-hand side of (31) becomes zero, 

and the output of the NNC is required to be 

𝐾𝑁𝑓_𝑝𝜏𝑁_𝑓 + 𝐾𝑁𝑓_𝑖 ∫ 𝜏𝑁_𝑓 𝑑𝑡 = 𝑀𝑓
−1

(∆𝑀𝑓�̈�
𝑓

+ 

+∆𝐶𝑓(𝑞𝑓 , �̇�𝑓)�̇�𝑓 + ∆𝑁𝑓(�̇�𝑓 , 𝑞𝑓) + 𝐽𝑓
𝑇∆𝐹𝑒)                       (33) 

By applying the same procedure in the follower controller, the 

NNC realizes a nonlinear mapping between 𝑞
𝑙
, �̇�

𝑙
, 𝑞𝑙  and 𝐹𝑒 to 

𝜏𝑁_𝑓. 

4.2.3 Online environment estimation 

In this paper, we use an online estimation technique based on 

the WRLS method to identify unknown damping and stiffness 

parameters of the environment model, which was described in 

equation (4). The technique considered tracks and identifies 

the location and dynamic characteristics of any constraints in 

a robot workspace.  

Let us define a regression vector 𝜑(𝑡) = [𝑋(𝑡), �̇�(𝑡)]
𝑇
, and a 

parameters vector 𝜃 = [𝐾, 𝐵]𝑇. The linear equation with real 

parameters (4) is written as: 

𝑓(𝑡) =  𝜑(𝑡)𝑇𝜃 + 𝑣(𝑡)                                                          (34)     

with  

𝜑(𝑡) = [
𝑋𝑓(𝑡), 𝑋𝑓(𝑡 − 1), … , 𝑋𝑓(𝑡 − 𝑘)

�̇�𝑓(𝑡), �̇�𝑓(𝑡 − 1), … , �̇�𝑓(𝑡 − 𝑘)
]

𝑇

    

𝜃(𝑡) = [
𝐾𝑒(0), 𝐾𝑒(1), … , 𝐾𝑒(𝑘)

𝐵𝑒(0), 𝐵𝑒(1), … , 𝐵𝑒(𝑘)
] 

where index 𝑘 denotes the number of measurements,   𝑣(𝑡)  is 

measurement noise at time t assumed to be sequence 

independent with zero mean and constant variance  

𝑣~𝑁(0, 𝑉𝑓), and the equation of error in parameters estimation 

can be expressed by 

𝐸(𝑡) = 𝑓(𝑡) − 𝜑(𝑡)𝑇�̂�(𝑡)                                                        (35) 

Considering the cost function is given in quadratic form 

𝑉(𝜃, 𝑡) =
1

2
∑[𝑓(𝑖) − 𝜑(𝑖)𝑇𝜃(𝑡)]

2
𝑡

𝑖=1

=
1

2
∑ 𝐸𝑇(𝑡)𝐸(𝑡)

𝑡

𝑖=1

       (36) 

The objective here is to obtain the optimal solution for the 

parameter minimizing the cost function so that it can be 

calculated by differentiating it as 

𝛿𝑉

𝛿�̂�
= 0                                                                                          (37) 

Therefore, the minimum is given by 

�̂� = [𝜑(𝑡)𝑇𝜑(𝑡)]
−1

𝜑(𝑡)𝑇 𝑓(𝑡)                                                  (38) 

Then, the following covariance matrix is defined as 

𝑃(𝑡) = [𝜑(𝑡)𝑇𝜑(𝑡)]−1                                                             (39) 

Using a Matrix Inversion Lemma  

(𝐴 + 𝐵𝐶𝐷)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶−1 + 𝐷𝐴−1𝐵)−1𝐷𝐴−1          (40) 

where   

𝐴 = 𝑃−1(𝑡 − 1), 𝐵 = 𝜑(𝑡), 𝐶 = 𝐼, 𝐷 = 𝜑(𝑡)𝑇                    (41)  

By applying the details derivative method [Ljung, 1999], we 

get the recursive equations rather than the butch mode 

equations calculated in (38). 

�̂�(𝑡) = �̂�(𝑡 − 1) + 𝐿(𝑡) (𝑓(𝑡) − 𝜙𝑇(𝑡)�̂�(𝑡 − 1))                   (42) 

with   

𝐿(𝑡) = 𝑃(𝑡)𝜙(𝑡) =
𝑝(𝑡 − 1)𝜙(𝑡)

1 + 𝜙𝑇(𝑡)𝑝(𝑡 − 1)𝜙(𝑡)
                     (43) 

𝑝(𝑘) = 𝑝(𝑡 − 1)(𝐼 − 𝐿(𝑡)𝜙𝑇(𝑡))                                         (44) 

Furthermore, in order to discard older data in favor of recent 

data that permits to track the variation in parameters, the 

concept of forgetting factor is established, and the equations 

(36) and (42) can be rewritten as: 

𝑉(�̂�, 𝑡) =
1

2
∑ 𝜆𝑡−𝑖[𝑓(𝑖) − 𝜑𝑇(𝑖)�̂�(𝑡)]

2
𝑡

𝑖=1

                            (45) 

�̂�(𝑡) = �̂�(𝑡 − 1) + 𝐿(𝑡) (𝑓(𝑡) − 𝜙𝑇(𝑡)�̂�(𝑡 − 1))                   (46) 

where 𝜆 is called the forgetting factor, with : 

𝐿(𝑡) = 𝑃(𝑡)𝜙(𝑡) =
𝑝(𝑡 − 1)𝜙(𝑡)

𝜆 + 𝜙𝑇(𝑡)𝑝(𝑡 − 1)𝜙(𝑡)
                     (47) 

𝑝(𝑘) = 𝜆−1𝑝(𝑡 − 1)(𝐼 − 𝐿(𝑡)𝜙𝑇(𝑡))                                   (48) 

5. HUMAN IN THE LOOP EXPERIMENT 

To evaluate the efficiency of the proposed method, two 

dissimilar robots are considered in the sense that they are 

geometrically asymmetric with different scales. The leader is 

a real robot (Omni) whereas the follower is a virtual 

PUMA560 robot whose parameters are taken from a real 

PUMA560 arm [Armstrong et al., 1986], which is interacting 

virtually with an unknown environment. Both virtual models 

are illustrated in Fig.7 which are built using V-realm editor 

under Simulink/ Matlab environment. In this paper, we assume 

that only the first three links of Omni and PUMA560 are 

considered. The environment is composed of three objects 

suspended separately over three directions X, Y, and Z. 

Accordingly, the environment torque is exerted at the end 

effector only in one direction for each object. On the 

assumption of an unknown dynamic of environment objects 

that can be defined as  

Object (1): 𝐹𝑒 = 10�̇�𝑓 + 500(𝑥𝑓 − 0.60)                            (49)  

Object (2): 𝐹𝑒 = 900 (𝑦
𝑓

− 0.23)                                          (50)           

Object (3): 𝐹𝑒 = 20�̇�𝑓 + 2000 (𝑧𝑓 − (−0.284))                (51) 

In order to calculate an online estimation of their parameters 
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(Stiffness and damping), we apply a WRLS method with 

𝑃(0) = 10000, �̂�(0) = 0, and λ = 0.90. The 

matrices �̂�𝑙(𝑞𝑙),�̂�𝑙(𝑞
𝑙
, �̇�

𝑙
) and �̂�𝑙(𝑞

𝑙
) for the leader robot and 

𝑀𝑓 (𝑞
𝑓

), �̂�𝑓 (𝑞
𝑓
, �̇�

𝑓
), �̂�𝑓 (�̇�

𝑓
, 𝑞

𝑓
) for the follower, are the 

known dynamic parameters forming the nominal Models of 

the robots. 

 

Fig. 7.  Virtual scene of follower side. 

Modeling uncertainties include 5 Kg Mechanical tool attached 

to the end-effector of follower robot, Coulomb friction, and 

viscous friction torques 𝜏𝑓(�̇�) added to each joint where 𝜏𝑓 =

0.8�̇� + 0.5𝑠𝑖𝑔𝑛(�̇�). The NNC used on the leader side 

controller is composed of 12 neurons in the input layer and 9 

neurons in the hidden layer. The backpropagation algorithm 

parameters for the leader side are: 𝜂 = 0.008 , 𝜇 = 0, 𝐾𝑁𝑙_𝑝 =

5 × 𝐼, 𝐾𝑁𝑙_𝑖 = 0.07 × 𝐼. Whereas the NNC in the follower side 

kept the same number of neurons in each layer and the 

backpropagation algorithm parameters are: 𝜂 = 0.008, 𝜇 = 0, 

𝐾𝑁𝑓_𝑝 = 1.5 × 𝐼, 𝐾𝑁𝑓_𝑖 = 0.01 × 𝐼 . Initially, weights are 

randomly selected and then are adjusted every sampling time. 

The gains of human impedance and controller laws on each 

side are fixed experimentally and respectively as 

   𝐾ℎ = 160 × 𝐼,        𝐵ℎ = 5 × 𝐼  

     𝐾𝑝_𝑙 = 400 × 𝐼, 𝐾𝑣_𝑙 = 0.1 × 𝐼,     𝐾𝑖_𝑙 = 0 × 𝐼 

 𝐾𝑝_𝑓 = 800 × 𝐼,     𝐾
𝑣_𝑓

= 40 × 𝐼,    𝐾𝑖_𝑙 = 0 × 𝐼 

In the beginning, the robots are situated at different positions, 

depending on the last configuration setting. Then, the operator 

starts moving the virtual PUMA560 in free space by applying 

a variable force 𝐹ℎ on the haptic interface, until it reaches the 

object to interact with. At that time, the operator keeps the 

same level of force intensity or decides to increase or decrease 

the applied force and that by pushing the integrated buttons on 

the Omni link according to the task to be performed and the 

direction of the interaction. In our case, we considered an 

arbitrary force profile for each repeated experience. And lastly, 

the operator exits the object under interaction and returns to 

the free space. Moreover, we repeated the experiment under 

different conditions by taking advantage of NNC integrated 

into the controllers with the presence of perturbations on the 

follower robot and without perturbations (ideal case). 

The obtained results consider the interaction with Object (1) 

and they are classified into two sets. The first set illustrated in 

Fig. 8 considers the ideal case. It presents the tracking 

trajectory among three axes (a), the performance of applied 

force during the direction of interaction (b), the trajectory 

errors that occurred during the interaction and among X,Y,Z 

directions (c), the force errors during interaction (d), and 

finally, the quality of estimated impedance of the unknown 

environment (e). Whereas, the second set illustrated in Fig. 9 

takes into consideration the presence of perturbations, which 

are organized in three Subsets (A), (B), and (C), and that to 

show clearly the effects of integrated NNC separately and 

jointly in leader and follower controllers.  

The results show that the proposed adaptive controller under 

ideal conditions has less errors than the others either for 

trajectory tracking or compared force applied Fig. 8 (c), (d). 

Thus, the responses converge to a small neighborhood of zero, 

even though a presence of applied force delay. These errors 

occur when a human develops higher or lower force intensity 

Fig. 8 (b) and, consequently, they are reflected as errors in 

tracking trajectory that does not exceed 0.01m.  

In terms of interpreting results of tracking trajectory, Fig. 8(a) 

shows that the Omni and modified trajectories are completely 

identical in free space, which is not the case for the constrained 

space. This difference is due to the role of the admittance 

model and matrix selector in giving priority to the force 

applied to the Omni than to the tracking of its trajectory. 

Therefore, it determines the depth of penetration that should 

be taken into the object. However, we can point out here that 

they are very close and the errors are still within the limits as 

illustrated in Fig. 8(c). Moreover, in Fig. 8(e), results indicate 

the quality of estimated impedance against real impedance in 

both free and constrained space, under the assumption of 

unknown characteristics of the object. 

Considering the case where the perturbations are included, Fig. 

9(A) shows the feasibility of integrating NNC on both sides to 

improve the performance of the PID controller and therefore 

obtain results much closer to the ideal case. 

To highlight the potential usefulness of this concept and to 

conclude the effect of their absence, we have separately 

integrated into the controllers of the leader and follower sides 

and drawn results as given in Fig. 9(B) and (C). In subset (B), 

the responses show the efficiency of integrated NNC in 

compensating the tracking errors between the leader and 

follower trajectories when interacting with an object (a). On 

the other hand, the negative effect of its absence in the follower 

side causes failure in replicating the human force on the object 

and permanent error on it (b). Whereas in the subset (C), which 

represents the opposite case, it shows the efficiency of 

integrated NNC in follower controller to gain accuracy in 

replicating human force on the object as illustrated in (b). On 

the other hand, the negative effect of its absence in the leader 

controller generates a significant shift between trajectories of 

both sides, especially when interacting with the object (a), (c).  

6. CONCLUSIONS 

In this paper, a novel approach of adaptive admittance control 

laws combined with inverse dynamic strategy is designed for 

asymmetric nonlinear teleoperated arm robots, subject to 

dynamic uncertainties and interacting with an unknown 

environment. The proposed scheme is incorporated into the 

three-channel teleoperation control framework and uses only 

position control laws.  
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Fig. 8. Results without perturbations. (a) : tracking trajectory among X,Y,Z directions (b) : performance of applied force 

among X direction (c) : trajectory errors during the phase of the interaction and among X,Y,Z directions (d) : force errors 

during interaction (e) : reel against estimated impedance of unknown environment. 
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Fig. 9. Results with perturbations: subset (A): implemented NNC in both leader and follower controllers 

subset (B): implemented NNC in leader controller subset (C): implemented NNC in follower controller 
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The follower robot controller is based on an admittance control 

strategy that permits the generation of a modified position in 

the constraint direction, and therefore, it overcomes the 

absence of the force control law. In order to interact with an 

unknown environment, the desired admittance model is 

obtained by online estimation of environment impedance 

parameters based on the WRLS method. Additionally, the 

NNCs are developed and added as auxiliary controllers to the 

leader and follower dynamic controllers that act as 

compensators of uncertainties effects on position and force 

tracking, raised by errors in modeling and effects of the end-

effector payload. To verify the effectiveness of our proposed 

approach, a comparison of human-in-the-loop experiments 

interacting with a real Omni haptic interface and virtual remote 

robot and environment have been performed. The results 

illustrate that the whole system is stable. Moreover, position 

tracking errors are guaranteed to be ideally small in both free 

motion and situations when force contact is established, so 

satisfactory performance of position tracking and forces 

applied between the leader and follower robots.  

For future works, we propose to test and validate our proposed 

approach by using a real remote robot, as well as developing 

other advanced control approaches to compare performances. 
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