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Abstract: In this paper, impact of the integration of plug-in-electric vehicle units in enhancing
the delay-dependent stability margin of a class of networked load frequency control systems is
investigated using the classical Lyapunov-Krasovskii functional approach. In networked control
systems, owing to the use of communication links, time-delays get introduced in the feedback
path. These communication network-induced delays invariably exert a negative influence on
system performance and stability. Furthermore, if the delay magnitude exceeds a critical margin,
called stable delay margin, the system loses stability. In recent times, electric vehicle aggregators
are integrated as a distributed generation source in the load frequency control systems for
enhancing the grid frequency compensation. In such systems, in addition to improved frequency
compensation, integration of electric vehicles also paves way in the enhancement of stable delay
margin. To study this impact of integration of electric vehicle aggregators on stable delay
margin, in this paper, two types of centralized load frequency control systems are considered.
Furthermore, time-delays in the centralized control loop and electric vehicle aggregator loop are
considered to be non-identical, and appropriate participation factors for effective load sharing
are incorporated in the system framework.
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1. INTRODUCTION

In recent times, plug-in-electric vehicles (PEVs) are inte-
grated into the load frequency control (LFC) scheme of
power system as a distributed generation source for en-
hancing its frequency compensation capability; see, Kemp-
ton (1997); Liu et. al. (2013); Masuta and Yokoyama
(2012); Green et. al. (2011); H Gunduz et.al. (2022);
A.Naveed et.al. (2022); M. A. Hernández-Pérez et.al.
(2018). In the event of main grid going down, the internal
battery of the electric vehicle (EV) is called for to supply
backup power as well as provide the much required volt-
age support to prevent momentary lapses in electricity;
see, Peterson et. al. (2011); Yilmaz and Krien (2013).
The vehicle-to-grid (VTG) technology enables bidirec-
tional active and reactive power transfer between EVs
and power system grid; see, Sortomme and El-Sharkwi
(2011, 2012,a); Yilmaz and Krien (2015). In recent days,
the EV concept is mostly implemented by EV aggregators
(EVA) that encompass a fleet of electric vehicles parked
all the day with their internal batteries capable enough to
supplement power contribution; see, Tomic and Kempton
(2007); Oretega et. al. (2013); Naveed et. al. (2021)
and the references cited therein. Apart from frequency
compensation, the major advantage that these electrical
mobility systems offer is secure de-carbonization of the
electricity grid; see, Boran et. al. (2017). In micro-grid
framework, the PEVs operate in tandem with the other

connected distributed generation units in compensating
the grid frequency against unplanned outages; invariably,
they offer resilience for critical and non-critical loads in a
staged approach that lowers costs and spreads those costs
over longer operating periods; see, Vachirasricirikul and
Ngamroo (2014). High penetration of renewable energy
requires consistent energy storage, which electric vehicles
can provide with consummate ease. The EVs have the
potential to provide the much needed storage feature.
However, they present unique challenges in that they are
neither stationed in fixed locations nor continuously con-
nected to the grid; nevertheless, they are expected to cater
transportation requirements as well. Refer, Grosjean et. al.
(2012); Fox (2013); Ana Paula Batista et.al. (2014).
In such integrated power systems, since balancing between
the total generation against total demand including the
system losses is a major issue, the load frequency control
problem has been extensively investigated in the recent
years; refer, Vijay Singh et. al. (2016); Ko and Sung
(2018); Han et. al. (2018) and the references cited therein.
In case of a sudden load change, the power system op-
erating point experiences a perturbation. This, in turn,
causes a deviation in the system frequency and the sched-
uled tie-line power flow from their nominal values. As a
follow-up action, the load frequency control scheme, from
the feedback of the area control error (ACE) variable,
achieves the power balance between the interconnected
areas thereby restoring the system frequency closer to the
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nominal value and tie-line power flow to its scheduled
value; refer, Kundur (1994); Elgerd (1971); Q.Hai (2021).
This necessitates the use of communication channels for
connecting the sensors (phasor measurement units), actu-
ators and controllers in order to control the power output
from the generation units that are dispersed geographi-
cally; see, Tani et. al. (2015). This paves way to the
emergence of time-delay in the feedback loop of the control
system. The networked operation of load frequency control
in the conventional power systems relies on the communi-
cation links which causes inevitable delays in the feedback
loops leading to delay induced stability issues. In a cen-
trally controlled micro-grid system that includes various
distributed generation units, time-delay is ubiquitous in
the signal communication process. In both the cases, the
existence of network-induced delays imposes constraint on
the transmission of information among different entities
involved in the control task. Under worst case operat-
ing scenario, the measurement and control signals in the
form of information packets may be completely lost in
the transmission channels. The time-delay, that depends
on the communication network bandwidth, distance and
packet drop outs invariably affects the overall performance
and stability of the overall system. Depending upon the
use of dedicated or open type communication channels,
the network-induced time-delays can be either constant or
time-varying respectively. For LFC systems with a single
constant delay, stability is assessed from the computation
of critical eigen values. For systems with multiple time-
invariant delays or with time-varying delays, Lyapunov-
Krasovskii (LK) stability theory and linear matrix inequal-
ity (LMI) techniques are employed to compute the stable
delay margin ; see, S.B.Pandu et.al. (2022); Ana Paula
Batista et.al. (2014). In the Lyapunov indirect technique,
a positive definite LK functional that depicts the energy
of the perturbed system is constructed, and the time-
derivative of the functional is bounded using appropriate
bounding techniques in a less conservative manner. The
resulting stability criterion is generally expressed as a
set of LMI conditions that can be solved readily using
standard numerical packages; refer, Gahi et. al. (1995).
The conservatism in the stability analysis depends on the
choice of the LK functional and the techniques used for
bounding the time-derivative of the functional.
In this paper, two types of centralized load frequency
control systems integrated with electric vehicle aggregators
are investigated. The first scheme involves the conventional
power system grid and the second one considers a micro-
grid system. The schemes are detailed in the following sub-
sections.

1.1 LFC System with EV Aggregator

The block diagram of ith unit of a generalized multi-area
load frequency control system with tie-line power feeds
is shown in Fig. 1. In the event of generation-demand
imbalance in power system grid, the controller, based on
the feedback of incremental frequency variable ∆fi and
incremental tie-line power variable ∆Ptie,i, initiates the
control action to restore the balance. The feedback variable
Area Control Error (ACE) is processed by the controller,
and the control effort is routed through communication
channels with appropriate participation factors αPS,i and
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Fig. 1. Multi-area Load Frequency Control System.
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Fig. 2. Single Area Load Frequency Control System with
EV Integration.

αEV,i that decide the sharing of excess/deficit load by the
conventional power generation and EV. The time-delays
induced by the communication channels are depicted as
τPS,i and τEV,i for the conventional generation units and
EV units respectively. In real time operating conditions,
these delays are dissimilar or incommensurate in nature.
The transfer function of EV is usually first order and is
given by

GEV (s) =
KEV

1 + sTEV
(1)

where KEV is the gain of EV and TEV is the time
constant of EV. A typical case of a single area LFC system
integrated with EV is shown in Fig. 2 where various sub-
systems in the load frequency control are modeled as first
order transfer functions and the control logic is of PI type;
refer Ko and Sung (2018) for a detailed description on
system variables and parameters.
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1.2 Micro-grid System with EV Aggregator

The block diagram of a micro-grid system with EV aggre-
gator is shown in Fig. 3 where ∆PMG and ∆PEV are the
incremental power contributed by micro-grid and electric
vehicle aggregator for an incremental load change ∆PL
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Fig. 4. Micro-grid Load Frequency Control System with
EV Integration.

which is identified by a variation in system frequency
∆f . Similar to the description presented in the previous
section τMG and τEV represent respective time-delays in
the micro-grid and EV loops. Similarly, the participation
factors are represented as αMG and αEV in micro-grid
and EV feedback loops respectively. A typical micro-grid
system with two time-delays is shown in Fig. 4. The build-
ing blocks of this time-delayed micro-grid model are taken
from Gunduz et. al. (2017). In this scheme, fuel cell with
electrolyzer and micro-turbine with localized controller are
the primary distributed generation units in the micro-grid.
The supplement power contribution to the grid is obtained
from the EVA integrated to the system. A centralized con-
troller (PI control logic) through communication channels
controls the overall system to ensure power balance in
case of increase or decrease in load. The time-delays in
the communication channels are τ1 and τ2 for the main
distributed sources and EVA respectively. These delays
are considered to be dissimilar. Appropriate participation
factors α0 and α1 decide the ratio of load sharing.
In literature, there are only few results reported on the
stability issues in EVA integrated LFC systems in a mul-
tiple time-delay environment. In Ko and Sung (2018),
multiple time-delays are considered only in EVA aggrega-
tors, and time-delay normally encountered in conventional
power generation path is not taken into consideration.
Subsequently, using a previously reported result in Ko
et. al. (2018), the stable delay margin is obtained for
the multiple time-delayed LFC system. In Naveed et. al.
(2020), a single time-invariant delay in EVA loop is consid-
ered, and using the transcendental characteristic equation
approach Sonmez et. al. (2016), delay-dependent stability
and stabilizing region in controller parametric space is
obtained for different values of loop delays. In Naveed
et. al. (2019), incommensurate time-delays are consid-

ered in conventional power generation path and EVA
loop, and stabilizing region in centralized PI controller
parametric space is obtained. In Gunduz et. al. (2019),
the EVA integration with micro-grid is considered with a
common single time-delay element, and stabilizing region
in controller parametric space is obtained. To the best of
our knowledge, delay-dependent stability problem of both
the classical load frequency control systems and micro-
grid systems involving dissimilar time-delays in conven-
tional power generation path and EVA loop has not been
addressed comprehensively using Lyapunov techniques in
literature so far.
In this paper, using a novel Lyapunov-Krasovskii func-
tional based analysis that employs Wirtinter inequality,
delay-dependent stability is ascertained for EV integrated
LFC and micro-grid systems with dissimilar time-delays
in conventional power generation and EVA loops.

1.3 State Space Model of Conventional LFC System with
EVA

For analyzing stability, the mathematical model of the
conventional single area LFC system integrated with EVA
shown in Fig. 2 is expressed as follows:

ẋ(t) =Ax(t) +Ad1x(t− τ1) +Ad2x(t− τ2), (2)
x(t) = Φ(t), ∀t ∈ [−max(τ1, τ2), 0], (3)

where x(t) ∈ R6×1 is the state vector, and A, Ad1

and Ad2 are the system matrices associated with cur-
rent state vector and delayed state vectors. τ1 and τ2
are the time-delays associated with the system. These
delays are assumed to have dissimilar characteristics.
Hence, τ1 ̸= τ2. The state vector is given by x(t) =
[∆f(t) ∆Pg(t) ∆Pm(t) ∆Xg(t) ACE(t) ∆PEV (t)]

T

and system matrices are as follows:

A=



−D

M

1

M
0 0 0

1

M

0 − 1

Tc

1

Tc
0 0 0

− Fp

RTg
0 − 1

Tr
−Fp

Tg
+

1

Tr
0 0

− 1

RTg
0 0 − 1

Tg
0 0

β 0 0 0 0 0

0 0 0 0 0 − 1

TEV


, (4)

Ad1 =



0 0 0 0 0 0
0 0 0 0 0 0

−α0FpβKP

Tg
0 0 0 −α0FpKI

Tg
0

−α0βKP

Tg
0 0 0 −α0KI

Tg
0

0 0 0 0 0 0
0 0 0 0 0 0


, (5)

Ad2 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−α1KEV βKP

TEV
0 0 0 −α1KEV KI

TEV
0


. (6)
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1.4 State Space Model of Micro-grid LFC System with
EVA

The micro-grid system can also be modelled in state
space approach as given in (2) and (3). For the net-
worked micro-grid system shown in Fig. 3, the state vec-
tor is given by x(t) = [∆f(t) ∆PMT (t) ∆PFC(t)
∆PES(t)

∫
∆f(t)dt ∆PEV (t)]

T . The corresponding
system matrices are given below:

A=



−D

M

1

M

1

M
− 1

M
0

1

M
a21 a22 a23 a24 a25 a26
KFC

TFC
0 − 1

TFC
0 0 0

KES

TES
0 0 − 1

TES
0 0

1 0 0 0 0 0

0 0 0 0 0 − 1

TEV


, (7)

Ad1 =


0 0 0 0 0 0
b21 b22 b23 b24 b25 b26
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (8)

Ad2 =


0 0 0 0 0 0
c21 0 0 0 c25 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
c61 0 0 0 c65 0

 , (9)

where

a21 =
1

(1 +KPL)

[
D

MKMT
−

KPLKFC

TFC
+

KPLKES

TES

]
,

a22 =
1

(1 +KPL)

[ −1

MKMT
−KIL

]
,

a23 =
1

(1 +KPL)

[ −1

MKMT
+

KPL

TFC
−KIL

]
,

a24 =
1

(1 +KPL)

[
1

MKMT
−

KPL

TES
+KIL

]
,

a25 = 0,

a26 =
1

(1 +KPL)

[ −1

MKMT
−KIL +

KPL

TEV

]
,

b21 =
1

(1 +KPL)

[
α0DKPCKPL

M
− α0KPLKIC − α0KILKPC

]
,

b22 =
1

(1 +KPL)

[−α0KPCKPL

M

]
,

b23 =
1

(1 +KPL)

[−α0KPCKPL

M

]
,

b24 =
1

(1 +KPL)

[
α0KPCKPL

M

]
,

b25 =
1

(1 +KPL)

[
−α0KICKIL

]
,

b26 =
1

(1 +KPL)

[−α0KPCKPL

M

]
,

c21 =
1

(1 +KPL)

[
α1KPCKPLKEV

TEV

]
,

c25 =
1

(1 +KPL)

[
α1KICKPLKEV

TEV

]
,

c61 =
−α1KPCKEV

TEV
,

c65 =
−α1KICKEV

TEV
.

The delays τi ∈ R+, i = 1, 2 are constant time-delays in
the feedback loops of the micro-grid system. The delays
are dissimilar. The initial condition of the system given by
Φ(t) is a continuous-time function. The problem addressed
in this paper is stated below:
Delay-Dependent Stability Problem: To develop a
less conservative stability criterion in LMI framework to
compute the maximum allowable bound of the time-delays
τi, i = 1, 2 within which the conventional LFC and
micro-grid systems integrated with EVA described by (2)
remains asymptotically stable in the sense of Lyapunov for
the given initial condition (3) using Lyapunov-Krasovskii
functional approach combined with Jenson integral in-
equality Zhu and Yang (2008) and Wirtinger inequality
Sauret and Gouaisbaut (2011). Refer, Ramakrishnan and
Jawahar (2011).
Lemma 1. Jenson Integral Inequality (Zhu and Yang
(2008)) For any positive symmetric constant matrix M ∈
Rn×n, scalars r1 and r2 satisfying r1 < r2, a vector valued
function ω : [r1, r2] → Rn such that the integrations
concerned are well defined, then the inequality (10) holds.
Lemma 2. Wirtinger Inequality (Sauret and Gouais-
baut (2011)): For given symmetric positive definite matrix
R, and for any differentiable signal ω in [a, b] → Rn, then
the inequality (11) holds.

2. MAIN RESULT

Based on the discussion presented in the last two sub-
sections, for N -area systems, the mathematical model of
the conventional and micro-grid based LFC system can be
derived in the following generalized framework:

ẋ(t) =Ax(t) +
N∑
i=1

Aix(t− τi), (12)

x(t) = ϕ(t), ∀ t ∈ [−max(τi), 0], i = 1, 2, . . ., N,(13)
where x(t) ∈ Rn×1 is the state vector and A ∈ Rn×n and
Ai ∈ Rn×n, i = 1, 2, . . ., N are the system matrices
associated with current and delayed state vectors; The N
time-invariant delays satisfy 0 ≤ τi ≤ τ̄i. The proposed
delay-dependent stability criterion for the multiple time-
delayed system (12) is presented in the following theorem.
Theorem 3. The system (12) with N non-identical time-
delays satisfying (13) is asymptotically stable in the sense
of Lyapunov if there exists real symmetric positive definite
matrices P11, Sk, Rk, k = 1 to N , and Rij , i = 1 to (N−1)
and j = i + 1 to N ; symmetric matrices Pmm, m = 2 to
(N + 1); free matrices Pij , i = 1 to N and j = i + 1 to
N + 1 such that following LMIs hold:

Π0 ≥ 0, (14)
5∑

k=1

Πk ĀTU1 ĀTU2

⋆ −U1 0
⋆ ⋆ −U2

< 0, (15)
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(∫ r2

r1

ω(s)ds

)T

M

(∫ r2

r1

ω(s)ds

)
≤ (r2 − r1)

∫ r2

r1

ωT (s)Mω(s)ds. (10)

∫ a

b

ω̇T (u)Rω̇(u)du ≥ 1

b− a


ω(b)
ω(a)

1

b− a

∫ b

a

ω(u)du


T [

4R 2R −6R
⋆ 4R −6R
⋆ ⋆ 12R

]
ω(b)
ω(a)

1

b− a

∫ b

a

ω(u)du

 . (11)

Π3 =



N∑
i=1

−4

τi
Ri − 2

τ1
R1 − 2

τ2
R2 − 2

τ3
R3 . . . − 2

τN
RN

6

τ1
R1

6

τ2
R2

6

τ3
R3 . . .

6

τN
RN

⋆ − 4

τ1
R1 0 0 . . . 0

6

τ1
R1 0 0 . . . 0

⋆ ⋆ − 4

τ2
R2 0 . . . 0 0

6

τ2
R2 0 . . . 0

⋆ ⋆ ⋆ − 4

τ3
R3 . . . 0 0 0

6

τ3
R3 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

⋆ ⋆ ⋆ ⋆ . . . − 4

τN
RN 0 0 0 . . .

6

τN
RN

⋆ ⋆ ⋆ ⋆ . . . ⋆ −12

τ1
R1 0 0 . . . 0

⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ −12

τ2
R2 0 . . . 0

⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ −12

τ3
R3 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

⋆ ⋆ ⋆ ⋆ . . . ⋆ ⋆ ⋆ ⋆ . . . − 12

τN
RN



.

where the elements of the linear matrix inequalities (14)
and (15) are given below. In these matrices, the ⋆ repre-
sents the symmetric elements in the symmetric matrix and
diag([·]) represents diagonal matrix.

Π0 = P + diag([0, τ−1
1 S1, τ−1

2 S2, τ−1
3 S3, . . . , τ−1

N SN ])

Π1 =ΦT
1 PΦ2 + (ΦT

1 PΦ2)
T ,

Π2 = diag([

N∑
i=1

Si, − S1, − S2, − S3, . . . , − SN ,

0, 0, 0, . . . , 0︸ ︷︷ ︸
N

]),

Π4 =

[
Π5 0N×N

⋆ 0N×N

]
,

Π5 =



0 0 0 0 . . . 0
⋆ Γ22 R12 R13 . . . R1N

⋆ ⋆ Γ33 R23 . . . R2N

⋆ ⋆ ⋆ Γ44 . . . R3N

. . . . . . . .

. . . . . . . .

. . . . . . . .
⋆ ⋆ ⋆ ⋆ . . . ΓN+1,N+1


,

with

Γi+1,i+1 =

i−1∑
j=1

Rji +

N∑
j=i+1

Rij ,

and

P =



P11 P12 P13 . . . P1,N+1

⋆ P22 P23 . . . P2,N+1

⋆ ⋆ P33 . . . P3,N+1

. . . . . . .

. . . . . . .

. . . . . . .
⋆ ⋆ ⋆ . . . PN+1,N+1

 ,

Φ1 =

 In×n 0n×nN

0nN×n 0nN×nN

0nN×n diag([τ1, τ2, τ3, . . . , τN ])

 ,

Φ2 =



A A1 A2 A3 . . . AN 0 0 0 . . . 0
I −I 0 0 . . . 0 0 0 0 . . . 0
I 0 −I 0 . . . 0 0 0 0 . . . 0
I 0 0 −I . . . 0 0 0 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
I 0 0 0 . . . −I 0 0 0 . . . 0


,

Ā= [A A1 A2 . . . AN 0 0 . . . 0 ]

U1 =

N∑
i=1

τiRi,

U2 =

N−1∑
i=1

N∑
j=i+1

(τj − τi)
2Rij .

The proof is based on Lyapunov-Krasovskii approach.
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Proof. The proposed stability criterion is derived using
the Lyapunov-Krasovskii functional V (x(t)) =

∑4
i=1 Vi(x(t))

with

V1(x(t)) = ΞT (t)PΞ(t), (16)

V2(x(t)) =

N∑
i=1

∫ t

t−τi

xT (s)Six(s)ds, (17)

V3(x(t)) =

N∑
i=1

∫ 0

−τi

∫ t

t+θ

ẋT (s)Riẋ(s)dsdθ, (18)

V4(x(t)) =

N−1∑
i=1

N∑
j=i+1

(τj − τi)

∫ −τi

−τj

∫ t

t+θ

ẋT (s)Rij ẋ(s)dsdθ,

(19)
where Ξ(t) = [xT (t)

∫ t

t−τ1
xT (s)ds

∫ t

t−τ2
xT (s)ds . .∫ t

t−τN
xT (s)ds]T . By Jenson’s integral inequality, following

conditions hold good for i = 1 to N :∫ t

t−τi

xT (s)Six(s)ds ≥
[∫ t

t−τi

x(s)ds

]T(Si

τi

)[∫ t

t−τi

x(s)ds

]
,

(20)
By using the above set of equations (20), one can readily
obtain a lower bound for V (x(t)) as follows:

V (x(t)) ≥ Ξ(t)TΠ0Ξ(t) + V3(x(t)) + V4(x(t)). (21)
Now, it is clear that positive definiteness of the matrices
P , Si, i = 1, 2, . . . N ; Rij ; i = 1, 2, . . . N − 1 and
j = i + 1, i + 2, . . .N and Π0 > 0 (equation (14))
implies positive definiteness of V (x(t)). This paves way
to a less conservative solution as detailed in Sauret and
Gouaisbaut (2011). The time-derivative of the functional
V1(x(t)) along the trajectory of (2) is given by

V̇1(x(t)) = 2ΞT (t)P Ξ̇(t), (22)
which can be rewritten as follows:

V̇1(x(t)) = δT (t)Π1δ(t), (23)
where δ(t) = [xT (t) xT (t− τ1) xT (t− τ2) . . . xT (t−
τN ) 1

τ1

∫ t

t−τ1
xT (s)ds 1

τ2

∫ t

t−τ2
xT (s)ds . . . .

1
τN

∫ t

t−τN
xT (s)ds]T is an augmented state vector. The

time-derivative of the functional V2(x(t)) along (2) is given
by

V̇2(x(t)) = xT (t)

( N∑
i=1

Si

)
x(t)−

N∑
i=1

xT (t− τi)Six(t− τi);

(24)
the equation (24), in terms of δ(t), is expressed as follows:

V̇2(x(t)) = δT (t)Π2δ(t). (25)
The time-derivative of the functional V3(x(t) along (2) is
given by

V̇3(x(t)) = ẋT (t)U1ẋ(t)−
N∑
i=1

(∫ t

t−τi

ẋT (s)Riẋ(s)ds

)
.

(26)
Now, by using Wirtinger inequality, the equation (26) is
expressed as an inequality as follows:
V̇3(x(t)) ≤ δT (t)(ĀTU1Ā)δ(t)+δT (t)Π3δ(t)+δT (t)Π4δ(t).

(27)
The time-derivative of V4(x(t) along (2) is given by

V̇4(x(t)) = ẋT (t)U2ẋ(t)

−
N−1∑
i=1

N∑
j=i+1

(τj − τi)

∫ t−τi

t−τj

ẋT (s)Rij ẋ(s)ds.(28)

Now, by using Jenson’s integral inequality, the equation
(28) is expressed as an inequality as follows:

V̇4(x(t)) ≤ δT (t)(ĀTU2Ā)δ(t) + δT (t)Π5δ(t). (29)
By combining the time-derivative of the LK functionals
V̇i(x(t)), i = 1 to 4, we get the following condition:

V̇ (x(t)) =

4∑
i=1

V̇i(x(t))

≤ δT (t)

[ 5∑
k=1

Πk + ĀT (U1 + U2)Ā

]
δ(t). (30)

Now, by Schur complement, if the inequality conditions
(14) and (15) hold simultaneously, then there exists a
sufficiently small scalar α > 0 such that V̇ (x(t)) ≤
−α||x(t)||2, which, in turn, implies that the LFC systems
described by (12) with (13) are asymptotically stable in
the sense of Lyapunov; refer, Gu and Niculescu (2003).
This completes proof of the Theorem.

3. NUMERICAL EXAMPLE

3.1 System Parameters

For computing the stable delay margin, bench mark LFC
and micro-grid systems are considered. The parameters of
the systems are taken from Naveed et. al. (2019) for LFC
system and Gunduz et. al. (2019) for micro-grid system.
The parameters are listed in Table 1 and Table 2.

Table 1. Parameters of the LFC System

Parameter Description Value
M Moment of inertia 8.8
D Damping Coefficient 1
Tc Time-Constant of Generator 0.3
Tg Time-Constant of Governor 0.2
R Derating Factor 1

11

β ACE Feedback Factor 21
Fp Reheat Turbine Gain 1

6

Tr Reheat Turbine Time-Constant 12
KEV Gain of Electrical Vehicle 1
TEV Time-constant of Electrical Vehicle 0.1

3.2 Analytical Results for LFC System

The stable margin for time-delays obtained by the pro-
posed stability criterion Theorem 1 are listed in Table 3
and Table 4 for LFC system for different subsets of the
centralized PI controller parameters (KP , KI) (Boyd et.
al. (1994)). The Table 3 gives stable delay margin for
α0 = 0.6 and α1 = 0.4 and the Table 4 presents stable
delay margin for α0 = 0.8 and α1 = 0.2. For computing
the stable delay margin, the proportional gain is set at
KP = 0.1, and the integral gain KI is varied as 0.1, 0.2,
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Table 2. Parameters of Benchmark Micro-grid
System

Parameter Description Value
M Moment of inertia 10
D Damping Coefficient 1

KMT Micro-turbine droop 0.04
KFC Gain of Fuel Cell 1
TFC Time-constant of Fuel Cell 4
KES Gain of Electrolyzer system 1
TES Time-constant of Electrolyzer system 1
KPL Proportional gain of Local Controller 1
KIL Integral gain of Local Controller 1
KEV Gain of Electrical Vehicle 22.1
TEV Time-constant of Electrical Vehicle 1

0.4, 0.5 0.6 and 0.8. In these tables, the multiple delays
are expressed as τd =

√
τ21 + τ22 and θ = tan−1( τ2τ1 ).

Table 3. Maximum bound τd for α0 = 0.6 and
α1 = 0.4

KP = 0.1 KI

θ 0.1 0.2 0.4 0.5 0.6 0.8

5 37.184 14.731 5.123 3.377 2.262 0.943
10 19.222 7.408 2.572 1.695 1.136 0.579
20 9.775 3.762 1.316 0.910 0.660 0.367
30 6.687 2.573 0.958 0.678 0.498 0.280
40 5.202 2.028 0.790 0.562 0.414 0.234
45 4.753 1.874 0.736 0.525 0.387 0.218
50 4.369 1.763 0.696 0.496 0.366 0.207
60 3.980 1.625 0.643 0.458 0.338 0.190
70 3.899 1.567 0.616 0.439 0.323 0.182
80 4.087 1.570 0.612 0.435 0.320 0.180
85 4.319 1.594 0.617 0.438 0.322 0.181

Table 4. Maximum bound τd for α0 = 0.8 and
α1 = 0.2

KP = 0.1 KI

θ 0.1 0.2 0.4 0.5 0.6 0.8

5 16.665 8.732 1.410 0.846 0.538 0.201
10 15.813 6.476 1.178 0.732 0.472 0.179
20 12.458 3.546 0.932 0.596 0.390 0.149
30 9.569 2.606 0.805 0.521 0.342 0.132
40 7.617 2.250 0.734 0.477 0.315 0.121
45 7.027 2.153 0.713 0.464 0.306 0.118
50 6.436 2.091 0.698 0.455 0.300 0.116
60 6.123 2.051 0.689 0.449 0.296 0.114
70 6.901 2.113 0.704 0.458 0.302 0.116
80 12.926 2.304 0.746 0.484 0.319 0.122
85 25.754 2.476 0.781 0.505 0.332 0.127

3.3 Simulation Results for LFC System

For time-domain simulation studies, a load perturbation
of ∆PL = 0.1pu magnitude step function is initiated at

t = 0, and the evolution of the incremental frequency
variable ∆f(t) with respect to time is observed for the
time-delayed micro-grid system for t > 0 (Gahi et. al.
(1995)). The controller parameters are set at KP = 0.1
and KI = 0.2. For these controller gains, and α0 = 0.8
and α1 = 0.2, the stable delay margin obtained from Table
4 is τd = 2.606 for θ = 300. If the feedback loops delays
are set corresponding to this value, the LFC system is
at the verge of instability and the incremental frequency
variable ∆f(t) exhibits sustained oscillation with respect
to time. If loop delays are set at a value less than the
stable delay margin, say τd = 2.5 at θ = 300, the closed-
loop system yields asymptotically stable response. For loop
delays greater than the stable delay margin say τd = 2.7 at
θ = 300, the closed-loop system loses stability and ∆f(t)
evolves unboundedly with time. The simulation results
are presented in Fig. 5 for stable, marginally stable and
unstable operation respectively. The simulation results are
found to be in close agreement with the analytical results.
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Fig. 5. Evolution of ∆f(t) for LFC System.

3.4 Analytical Results for Micro-Grid System

Similar to conventional load frequency control system, the
stable margin for time-delays obtained by the proposed
stability criterion Theorem 1 are listed in Table 5 and
Table 6 for micro-grid system for different subsets of the
MGCC PI controller parameters (KPC , KIC). The Table
5 gives stable delay margin for α0 = 0.75 and α1 = 0.25
and the Table 6 presents stable delay margin for α0 = 0.9
and α1 = 0.1.

3.5 Simulation Results for Micro-Grid System

For validating the analytical results, time-domain simula-
tion studies are carried out for the micro-grid system to
observe the evolution of the incremental frequency variable
∆f(t) for different time-delay values when the system
is subjected to 0.1pu step load change. The controller
parameters are set at KPC = 1 and KIC = 0.6. With
these controller gains and α0 = 0.75 and α1 = 0.25, when
θ = 300, the closed-loop micro-grid system is stable up
to a maximum delay bound of τd = 5.274 (see, Table 5).
For the delay value less than maximum delay bound, say,
τd = 5, the closed-loop system is stable with ∆f(t) variable
converging asymptotically towards the equilibrium point
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Table 5. Maximum bound τd for α0 = 0.75 and
α1 = 0.25

KPC = 1 KIC

θ 0.2 0.4 0.6 0.8 1.0

5 12.158 6.503 4.591 3.631 3.054
10 12.302 6.579 4.645 3.674 3.089
20 12.894 6.894 4.867 3.848 3.235
30 13.981 7.474 5.274 4.169 3.504
40 15.776 8.431 5.947 4.699 3.949
45 17.069 9.119 6.431 5.080 4.267
50 18.700 9.987 7.041 5.560 4.669
60 23.802 12.687 8.932 7.044 5.908
70 34.083 18.049 12.652 9.944 8.315
80 65.577 33.360 22.847 17.697 14.636
85 130.655 66.372 44.653 33.752 27.205

Table 6. Maximum bound τd for α0 = 0.9 and
α1 = 0.1

KPC = 1 KIC

θ 0.2 0.4 0.6 0.8 1.0

5 13.566 7.620 5.391 4.226 3.511
10 13.727 7.710 5.454 4.276 3.552
20 12.894 6.894 4.867 3.848 3.235
30 14.389 8.802 5.717 4.482 4.038
40 17.632 9.905 7.006 5.491 4.561
45 19.093 10.725 7.586 5.945 4.937
50 20.965 11.773 8.326 6.525 5.418
60 26.822 15.058 10.644 8.337 6.921
70 38.886 21.775 15.364 12.016 9.962
80 76.422 42.401 29.633 22.961 18.884
85 152.262 84.481 59.041 45.748 37.587

∆fe = 0. It the delay margin is exactly set at τd = 5.274,
the system exhibits marginally stable response (sustained
oscillations about the equilibrium point). If the delay value
is increased to τd = 5.5 which is more than the stable delay
margin, the incremental frequency variable ∆f(t) evolves
unboundedly with time signifying an unstable operating
condition. All the simulation results are shown in Fig. 6
along with the step load disturbance. Hence, for micro-grid
system also, the simulation results are in good agreement
with the analytical results.

4. CONCLUSION

In this paper, two major types of networked load frequency
control systems are considered with one involving the con-
ventional power generation units and another one encom-
passing distributed generation in a micro-grid framework
for investigating the impact of electric vehicle integration
on stable delay margin. Plug-in electric vehicle with its
efficient storage capability have become a new entity in
micro-grids as well as in conventional large scale power
system networks. The geographically dispersed nature of
the electric vehicles makes them a viable option for sup-
plementing the power grid in the event of increase in the
demand of power by the connected loads. In days to come,
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Fig. 6. Evolution of ∆f(t) for Micro-grid Systems.

the integration of the electric vehicle in modern power
grids will increase drastically replacing in the process some
of the conventional distributed generation units. The load
frequency control systems are modelled as a linear retarded
delay-differential equation involving two dissimilar time-
delays in state space formulation. Using a new Lyapunov-
Krasovskii functional combined with Wirtinger inequality,
a less conservative delay-dependent stability criterion is
derived in LMI framework. By solving the criterion, stable
delay margins are computed for the LFC systems for differ-
ent subsets of the controller parameters and participation
factors. The proposed stability criterion is tested on stan-
dard benchmark systems, and subsequently, simulation
results are presented to corroborate the analytical results.
The possibility of extending the presented approach for
the uncertain system with parametric uncertainties or
exogenous noise will be explored in future.
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