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Abstract: In this study, a chattering suppression single phase variable structure controller (CSSPVSC) is 

proposed for mismatched uncertain interconnected systems via a Moore-Penrose Inverse approach. Key 

achievements of this paper include: 1) a global stability of the subsystems is guaranteed by dismissing the 

reaching phase in conventional variable structure control (CVSC) and a chattering phenomenon in 

control input is effectively reduced by using tanh function; 2) an external perturbation is extended to the 

polynomial function of the state variables. Firstly, a reduce-order observer (ROO) is designed to estimate 

the unmeasurable state variables of the subsystems. Secondly, a ROO-based CSSPVSC is synthesized to 

force trajectories of each subsystem to a switching surface from an instance time. Next, an asymptotic 

stability condition of the whole system is ensured by employing the Lyapunov function together with the 

linear matrix inequality (LMI) theory. Finally, simulation results based on the MATLAB software are 

showed to demonstrate the proposed method effectiveness. 
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chattering removal, single phase, extended disturbance. 

 

1. INTRODUCTION 

Variable structure control (VSC) with sliding mode, also 

called sliding mode control (SMC), is a well-known solution 

for handling linear systems with uncertain dynamics and 

external disturbances. Thanks are due to some distinguished 

features of the VSC such as finite-time convergence, fast 

dynamic response, good robustness, exogenous perturbations 

rejection ability, and its insensitivity to parameter variations. 

Numerous practical applications of VSC can be found in the 

fields such as electrical drives, electrical power systems, 

spacecraft, mobile robots, helicopters, etc. (Huynh et al., 

2018; Salem et al., 2020; Soltanpour et al., 2020). Although 

the VSC in sliding mode has the significant achievements, in 

general, there are still two tasks that should be solved for 

SMC design. These involve: 

1) Chattering phenomenon elimination: a new SMC design 

not only guarantees the system’s global stability but also 

alleviates the high frequency oscillation in control signal. 

2) Unknown exogenous perturbations: In this study, the 

external perturbations are extended with a more general 

function which comprises the polynomial function of the 

state variables. In the previous publications (Chung and 

Chang, 2011; Gao et al., 2019; Ghasemi et al., 2009; Shyu et 

al., 2000; Xue et al., 2015), the disturbances must be bounded 

by a known function of the outputs or a function of state 

variables. 

For the above first task which should remove the influence of 

chattering in the VSC systems, there are lots of the published 

researches which applied the various methods to reduce or 

eliminate chattering. First, the chattering is reduced by using 

sign function added the control signal. In particular, a static 

output feedback variable structure controller based on the 

Razumikhin–Lyapunov approach was designed in (Yan et al., 

2012) for a class of interconnected time-varying delay 

systems. In (Zheng and Yang, 2013), a decentralized sliding 

mode quantized controller based on the available states 

assumption was proposed for a class of uncertain nonlinear 

large-scale systems with dead zone nonlinearity in actuator 

devices. In (Gao et al., 2019), an integral sliding mode 

controller based on reduced-order observer (ROO) was 

investigated for a class of interconnected descriptor systems. 

However, these studies (Gao et al., 2019; Yan et al., 2012; 

Zheng and Yang, 2013) did not consider the mismatched 

uncertainty of subsystems and mismatched interconnections, 

and external disturbances. Another way to remove the 

chattering phenomenon is to replace a sign function by 

saturation function. Based on the approximation capability of 

multiplayer neural networks, a decentralized direct adaptive 

sliding mode controller was synthesized in (T. P. Zhang and 

Mei, 2006) for a class of large-scale systems with unknown 

function control gains and the high-order interconnections. In 

(Cheng and Chang, 2008), a decentralized adaptive sliding 

mode controller was developed for a class of multi-input and 

multi-output (MIMO) mismatched uncertain large-scale 

systems via the Lyapunov stability theory. An appropriate 

Lyapunov-Krasovskii functional-based adaptive variable 

structure neural controller was established for class of 

uncertain MIMO nonlinear systems with state time-varying 

delays and unknown nonlinear dead-zones (T. P. Zhang et al., 

2009). By designing the multiple-sliding surface, the robust 
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controller was developed in (Chung and Chang, 2011) for a 

class of decentralized multi-input large-scale systems. 

Nevertheless, the state variables of the plant in the works 

(Cheng and Chang, 2008; Chung and Chang, 2011; T. P. 

Zhang and Mei, 2006; T. P. Zhang et al., 2009) are assumed 

to be available. This is impossible in practice control system 

due to high sensor device costs or measurable inability. To 

solve this drawback, only output variables must be utilized in 

the controller design. For example, in (Koo et al., 2014), an 

asymptotic stabilization problem of a class of nonlinear large-

scale systems was investigated by using decentralized output 

feedback fuzzy controller. In (Li and Zhang, 2019), an 

integral sliding mode controller was designed for Takagi-

Sugeno fuzzy interconnected descriptor system under 

Lipschitz constraint. But the restrictions of these studies (Koo 

et al., 2014; Li and Zhang, 2019) are computation burden and 

structure complexity due to the full-order observer (FOO) 

with large dimension. This full-dimension model is not 

indispensable to execute. Next, the boundary layer design 

technique is one of the most common methods instead of a 

sign or saturation function. For instance, a continuous 

approximation of discontinuous control in the boundary layer 

is introduced in (Boiko, 2011) for a small linear system by 

the describing function, Popov, and the Poincare methods. 

Conversely, the boundary layer design has two main 

weaknesses which include the sacrifice of control accuracy 

and ineffective disturbance rejection ability. Another 

technique to hide discontinuity of control in its higher 

derivatives was implemented utilizing high-order sliding 

mode control (HOSMC) or second-order sliding mode 

control (SOSMC). For instance, an adaptive integral HOSMC 

was proposed in (Mondal and Mahanta, 2013) for small 

systems without external disturbances. In (Huynh et al., 

2018), an adaptive SOSMC was explored for a class of 

complex interconnected systems. However, the norm of state 

variables in this study are bounded by positive scalar. In 

addition, major challenges of the HOSMC and SOSMC 

techniques include sensitivity to the unmodeled fast dynamics 

and inability to weaken chattering completely. Thus, it is 

essential for control systems to develop a novel ROO-based 

output feedback controller reducing the undesired chattering 

phenomenon. 

For the above second task which will solve unknown external 

disturbances, this issue has been examined by recent 

researches (Ghasemi et al., 2009; Shi et al., 2018; Xue et al., 

2015). In (Ghasemi et al., 2009), a decentralized adaptive 

controller was proposed to remove the chattering for a class 

of large-scale nonaffine nonlinear systems by using the tanh 

function. Based on this technique, an extended state observer-

based a chattering free sliding mode control signal was 

established in (Shi et al., 2018) for a class of small systems. 

Nonetheless, the external perturbations in these publications 

(Ghasemi et al., 2009; Shi et al., 2018) are assumed to be 

positive constants. In (Xue et al., 2015), a decentralized 

adaptive integral sliding mode control law was synthesized 

by employing Barbalat’s lemma for eliminating for nonlinear 

uncertain large-scale systems subject to known disturbances. 

Most recently, a decentralized controller based on FOO was 

investigated in (Ranjbar et al., 2020) for linear interconnected 

systems with unknown interconnections. However, this study 

has several restrictions which did not consider the 

mismatched uncertainty of subsystems, mismatched 

interconnection, and exogenous perturbations. Moreover, 

Authors in the above publications have used the CVSC 

technique which only yields the desired motion after sliding 

mode has happened. The system is invariant to the exogenous 

perturbations and uncertainties during the reaching phase and 

its performance is unknown in the reaching phase. For this 

reason, the whole stability and the robustness of the system 

may not be guaranteed or seriously pervert (Mantz et al., 

2001). Consequently, it should be pointed out that the 

development of a novel variable structure control is necessary 

and urgent. 

Inspired by the above observations, to the best of our 

knowledge, little devotion has been paid to getting the 

unwanted chattering removal and the system’s global stability 

problems for complex interconnected systems, which is still 

open in the literature. In this work, we attempt to address a 

ROO-based CSSPVSC for the mismatched uncertain 

interconnected systems with extended perturbations. Firstly, a 

switching function is designed to remove the reaching phase 

in CVSC. The system’s global stability is ensured and the 

system’s desired dynamic behaviour is achieved from the 

beginning of its motion. Secondly, a new ROO is suggested 

to estimate the unmeasurable variables of the subsystems. 

Next, a novel CSSPVSC is constructed to dismiss the 

undesired high frequency fluctuation in control signal. 

Furthermore, the reduce order system in sliding mode is 

asymptotically stable under certain conditions by using well-

known LMI method. Finally, by numerical example, the 

validity of the proposed ideas, techniques, and procedures are 

shown. 

The structure of this study is planned as follows. The 

subsystem’s description of a regular form and preliminaries 

are described in Section 2. Main achievements of this work 

are derived in Section 3, which contains a new ROO 

establishment, an asymptotical stability of the system, and a 

chattering reduction single phase VSC law. The proposed 

effectiveness is demonstrated by the simulation results in 

Section 4. Finally, some concluding remarks on the 

developed control strategy are outlined in Section 5. 

2. PROBLEM PRELIMINARIES AND DESCRIPTION  

OF A REGULAR FORM 

In this paper, we consider a general description of 

mismatched uncertain interconnected systems, which are 

compose of L -linked subsystems with extended 

perturbations. The mathematics model of each subsystem is 

described by following equations: 

1

( ) ( ) ( ) ( ) ( ,  )

          ( ) ( ),

( ) ( ),  1,2,...,

i ii ii i i i i i

L

ij ij j
j
j i

i i i

x t A A t x t B u t f x t

K K t x t

y t C x t i L,




          

     

 

                 (1) 
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where ,  ,i in m

i ix R u R   and ip

iy R  with i i im p n   are 

the state variables, the control input vectors, and output 

signals of the thi subsystem, respectively. The triples 

( ,  ,  )ii i iA B C  are constant matrices of appropriate dimensions. 

The matrix i jn p

ijK R


  corresponds to the interconnection of 

subsystems i  and .j  The matrices ( )iiA t  and ( )ijK t  show 

mismatched parameter uncertainties in the state matrix and 

mismatched uncertain interconnections with 

rank[ : : ] rank( ) .i ii ij i iB A K B m     The term ( ,  )i if x t  is 

the disturbance input. 

The following four assumptions are made for each 

subsystem. 

Assumption 1.  The pair ( ,  )i iA B  is completely controllable 

and the pair ( ,  )i iC A  is completely observable.    

Assumption 2. The matrices iB  and iC  have full rank and 

rank( ) .i i iC B m   

Assumption 3. The mismatched uncertainties in state matrix 

of each isolated subsystem and in interconnection elements 

are supposed to satisfy ( ) ( , )ii ii ii i iiA t D x t E   and   

( ) ( , ) ,ij ij ij i ijK t G Σ x t H   where ,  ,  ,  ii ii ij ijD E G H  are any 

nonzero matrices of appropriate dimensions, and 

( , ),  ( , )ii i ij iΣ x t Σ x t  are unknown but respectively bounded as 

( , ) 1,  ( , ) 1ii i ij iΣ x t Σ x t   for all ( , ) .in

ix t R R   

Assumption 4. The exogenous disturbance ( , )i if x t  is 

bounded by the polynomial of ix  with strictly positive 

coefficients:  

0

( ,  ) ( ) ( ) ,
r

k

i i i k i
k

f x t x


                                                  (2) 

where ( ) ,  0,  1,  2,...,  i k k r   are unknown positive 

constants. The positive integer r  is determined by the 

designer in accordance with the knowledge about the order of 

the disturbances. For example, if the disturbances contain a 

term such as 
2 ,ix  then one may choose 2.r         

For purpose of using single phase sliding mode technique, a 

switching function, ( ( ), ) ,im

i is y t t R  is designed as follows     

( ( ), ) ( , ) ( ,0)exp( ),  1,  2,...,  ,i i i i i i is y t t s y t s y t i L         (3) 

where ( , )i i i i i i i i is y t T x FC x F y    with i im n

iT R


  and 

.i im p

iF R


  The matrix iF  should be properly chosen by the 

designer. 

Remark 2.1. Standard assumptions 1-3 have been used in 

most existing publications (Huynh et al., 2018; Nguyen and 

Tsai, 2017). In assumption 2, rank( )i i iC B m  is a constraint 

of the triples ( ,  ,  ).ii i iA B C  This assumption ensures the 

existence of the output switching surface. In Assumption 4, 

an external disturbance is extended to the polynomial 

function of the state variables. That is, we consider a more 

general disturbance function than the perturbation function of 

the previous studies (Gao et al., 2019; Huynh et al., 2018; 

Xue et al., 2015).  

Remark 2.2. The switching function (3) is extended to the 

concept of the variable structure control without reaching 

phase investigated in (Al-khazraji et al., 2011). In other 

words, the plant’s trajectories always start from the switching 

surface and the desired dynamics response of the entire 

system always procure from the initial instance time. Thus, 

this will make the system more robust against disturbance 

than the CVSC. 

Remark 2.3. The matrix iT  should fulfil all three properties 

mentioned in (Choi, 2007).  

Now, to get a regular form of the subsystems, we use the 

Moore-Penrose inverse approach of the work (Choi, 2007). 

Assume that there exist symmetric matrices ,  i iX Y  gratifying 

two constraints following LMIs:   

 

0,  

 0,

T

i i i i i i

T T

i i i i i i i i i i

Γ X Γ BY B

B A Γ X Γ Γ Y Γ A B 

 

 
                                   (4) 

where i  and j  are n n  symmetric matrices such that: 

 if  0,

 otherwise,

T

i i ii

i g

i ii ii

I B D

I E E


 
 



 if  0,

 otherwise,

T

j i ij

j g

j ij ij

I B G

I H H


 
 



(5) 

where 
g

iiE  and g

ijH  are the Moore-Penrose inverse of the 

matrix iiE  and ,ijH  respectively, and iB
 is an orthogonal 

complement of the matrix .iB  

Remark 2.4. The terms 0T

i iiB D   and 0,T

i ijB G   that is, 

the uncertainties of systems and the interconnection 

are matched. Otherwise, the terms 0T

i iiB D   and 

0,T

i ijB G   that is, the uncertainties of systems and the 

interconnection are mismatched. 

Now, we factorise iT  in the form 
1,T

i i i iT R B Q  where iR  is 

a non-singular matrix, ,T

i i i i i i iQ X BY B    and consider a 

transformation matrix and its inverse as follows: 

=
 

T

i

i

i

B
M

T

 
 
  

 and    1  ,
-1 -1T

i i i i i i i i iM Q B B Q B B T B    
  

  (6) 

where 
( )

.i i in m nT

iB R
     

Let be the state transformation  

( )
( ),

( )

i

i i

i

t
M x t

s t

 
 

 
                                                                (7) 

where ( )i t  and ( )is t  are the new state variables.   
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By combining the equations (1), (6), and (7), we can obtain 

the regular form below        

 

   

11 11 12 12

11 11 12 12
1

21 21 22 22

21

( ) ( ) ( )

     ( ) ( ) ,

( ) ( ) ( )

    ( ) ( , )

     

i ii ii i ii ii i

L

ij ij j ij ij j
j
j i

i ii ii i ii ii i

i i i i i i i

ij

t A A t A A s t

K K t K K s t

s t A A t A A s t

T B u t T B f x t

K K




             

             

            

 

   21 22 22
1

( ) ( ) ,
L

ij j ij ij j
j
j i

t K K s t



          

      (8) 

where  

 

 

 

 

1

11 11

1

12 12

1
1

21 21

11

22 22

,

,

,

,

T T

ii ii i ii ii ii ii i i i i i

T

ii ii i ii ii ii ii i i i

T T

ii ii i i i ii ii ii ii i i i i i

T

ii ii i i i ii ii ii ii i i i

i

Q A D Σ E Q B B Q B

A A B A D Σ E Q B B Q B

A A B A D Σ E B T B

A A R B

A A R B Q A D Σ E B T B

K


   




   



     

     

     

     

 

 

 

 

1

11 11

1

12 12

1

21 21

1

22 22

,

,

,

,

,  and  

T T

j ij i ij ij ij ij i i i i i

T

ij ij i ij ij ij ij i i i

T

ij ij i ij ij ij ij i i i i i

ij ij i ij ij ij ij i i i

T

i i i i

K B K G Σ H Q B B Q B

K K B K G Σ H B T B

K K T K G Σ H Q B B Q B

K K T K G Σ H B T B

B x s


   




  





     

     

     

     

   .i i i iF y T x

 (9) 

From the results of the paper (Choi, 2007), we have 

 

 

 

 

1

11

1

11

1
1

21

1

21

( , ) 0,

( , ) 0,

( , ) 0,

( , ) 0.

T T

ii i ii ii i ii i i i i i

T T

ij i ij ij i ij i i i i i

T T

ii i i i ii ii i ii i i i i i

T

ij i ij ij i ij i i i i i

A B D Σ x t E Q B B Q B

K B G Σ x t H Q B B Q B

A R B Q D Σ x t E Q B B Q B

K T G Σ x t H Q B B Q B


   


   


   


  

  

 

    

    


 (10) 

By substituting (10) into (8), we can achieve a new regular 

form as below 

 

 

11 12 12

11 12 12
1,

21 22 22

21 22 22
1,

( ) ( ) ( ) ( )

         ( ) ( ) ( ) ,

( )

  ( , ) .

i ii i ii ii i

L

ij j ij ij j
j j i

i ii i ii ii i i i i

L

i i ij j ij ij j
j j i

t A t A A t s t

K t K K t s t

s t A A A s T B u

      f x t K K K s

 

 

       

       

        

           

         (11) 

To elucidate the proof of the main results, a ROO that helps 

the controller design is first established in the following. 

3. MAIN RESULTS 

3.1 A novel reduced-order observer for uncertain 

interconnected systems 

In this section, to estimate the unmeasurable states for the 

uncertain interconnected systems (1), we will establish a 

novel ROO. First, the new observer (12) with lower 

dimension is proposed to estimate the unmeasurable states: 

11 12
ˆ ˆ( ) ( ) ( ).i ii i ii it A t A s t             (12) 

The block diagram of ith subsystem being structured by ROO 

(12) is showed in Figure 1. Now, we introduce an observer 

error of the thi subsystem as ˆ .i i i     By combining the 

first equation (11) and equation (12), we can achieve 

11 12 11
1,

11 12 12
1,

( ) ( ) ( ) ( ) ( )

ˆ           ( ) ( ) ( ) ( ) ( ) .

L

i ii i ii i ji i
j j i

L

ji i ji i ji i
j j i

t A t A t s t K t

K t K t s t K t s t

 

 

        

    
 


 (13) 

Based on the equations (9) and (10), (13) becomes 

 

 

1

11

11 11 12
1, 1,

1

1,

( ) ( ) ( , ) ( )

ˆ             ( )

                  ( , ) ( ) .

T

i ii i i ii ii i ii i i i i

L L

ji i ji i ji i
j j i j j i

L
T

j ji ji j ji j j j i
j j i

t A t B D Σ x t E B T B s t

K K K s t

B G Σ x t H B T B s t



   




 

   

          

  
  

(14) 

 

 

Fig. 1. The block diagram of the plant with ROO (12). 

Remark 3.1. With the transformation matrix iM , the 

uncertain interconnected systems (1) is transformed into the 

regular form (11). Then, based on the regular form of the 

plant and the idea of the standard Luenberger observer design 

in (Luenberger, 1971), a new ROO (12) is designed to 

estimate the state variables of the original systems (1). It is 

worth mentioning that compared with the FOO (Koo et al., 

2014), the ROO (12) with an ( )i in m - dimensional 

dynamics will ensure that the conservatism is decreased and 

the robustness is enhanced. In addition, the observer error 

dynamics asymptotically approaches to zero in sliding mode. 

That is, the invariance property is guaranteed with this ROO.  

Remark 3.2. From the obtained results in (Nguyen and Tsai, 

2017), the matrix 11iiA  is stable. Thus, the observer (12) and 

its estimate error dynamics (14) are asymptotically 

convergent to zero in the sliding mode. 

With goal of the controller design, we now propose a new 

proposition for determining the upper bound of observer 

error. 

Proposition 3.1. The norm of the estimated error ( )i t  is 

bounded for all time by the solution i  of  
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 
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1,
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         + ( )

ˆ            ( ) ,  (0) (0) ,

T

i i i i i ii ii i i i

L
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j ji ji j j j ji i
j j i

L
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j j i

t B D E B T B

B G H B T B K s t

K t










 

 

    

   


     



   (15) 

where max 11
1,

0,
i

L

i i ji
j j i

K
 

      maxi
  be the maximum 

eigenvalue of the stable matrix 11 iiA  and 0.i   

The proof of Proposition 3.1 can be found in Appendix A. 

Now, we are in position to derive sufficient conditions 

by LMI such that the mismatched uncertain interconnected 

systems (1) is asymptotically stable in the sliding mode 

3.2 Asymptotically stable condition by LMI 

In this section, the stability analysis in sliding mode will be 

proved by applying the Lyapunov theory and the well-known 

LMI technique. Let us begin with considering the following 

LMI: 

1

                         

           0             0

0,
             0             0

( 1)
            0           0      

T

i i ii ii i

T

ii i i i

ii i i

i
i

D E

D I

E I

L

 








 
 

 
  

 
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 
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                          (16) 

where  1

11 11 11 11
1,

(
L

T T T

i ii i i ii j ji ji i i ji ji i
j j i

A A K K G G    

 

      

 ),T

i ji jiH H   ,T

ii i iiD B D  
1( ) ,T

ii ii i i i i iE E Q B B Q B     

,T

ji j jiG B G  
1( )T

ji ji j j j j jH H Q B B Q B     are non-zero 

matrices, 
( ) ( )i i i in m n m

i R   
  is any positive matrix, ,i  ,i  

and j  are positive constants. Then, we will consider the 

following proposition. 

Proposition 3.2. The solution of the first state-equation (8) is 

asymptotically stable in the sliding mode regime obtained 

with the switching function (3) if the LMI (16) has a feasible 

solution i  for some positive constants ,i  i  and .j   

The proof of Proposition 3.2 can be found in Appendix B. 

Remark 3.3. The sufficient condition of the asymptotic 

stability in the LMI format (16) is easily solved via the LMI 

toolbox of MATLAB (Gahinet et al., 1994). This technique 

reduces the computation burden and the design complexity.   

Remark 3.4. Compared to recent LMI approaches (Koo et 

al., 2014; Li and Zhang, 2019; Xue et al., 2015), the present 

LMI method indicates less number of matrix variables in 

LMI (16) and easily determines a feasible solution. 

To continue the evaluation of new controller’s efficacy, we 

will propose novel controllers by using Barbalat’s lemma and 

tanh function in the following section. 

3.3 Chattering suppression single phase VSC law design 

In this section, we are going to determine the chattering free 

single phase sliding mode control laws such that the state 

trajectories of each subsystem will be driven to the switching 

surface (3) from the instance time and the chattering 

phenomenon in control input will be settled completely. The 

controllers will be designed based on the ROO (12).  

First, assume the control law (17): 

     
 

  

1 1

1 1

2 3 4
1, 1,

ˆ( ) ( ) ( )

ˆ             ( ) ( )

                (0) exp( ) ,

i i i i i i i i i i

L L

i i i i i i i
j j i j j i

i
i i i i i i i

i

u t T B s T B t t

t t s s

s
T B f F y t

s

 

  

 

 

   

    

     

  

  (17) 

where 1 1

2
0

ˆ[( ) ( ( ) ( )) ( )
i

r
T

i k i i i i i i i i i i
k

Q Bf Q B B B T B    



       

) ],k

i iF y  ,  i i   are positive constants, the upper bound 

of the observer error ( )i t  is solution of (15), and 

1 2 3 4,  , , i i i i     are control gains specified later. 

Proposition 3.3. Suppose that the LMI (16) has a solution 

0.i   Consider the mismatched uncertain interconnected 

systems (1) subject to Assumptions 1-3. If the switching 

surface (3), the ROO (12), the CSSPVSC (17) are employed, 

and the observer error dynamics (14) satisfies Proposition 

3.1, then the states of the system (1) will asymptotically 

converge to zero from the instance time under the proposed 

controller (17) and its control gains satisfy the following 

conditions 

1 1

1 21

1

2 21

1

3 22

1 1

4 22

( ) ,

( ) ,

( ) ,

( ) .

i

i

i

i

T T

ii i i i ii ii i i i i i

T

ji j ji ji j j j j j

ji j ji ji j j j

T

ii i i i ii ii i i i

A R B Q D E Q B B Q B

K T G H Q B B Q B

K T G H B T B

A R B Q D E B T B


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



    

   



 

 

 

 

 

            (18) 

The detailed proof of Proposition 3.3 is found in Appendix C. 

Remark 3.5. Unlike existing related researches (Chung and 

Chang, 2011; Koo et al., 2014; Ranjbar et al., 2020), the 

single phase variable structure control strategy (17) that 

eliminates the reaching phase is proposed by using the ROO 

tool (12) and output information only. With this controller, 

the state trajectories of the subsystems will hit the switching 

surface (3) from the instance time 0t   and the mismatched 

uncertain interconnected systems (1) is asymptotically stable 

in sliding mode. From the controller (17), we can see that the 

unit vector ( )i is s  will induce the unwanted chattering in 

sliding mode.  

In order to solve this problem, we will propose a new 

continuous time controller in the following proposition.  

Proposition 3.4. By using the control law (19), the chattering 

in the control signals of interconnected systems (1) subjected 
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to assumptions 1-3 will attenuate until they will vanish and 

the state will hit the switching surface from the zero reaching 

time, if the switching function is chosen as (3) and the control 

signal is proposed as follows: 

  1

2 1 2
1,

ˆ( ) ( ) ( )

ˆ                 ( ) ( ) ( ) ,
ˆ i

L

i i i i i i i
j j i

i

i i i i i t

i i
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t t s t
e



 




 



 
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        

          

(19) 

where    
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     ˆ,  ,  i i i    are 

positive constants, ˆ
i  is the state of observer (12),  ( )i t  is 

the upper bound of the observer error answered of (15), and   
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(20) 

The proof of Proposition 3.4 can be found in Appendix D. 

Remark 3.6. From the above Proposition 3.4, it is undoubted 

that the proposed CSSPVSC (19) that utilizes the well-known 

Babalat lemma can mitigate the chattering phenomenon 

effectively for the mismatched uncertain interconnected 

systems with extended perturbations (1). However, using this 

technique, the state trajectories of the subsystems remains on 

the switching surface without to guarantee a finite-time 

convergence. This also is a limitation of this method.  

Now, to solve this drawback, a new chattering free controller 

is proposed by using the tanh function as follows: 

     
 

    

1 1

3 1

2 3 4
1, 1,
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    (0) exp( ) tanh ,

i i i i i i i i i i

L L

i i i i i i i
j j i j j i

i i i i i i i i i

u t T B s T B t t

t t s s

T B f F y t s s
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  

 

 

   

    

     

  

(21) 

where 1 2 3 4,  ,  ,  i i i i     are control gains and defined in 

equation (18). The overall block diagrams of the proposed 

scheme that include the controlled system (1), ROO (12) are 

displayed in Figure 2 and 3 corresponding to the controllers 

(17) and (19), respectively. The design of the proposed 

control algorithm can be implemented as Figure 4. 

Remark 3.7. According to the above controller (21), it is 

obvious that the undesired high frequency chattering in the 

control signal is alleviated, which will be demonstrated by 

the later simulation study in this paper. Concurrently, this 

controller also guarantees that the state trajectories of each 

subsystem are driven into the switching surface from the zero 

reaching time. That is, the restriction of the Proposition 3.3 is 

elucidated. Therefore, the chattering suppression controller 

(21) is very useful and more feasible, since it can be 

implemented in the practical control systems such as 

electrical motors and power systems, spacecraft, aircrafts, 

and flexible space structures, etc. (Salem et al., 2020; 

Soltanpour et al., 2020).  

 

Fig. 2. Diagram of the ith subsystem when using controller 

(17). 

 

Fig. 3. Diagram of the ith subsystem when using controller 

(19). 
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Fig. 4. The flowchart of the proposed ROO-based CSSPVSC. 

4. ILLUSTRATIVE EXAMPLE 

In the above section, we have gotten the main achievements 

comprising the ROO-based chattering-free single phase 

variable structure controllers and the whole system’s stability 

in sliding mode. In this section, to emphasize the 

performance effectiveness of the proposed approaches, we 

develop a case study based on the example presented in (Lian 

and Zhao, 2009). Thus, we consider a system with 2,L   

whose subsystem 1i   has the Equation (22)

1 1( 3,  2),n m    

   

 
1 11 11 1 1 1 1 1

12 12 2 1 1 1

( ) ( ) ( ,  )

        ( ) ( ) ,,  

x A A t x B u t f x t

K K t x t y C x

    

   
                      (22)  

and subsystem 2i   the Equation (23) 2 2( 3,  2).n m   

   

 
2 22 22 2 2 2 2 2

21 21 1 2 2 2

( ) ( ) ( ,  )

       ( ) ( ) .,  

x A A t x B u t f x t

K K t x t y C x

   

  
                   (23) 

For the first subsystem, we have: 

 11 1 1

-1    1      0
1    1   -1

 0    1     -1 ,    0    1   0.5 ,   ,
0    0    1

-1    1   -0.75

T
A B C

 
  

     
   

 

12

-0.2   0  -0.1 

 0.1   0     0 ,

 0.2  0.1   0

K

 
 


 
  

 11

0

0 ,

1

D

 
 


 
  

  11 1 1 0 ,E   11 1( , )x t   

0.17sin(0.13 ),t  12 [0 1 0] ,  TG   12 [1 1 0],H   12 1( , )x t   

0.36sin(0.15 ),t  10 0.011,   11 0.017,  and 12 0.023.    

For the second subsystem, we have: 

 22 2 2

-0.1   1    0.2
1   1   0

  1     1    -1 ,    0    1   -0.5 ,  ,
0   0   1

0.5    1    0.1

T
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 
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21

-0.2   0  -0.1 

 0.1   0     0 ,

 0.2  0.1   0

K

 
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
 
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 22 22

0

0 ,  1 1 0 ,

1

D E

 
 

 
 
  

22 2( , )x t   

0.18sin(0.11 ),t  21 21[0 1 0] ,   [1 1 0],TG H   21 2( , )x t   

0.49sin(0.32 ),t 20 0.015,   21 0.021,  and 22 0.034.   

The block diagrams of the subsystems, including the 

proposed ROO and CSSPVSC, are given in Figure 5. 

 

Fig. 5. Block diagram of the subsystems. 

For this work, the initial conditions for two subsystems are 

selected to be  1 2(0) (0) [1.72;  -1.72;  0]Tx x   and the 

following parameters are given as follows: 1 2 0.015,    

1 2 0.012,    and 1 2
ˆ ˆ 0.001.    By using the 

MATLAB’s LMI Control Toolbox, the solutions of the LMIs 

constraints (4) embracing the symmetric matrices for two 

subsystems are solved as follows 

 1 1

 37.1298     -132.2244   15.2150

-132.2244   -300.4981   15.2879 ,  0.6238 ,

 15.2150      15.2879     1.3491

X Y

 
 

 
 
  

  (24) 

and 

 2 2

 197.7259   132.5157  -149.3973

 132.5157   69.4260    -149.5495 ,  0.3796 .

-149.3973  -149.5495   1.4154

X Y

 
 

 
 
  

(25) 

The switching functions for each subsystem are exposed as  

 

 
1 1 1

1

( ( ), ) 1.6031  -1.6031

                  1.6031  -1.6031 (0)exp(-0.015 ),

s y t t y

y t




            (26) 

and      

 

 
2 2 2

2

( ( ), ) 2.6344  -2.6344

                   2.6344  -2.6344 (0)exp(-0.015 ).

s y t t y

y t




         (27) 

Yes 

No 

Display the results 

Start 
Input the required data: 

Mismatched uncertain interconnected systems data 

Subsystems matrices Aii, Bi, Ci, etc. (equation 1) 
 

Solving the LMI (4) obtains the matrix 

solutions (𝑋i, 𝑌i) and computing the 

sliding matrix 𝐹i according to Ti=FiCi. 

Select parameters of sliding surface   

(equation 3) such as yi(0), i. 

 

Substituting matrix 𝐹i into equation (3) 
to find the sliding function si(yi(t),t). 

 

Design the reduced-order observer  

(equation 12) 

 

Is the LMI equation 

(16) feasible? 

Design the sliding mode controllers   

(equations 17, 19, 21) 

 

Run the subsystems of interconnected 

systems as Figures 6-10 

End 
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The observers (12) take the forms (28) and (29). 

1 1 1

-2.1419   -0.9460 -0.6515ˆ ˆ( ) ( ) ( ),
 0.2839   -0.1081 -0.0918

t t s t
   

      
   

            (28) 

and  

2 2 2

-0.7190   -0.0641 -0.0474ˆ ˆ( ) ( ) ( ),
 0.7856   -0.6810  0.6690

t t s t
   

      
   

          (29) 

where 1 1[1.6031  -1.6031]s y  and 2 2[2.6344  -2.6344] .s y                       

The estimator error dynamics of the subsystem I and the 

subsystem II are respectively written as  

1 1

1 1 1

0.208  0.216 0.001

0.029 -0.041 0.038

-2.350   -0.729 -0.0249
( ) ( ) sin(0.13t)
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 (30) 

and 

2 2

2 2 2
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( ) ( ) sin(0.11t)
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(31) 

Now, by solving LMI (16), it is easy to verify that conditions 

in Proposition 3.2 are satisfied with positive matrices 

1

0.1380   0.0079

0.0079   0.3879


 
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




 and 2

3.7788  1  .6431

1.6
.

431   0.9391


 
  
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 Then, 

the control signals of two subsystems that produce the 

chattering phenomenon 


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11 1 1 1 1

2

1 1 1

1
1

1
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(32) 

and 



 

  

12 2 2 2 2

2

2 2 2

2
2

2

ˆ( ) 0.1936 1.8209 ( ) 6.2933

ˆ             0.001 1.5811 ( ) +1.5812   

               0.0149   -0.0149 (0)exp(-0.0150 ) ,

u t s t y
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   
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 (33) 

where the upper bound of the observer error 1 2( ),  ( )t t   are 

the   solutions   of  -4

1 1 1( ) -0.2497 ( ) 7.2771 10 ( )t t s t      

and -4

2 2 2( ) -0.7000 ( ) 0.65857 10 ,t t s     respectively. 

To solve the chattering in the controllers (32) and (33), we 

have established the chattering free variable structure 

controllers for each subsystem as follows 

21 1 1 1

1

1 0.012

1

ˆ( )  0.3181 3.046 ( ) ( )

                 0.6238 ( ) ,
0.001 t

u t s t t

t
e



 

     
  

 


                     (34) 

22 2 2 2

2

2 0.012

2

ˆ( )  0.1936 1.8209 ( ) ( )

                    0.3796 ( ) ,
0.001 t

u t s t t

t
e



 

     
  

 


               (35) 

where 1 1 1 1 1
ˆ( ) 5.7431 0,016 0.0253( )t y         

2

1 1 1
ˆ0,016[1.5811( )+1.5812 ]y    0.0240   -0.0240

1(0)exp(-0.0150 )y t  and 2 2 27.2172 y    0,0263  

2 2
ˆ0.0416( ) 0,0263    2

2 2 2
ˆ[1.581( )+1.5812 ]y   

2[0.0395   -0.0395] (0)exp(-0.0150 ).y t  

The controllers without the chattering when using the tanh 

function for two subsystems are calculated as 

 

 

  

31 1 1 1 1

2

1 1 1

1
1

1

ˆ( ) 0.3181 3.0460 3.6062

ˆ   0.001 1.5811 +1.5812

     + 0.0149   -0.0149 (0)exp(-0.0150 ) tanh ,

u t s y

y

s
y t

s

     

   
  

 
 
 
 

(36) 

and 

 

 

  

32 2 2 2 2

2

2 2 2

2
2

2

ˆ( ) 0.1936 1.8209 6.2933

ˆ   0.001 1.5811 1.5812

    0.0149   -0.0149 (0)exp(-0.0150 ) tanh .

u t s y

y

s
y t

s

     

    
  

 
  

 
 

(37) 

The simulation results that show the effectiveness of the 

proposed controllers are displayed in Figures 6-10. 

 
Fig. 6. Trajectories response of the subsystem I (Fig. a1) and 

subsystem II (Fig. a2) corresponding to the controllers 11( )u t  

and 12 ( ),u t  trajectories response of the subsystem I (Fig. b1) 
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and subsystem II (Fig. b2) corresponding to the controllers 

21( )u t  and 22 ( ),u t  trajectories response of subsystem I (Fig. 

c1) and subsystem II (Fig. c2) corresponding to controllers 

31( )u t  and 32 ( ).u t  

 

Fig. 7. Time response of the switching functions for each 

subsystem conforming to the controllers. 

 

Fig. 8. Time response of the estimator error dynamics for the 

subsystem I (Fig. 9 a1, b1, c1) and subsystem II (Fig. 9 a2, b2, 

c2) corresponding to 11 21 31( ), ( ),  ( ) u t u t u t  and 12 ( ),u t  

22 ( ),u t 32 ( ).u t  

 

Fig. 9. The amplitude of the control signals 

11 21 31( ), ( ),  ( ) u t u t u t  and 12 ( ),u t  22 ( ),u t 32 ( )u t  corresponding to 

the subsystem I and subsystem II.  

 

Fig. 10. Time response of the estimator error upper bounds 

for the subsystem I (Fig. 11 a1, b1, c1) and subsystem II (Fig. 

11 a2, b2, c2) corresponding to 11 21 31( ), ( ),  ( ) u t u t u t  and 12 ( ),u t  

22 ( ),u t 32 ( ).u t  

Remark 4.1. The simulation results of the trajectories states 

for the subsystem I and subsystem II are shown in Fig. 7 (a1, 

b1, c1) and Fig. 7 (a2, b2, c2), respectively. One can see that 

the state responses of each subsystem asymptotically 

approach to zero and stay at it for the subsequent time. In 

details, Fig. 7 a1 and Fig. 7 a2 are results of the controlled 

systems by using 11( )u t  and 12 ( )u t  that occur the chattering 

phenomenon, respectively. To solve this undesired chattering, 

the two solutions containing the well-known Barbalat lemma 

with the controllers 21( ),u t  22 ( )u t  and the tanh function with 

the controllers 31( ),u t  32 ( )u t  are used in this paper. Fig. 7 b1 

and Fig. 7 b2 are the trajectories states of the subsystems 

when utilize the Barbalat lemma and the time response 

reaches to zero after about 10 seconds. Fig. 7 c1 and Fig. 7 c2 

are the trajectories states of each subsystem when use the 

tanh function and the response time drives to zero after about 

6.0 seconds. As a result, it is clearly that the controlled states 

that use the tanh function converge faster and these figures 

display the asymptotic stability of the subsystems despite the 

existence of external perturbations. In other words, by using 

the proposed controllers from (32) to (37), the trajectories of 

the subsystems reach the switching surface ( ( ), ) 0i is y t t   

from the instance time ( 0)t   where the recent researches 

(Gao et al., 2019; Huynh et al., 2018; Li and Zhang, 2019; 

Ranjbar et al., 2020) could not obtain the attainment.     

Remark 4.2. The time response for each subsystem that 

governed by the switching functions (26) and (27) are shown 

in Fig. 8. a1, b1, c1 (for subsystem I) and Fig. 8. a2, b2, c2 (for 

subsystem II), respectively. It is obvious that the sliding 

variables of each subsystem approaches zero from the 

beginning time ( 0)t   which is signified the elimination of 

the reaching phase in the CVSC. That is, the trajectories 

states of the subsystems always start from the switching 

surface and the desired response of the plant is ensured from 

the commencing of its motion. Therefore, the robustness and 

performance of the whole system have been enhanced. 

Compared with the previous works (Al-khazraji et al., 2011) 

which only applied to the small systems, this is one of the key 
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achievements of our study for the complex interconnected 

systems.      

Remark 4.3. Fig. 9 depicts the time behaviour of the ROO’s 

error convergence, ( )i t   ˆ ( ) ( ),i it t   between the actual 

and that of the estimated state for each subsystem. The 

response time of the observer error dynamics of the 

subsystems rapidly convergent to zero. In addition, the ROO 

error is bounded by the upper bound ( )i t  (15), whose 

dynamics response is exhibited in Fig. 11. It shows that the 

proposed ROO can be used to reconstruct the unmeasurable 

state variables of the systems (1) and the response time of the 

resultant closed-loop system is asymptotically driven to zero.  

Besides, the proposed ROO has been designed based on the 

conventional Luenberger observer (Luenberger, 1971). The 

parameters of the ROO have been selected to ensure the 

invariance property. Compared with the FOO in (Koo et al., 

2014; Li and Zhang, 2019), which increase the complexity of 

the design and computation load. Therefore, the novel ROO 

with the lower‐dimensional solution in this paper has been 

solved these drawbacks.  

Remark 4.4. The control signal responses of the subsystem I 

and subsystem II are exposed in Fig. 10.  Fig. 10 a1 and Fig. 

10 b1 respectively are the results of the controllers 11( )u t  (32) 

and 12 ( )u t  (33) that cause the unwanted chattering 

phenomenon. Fig. 10 b1, b2 and Fig. 10 c1, c2 are the 

responses of the chattering suppression controllers 21( )u t  (34)

, 22 ( )u t (35) and 31( )u t (36), 32 ( )u t (37) which respectively use 

the Barbalat lemma and the tanh function. It is obviously seen 

that the violent chattering effect is alleviated as well as the 

state trajectory of the subsystems approaches to zero. 

Comparing with Fig. 10 b1, b2, the magnitude of the control 

signal that displayed in Fig. 10 c1, c2 is quite small and the 

state trajectories of the subsystems is driven into the sliding 

surface in finite time. It is needed to tackle the external 

disturbances or the effects of the uncertainties and 

interconnections before the system enters the sliding mode. 

This technique gives better performance than the other 

approaches published in (Gao et al., 2019; Yang et al., 2015). 

Concurrently, the limitations of VSC approaches for linear 

systems with unknown interconnections in the latest paper 

(Ranjbar et al., 2020) have been removed.      

From above simulation results, we can conclude that the 

proposed technique is efficient for solving the undesired 

chattering phenomenon and stabilize the mismatched 

uncertain interconnected systems even at the existence of the 

extended disturbances. 

5. CONCLUSIONS 

In this paper, a chattering suppression single phase variable 

structure controller (CSSPVSC) has been proposed to 

stabilize and alleviate the undesired high frequency 

oscillation in control signal for mismatched uncertain 

interconnected systems with external disturbances. In the 

CSSPVSC, we have investigated the output feedback and 

estimated state variables only. Furthermore, in these systems, 

the exogenous perturbations which effect on the systems have 

been extended to the polynomial function of the state 

variables. By combining a Moore-Penrose Inverse approach 

and the tanh function, the restrictions in the recent 

publication (Ranjbar et al., 2020) have been removed. In 

addition, the sufficient condition in the LMI format 

employing the Lyapunov functional has been derived to 

guarantee the asymptotic stability of the closed-loop system. 

At last, the example is provided to demonstrate the 

effectiveness and merits of the proposed technique. Hence, 

the application of the presented approach to the practical 

control systems such as power converters, electrical drives, 

and mobile robots in continuous time domain could be the 

future goal.    
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NOMENCLATURE 

1A
 inverse of A  matrix 

TA

 

 transpose of A  matrix 

B
 

perpendicular complement of B  matrix  

gE  
Moore-Penrose inverse of E  matrix  

( ,  )f x t  disturbance input 

( ( ), )s y t t  sliding surface 

( )u t  control signal 

( )x t  states of the system 

( )x t  norm of the state vector ( )x t  

( )y t  output signal 

max  maximum eigenvalue 

  positive matrix 

 , ,  ,     positive constants  
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APPENDIXES 

Appendix A: Proof of Proposition 3.1 

The matrix 11iiA  of system (14) being stable, we have 

11 maxexp( ) exp( )
iii iA t t   for some constants .i  Then, 

after calculating the norms of both sides of (14), using the 

triangle inequality for the right side, and multiplying the 

resulting inequality with maxexp( )
i
t , follows: 
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max 110
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 (38) 

In order to determine the upper bound of estimation error, we 

recall the following lemma. 

Lemma 1. (Shyu et al., 2001) Assume 0,  ( ),  ( ),C r t h t   and  

( )g t   are non-negative valued continuous functions of time. 

If 
0 0

( ) ( ) ( ) ( ) ,
t t

t t
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Now, by applying the Lemma 1 above, we symbolize  
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We obtain 
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    (39) 

The above inequality (39) can be rewritten as 
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   ( ),i t   where ( )i t  satisfies (15). Thus, we can conclude 

that ( ) ( )i it t    for all time. The proof of Proposition 3.1 

is completed.                                                                            

Appendix B: Proof of Proposition 3.2  

The first equation (8) can be described in the sliding mode, 

( ) 0,is t   as follows:        
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Applying the Lemma 1 published in (J. Zhang and Xia, 2010) 

to equation (41), we get 
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where i  and j  are positive scalars. 

By utilizing Lemma 2 in (Huynh et al., 2018), the above 

equation can be rewritten as 
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where  i j    are positive scalars. 

Now, by applying the Schur complement (Boyd et al., 1994) 

to the LMI equation (16), we have  
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Combining the equations (43) and (44), it is easy to achieve 

that 0.BV   This inequality shows that if LMI (16) is 

feasible, then the interconnected systems (1) is 

asymptotically stable in the sliding mode.                               

Appendix C: Proof of Proposition 3.3 

Let us consider the Lyapunov function candidate 
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Because ˆ( ) ( ) ( )i i it t t      and ( ) ( )i it t    that 

shown in above Proposition 3.1. Based on the state 

transformation iM  in (7), we have 
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From the equations (46) and (9), the equation (45) can be 
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where if  is defined in the equation (17). 

By replacing the control signal (17) into (47), we find 0,CV                           

and consequently, the system (1) is lead to the switching 

surface from zero reaching time.                                             

Appendix D: Proof of Proposition 3.4 

The control signal is almost usually investigated by using 

Lyapunov function. Let us define the Lyapunov’s function as 
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Substituting the control signal (19) into the equation (49), we 

get  
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