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Abstract: Soft manipulator is a strong nonlinear system with high uncertainty. Real-time 3D shape 

estimation is the base for the control and application of soft manipulators. However, it is challenging to 

realize 3D shape estimation through accurate modeling as the rigid manipulator. To deal with this issue, a 

real-time 3D centerline estimation framework based on stereo vision is proposed for the multi-section soft 

manipulator in this work. The contour of the manipulator is segmented accurately from the real-time images 

captured by the ZED camera using the machine vision method. The contour data is then clustered based on 

the self-organizing mapping (SOM) algorithm to form a 2D centerline. The linear overdetermined equation 

established by the camera projection model is figured out to obtain the optimal solution in the sense of least 

squares, and the 3D reconstruction is completed. In the simulation of the SOM algorithm, the parameters 

selection, simulation verification, and the comparison of various centerline extraction algorithms are 

completed. The results show that the SOM algorithm has more advantages to solve this work. Real-time 

bending experiments are carried out to verify the feasibility and robustness of the proposed framework, and 

performance evaluation experiments are also performed for accuracy and real-time performance. Compared 

with other research work, the framework in this work has high accuracy and real-time tracking performance. 

Keywords: 3D centerline estimation; contour segmentation; centerline clustering; 3D construction; soft 
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1. INTRODUCTION 

Soft manipulator (Chen et al., 2021) is a novel bionic 

manipulator made of soft materials and can deform 

continuously along the backbone. The soft materials allow the 

soft manipulator to grasp the target in a smooth manner and 

maintain little contact force to achieve compliant capture 

(Gong et al., 2021). Compared with the rigid structure 

manipulator (Zhuang et al., 2021), the soft manipulator has 

natural compliance and safe interaction (Kang et al., 2016). 

Although soft manipulators have made significant progress in 

prototype design and driving strategies, the accuracy 

performance has been unsatisfactory due to problems such as 

the nonlinearity of materials and driving coupling between 

segments during application. Therefore, it is vital to develop 

an accurate shape sensing system to improve control accuracy 

(Wang et al., 2020). Shape sensing of soft manipulators has 

been closely concerned and widely explored by researchers. 

Constant curvature (Godage et al., 2015) is the simplest and 

most common for detecting the shape of a soft manipulator. 

Still, the manipulator cannot deform with constant curvature 

all time, which leads to low detection accuracy of this 

methodology. (Renda et al., 2012) use Cosserat rod theory 

combined with a static model for accurate shape estimation. 

However, in practical applications, the collision model cannot 

be wholly modeled, and the force sensor cannot accurately 

measure the contact force. Although the emerging sensing 

methods for continuous media, such as optical fiber optic 

sensors (Galloway et al., 2019) and electromagnetic sensors 

(Song et al., 2015), have good performance in terms of 

accuracy, it not only restricts the movement of the 

manipulator, but also have some trouble like high cost and 

sensitivity to noise. 

To sum up, for the soft manipulator, a multivariable and 

strongly coupled nonlinear system, both the traditional sensing 

method based on accurate modeling and the burgeoning 

sensing method with contact measurement have certain 

limitations. In contrast, the vision-based sensing method (Xu 

et al., 2021; Zhao et al., 2021) can estimate 3D shape only 

through image data without affecting the operability of the 

manipulator. It is a low-cost, high-precision, and non-contact 

measurement. (Hannan et al., 2005) are pioneers in using a 

monocular camera to extract the center point of the elephant-

trunk manipulator for shape determination. But only the plane 

motion of the manipulator is considered. In stereo vision, 

installing reference markers (Li et al., 2012; Reilink et al., 

2013) is the most common way for shape detection. 

Nevertheless, the marking point can only be installed on a 

certain section of the manipulator. When the manipulator 

moves to an angle that the camera cannot capture, it directly 

causes the algorithm to fail. Therefore, the unmarked method 

has more research value. (Kumar et al., 2004) propose a self-

organizing mapping (SOM) algorithm to model the shape from 

point cloud for the first time. The results show that the 

learning-based SOM algorithm is robust in static data 

clustering and topological mapping. It also seems to be a novel 

approach for solving variable and irregular centerline 

identification of the soft manipulators. (Croom et al., 2010) 

develop a 3D centerline sensing algorithm based on SOM, but 

this work does not involve real-time research with dynamic 

targets and even uses a mock-up instead of a soft manipulator 
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for study. (Xu et al., 2018) successfully apply the SOM 

algorithm to real-time centerline recognition of the deformable 

link model. Not only that, most of the current shape detection 

systems only accomplish simple plane bending experiments 

for single-section manipulators or 3D printing models 

(Camarillo et al., 2008). There is still little research on fast 

real-time 3D shape reconstruction of the multi-segment 

manipulator with a complex configuration. 

In this work, a real-time 3D centerline estimation framework 

for the multi-section soft manipulator based on stereo vision is 

proposed, and the performance verification and comparison 

are completed through simulations and experiments. 

Compared with the existing research, the innovations of this 

work are as follows: 1) SOM algorithm is applied to the real-

time 3D centerline estimation of the soft manipulator. 2) The 

parameter optimization and error compensation of the SOM 

algorithm ensure the balance between clustering accuracy and 

time cost. 3) The proposed framework still has high accuracy 

and real-time performance (compared with other works) for 

the three-section soft manipulator with complex spatial 

configuration. 

2. OVERVIEW SYSTEM 

For the soft manipulator, it is necessary to simultaneously 

control the end position and the continuous shape during the 

application process. From the perspective of control theory, 

real-time monitoring of shape information is an essential 

guarantee for high-precision control. Therefore, in order to 

carry out subsequent experimental research and algorithm 

verification, we built the experimental platform of the control 

system, as shown in Fig. 1(a). 

(a) 

 

(b) 

Fig. 1. Control system overview (a)The block diagram of the 

proposed system; (b) Schematic diagram of shape estimation 

framework. 

An experimental setup is built to realize the above system. In 

the pressure-actuated system, the high-pressure source 

generated by the air compressor is evenly divided after flowing 

through the valve terminal (Festo, Germany) to form multiple 

independent pneumatic circuits, which supply air separately 

for each pneumatic muscle actuators (PMAs). The electric 

control system can meet the voltage requirements of the 

components of the experimental platform at all levels and 

supply power to the whole control system. The DA converter 

converts the digital signal from the workstation (Intel Xeon 

Bronze 3104 CPU, 32GB RAM, NVIDIA Quadro P4000) into 

an analog voltage signal to control the output pressure of the 

proportional valve (Festo, Germany). Finally, the 3D shape 

deformation of the soft manipulator is completed by means of 

pressure driving. As the sensor of the control system, a 

binocular depth camera (ZED, USA) is placed on the tripod in 

front of the soft manipulator, and it is guaranteed to cover all 

the working space of the soft manipulator. The ZED 

establishes serial communication with the USB3.0 port of the 

workstation. In addition, all simulations in this work are 

implemented in Python.  

The focus of this work is the shape estimation framework 

running in the feedback link, which is a real-time framework 

that can reconstruct the 3D centerline of a multi-segment soft 

manipulator with high precision without any mechanism 

modeling. More details of the real-time shape estimation 

framework are shown in Fig. 1(b). 

3. REAL-TIME 3D CENTERLINE ESTIMATION 

FRAMEWORK 

The 3D centerline estimation framework without considering 

real-time is of little significance, because it cannot be 

embedded into the closed-loop control system to achieve real-

time shape deformation control. The running speed of the 

framework is opposite to the computational accuracy, so the 

framework we presented has been trying to find a balance 

between the two. In the process of framework design, some 

engineering technologies are added to reduce the amount of 

unnecessary data calculation and improve real-time 

performance. Contour segmentation, centerline clustering, and 

3D reconstruction are the three core parts of the proposed 

framework, which will be introduced in detail in each section 

below. 

3.1 Contour segmentation 

The purpose of contour segmentation is to accurately segment 

the soft manipulator from the complex background using 

machine vision methods. The overall process is divided into 

the following steps. 

Firstly, ZED acquires the left and right image data in real time, 

and uses the camera internal and external parameters 

calibrated in the API to correct image distortion so as to obtain 

a distortion-free image. Secondly, the median filter is adopted 

to eliminate the mixed noise in the image. The region of 

interest (the image data of the soft manipulator) is segmented 

from the rest of the background according to the HSV color 

space and marked by binarization. Note that the experimental 

background is supposed to keep the color single for better 

image segmentation. Then, the morphological filter is applied 
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to remove isolated pixels to make the contour of the 

manipulator smoother. Finally, the solution based on the 

Canny edge detection algorithm (publicly available at 

OpenCV) is presented for contour segmentation. Using 

contour data instead of all the image data of the manipulator 

can greatly reduce the computational cost of the subsequent 

algorithm. This improved approach was verified in the study 

of (Kumar et al., 2004). The extracted contour data is down-

sampled by taking points at equal intervals to thin the contour 

data and further improve the real-time performance. The 

results of contour segmentation are shown in Fig. 2.  

 

Fig. 2. The results of contour segmentation (the left image). 

3.2 Centerline clustering 

The multi-segment soft manipulator, whose longitudinal 

length, is much larger than the radial length is taken as the 

research object. Therefore, the centerline can well represent 

the shape of the soft manipulator. In generally, the centerline 

should be composed of fixed-number, ordered, and equidistant 

center points. To meet the above requirements, the robust 

SOM algorithm is proposed to identify the centerline of the 

image data of the soft manipulator in this section. 

SOM is an unsupervised artificial neural network that 

generates a low-dimensional and discrete mapping by learning 

the data in the input space. To some extent, it can also be 

regarded as a dimension reduction algorithm. Here, SOM is 

used to extract the 2D centerline of the soft manipulator 

without artificial reference markers. The topological structure 

of the SOM neural network is shown in Fig. 3.  

 

Fig. 3. The topological structure of the SOM neural network.  

The number of input neurons m  corresponds to the dimension 

of the input sample. Thanks to the input of SOM is the contour 

data of the manipulator   2

1, , h

h= P P P  here, 2m = . 

Where h  is the number of contour data and 2

k P  is the 2D 

coordinates of each contour data. As for output neurons, it 

represents the center points   2

1,  , n

n= W W W  formed 

by clustering, where b  is the expected number of center points 

and 2

, L, L,,  L j j ju v =  W   (the left image as an example) 

means the 2D coordinates of each center point. The input and 

output layer neurons are connected by weight ijw . Referring 

to the mathematical principle of the SOM algorithm (Xu et al., 

2018), the pseudo code of the SOM algorithm is summarized 

as follows 

Algorithm 1 SOM Algorithm 

1: Initialize the weight vector (0)jW    the neighborhood 

radius 
*N    the initial learning rate (0)    and the 

training times  . 

2: loop 

3:   Get current left/right camera frame 

4:   Extract the 2D contour point of soft manipulator P  

5:   for (0) 1; ( ) ; ( )t t   =  ++  do 

6:     for each kP  do 

7:       for 1; 1; j j n j=  + ++  do 

8:         Calculate the Euclidean distance between kP  and 

each weight vector jW   by the principle of competitive 

learning, namely 

( ) ( )
T

k j k j k j− = − −P W P W P W         (1) 

9:       end for 

10:     Find the winner neuron as 

( )* arg  min k jj = −P W                (2) 

and define the winning neighborhood * ( )
j

N t . 

11:      for all * ( )
j

j N t  do 

12:        The jW  is updated based on the gradient descent 

method  

( 1) ( ) ( ) ( ) ( )j j k jt t r t t   + = + − W W P W   (3) 

13:      end for 

14:    end for 

15:  end for 

16:  Obtained L, jW  and R, jW  respectively 

17: end loop 

Remark 1 * ( )
j

N t  is determined with the 
*j  as the center and 

N   as the neighborhood radius, gradually decreasing over 

time. In the * ( )
j

N t , the law of neighborhood function r（ ） 

is that the farther the topological distance r   from 
*j   is, the 

smaller r（ ） is, usually expressed by the Gaussian function. 

Remark 2 The learning rate function ( )t  is often represented 

by 1/ (1 ( ) / )t + , which monotonically decreases with the 

current training times ( )t . 

3.3 3D reconstruction 

The most common 3D reconstruction methods include 

numerical methods and analytical methods. The analytical 

method (Li et al.  2020) is used to calculate the disparity of the 

target on the left and right images and obtain the depth of the 
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target by the triangulation model. However  this method 

requires that the left and right cameras must be strictly parallel 

and the internal parameters are the same  but this is difficult to 

achieve in the actual production process. In this case  the 

numerical method is more universal. The linear 

overdetermined equations are constructed based on the camera 

projection model  and the least square method is raised to find 

the optimal solution. The camera projection model and 

coordinate transformation relationship are shown in Fig. 4. 

Here  the left camera coordinate L{ }O   is set as the world 

coordinate W{ }O . 

 

Fig. 4. Camera projection model. 

For the internal parameter matrix of the left camera 
3 4

L

M   (obtained by camera calibration)  the camera 

projection equation is established 

L,

L, L

L,11 L,12 L,13 L,14

L,21 L,22 L,23 L,24

L,31 L,32 L,33 L,34

1
1

              .

1

j

j

j j

j

j

j

u

Z v

X
m m m m

Y
m m m m

Z
m m m m

 
  

=   
   

 
   
   =    
    

 

Q
M

                 (4)                                                                            

where the projection of a backbone point 
3,  ,  j j j jX Y Z =  Q  on the left pixel coordinates is L, jW   

and their x coordinates and y coordinates are marked as L, ju  

and L, jv    respectively. 

Equation (4) can be further simplified to 

T

L, L,31 L,11 L, L,31 L,21

L, L,32 L,12 L, L,32 L,22

L, L,33 L,13 L, L,33 L,23

L,14 L, L,34

L,24 L, L,34

.

j j j

j j j

j j j

j

j
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                  (5)                                                    

Similarly  for the internal parameter matrix of the right camera
3 4

R

M   a similar equation can also be computed 

 

T

R, R,31 R,11 R, R,31 R,21

R, R,32 R,12 R, R,32 R,22

R, R,33 R,13 R, R,33 R,23
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j

j
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                   (6)                                                  

Simultaneous equations (5) and (6) can be obtained 

L, L,31 L,11 L, L,32 L,12 L, L,33 L,13
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                                              (7) 

It can be clearly seen that equation (7) is four equations with 

three unknown variables  which is a linear overdetermined 

equation. Equation (7) can be summarized as 

j j j=A Q B                                                                                (8) 

To solve the overdetermined equation  the least square method 

can be employed to find the optimal solution of jQ . Specific 

methods include generalized inverse solution or SVD 

decomposition method  both of which can obtain the optimal 

solution of jQ   in the sense of least squares. The mature 

algorithm and the open-source function make the whole 

calculation process basically have no time expenditure. 

Remark 3 L, jW   and R , jW   clustered by SOM can 

automatically match as corresponding points without any 

sorting algorithm because of the ordering guarantee of the 

SOM. 

The backbone vector   3

1,...,  n

n= Q Q Q   is generated 

iteratively based on the triangulation model. So far  the 3D 

centerline estimation of the soft manipulator is completed. 

4. NUMERICAL SIMULATIONS 

4.1 SOM Parameter selection 

There are many optional parameters involved in the SOM 

algorithm, which are vital to the performance of SOM 

algorithm. If the parameters are selected randomly (Camarillo 

et al., 2008), the performance of the SOM algorithm cannot be 

maximized. In this section, two kinds of errors in the 

performance of the SOM are defined to perform the parameter 

optimization selection through error simulation comparison. 

The topology error 
t  is described as the proportion of input 
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samples with topological errors in the total samples. The 

specific content is 

* **

t * **
1

1,  ( ) ( ) 1;1
( ),  ( )

0,  ( ) ( ) 1.

h

k k

k

c j c j

r c j c j
  

=

 − 
= = 

− =

 P P               (9) 

where c  represents the serial number of the neuron, and 
**j  

refers to the suboptimal neuron. When 
t  exists, it means that 

the topological relationship of the jW  is chaotic, which will 

directly lead to the failure of 3D reconstruction. Therefore, 
t  

need to be eliminated. 

Quantization error q   evaluates the accuracy of SOM by 

calculating the average Euclidean distance between each kP  

and corresponding *j
W . Although q  cannot be eliminated as 

0, it will gradually converge in the training process, expressed 

as 

*q

1

1
.

h

k j
kr


=

= − P W                                                          (10) 

Next, four error simulations are carried out to design the SOM 

parameters, including n , N , (0)  ,and  . 

(1) Simulation case 1: We select n  by judging whether 
t 0 =  

because other parameters of the SOM will not affect the 

topological mapping of the data. To avoid topology error 

caused by insufficient training, set sufficient training times and 

conduct simulations, as shown in Fig. 5(a). The results imply 

that when 30n   , t 0 =  . The right side also gives the 

corresponding centerline clustering in the case of 50n = and 

70n = . It clearly shows that the topological relationship 

confusion has appeared at this time. 

(2) Simulation case 2: Choose  15,  20, 25, 30n = and further 

study the influence of training times on the convergence of 

topology error. From Fig. 5(b), n  is positively related to  . 

For the consideration of the balance between real-time 

performance and accuracy, choose 20n = . 

(3) Simulation case 3: It can be proved that N   and (0)  

determine q  , while    only affects the convergence speed. 

Set 2,  4,  6,  8N =  , explore the relationship between (0)  

and q   (still set sufficient   ). The simulation results are 

shown in Fig. 5(c). Under any (0)  , the smaller N   is, the 

smaller q  is. It can be explained that if N  is too large, it will 

promote the jW  clustering to the same point, which deviates 

from the real distribution of the samples. Hence, let 2N = . 

Moreover, no matter (0)  is excessively large or small, the 

result is not very ideal. Excessive (0)  can cause inaccurate 

learning, and too small (0)  will fall into the local learning. 

From Fig.5(c), 0.2 =  is the most appropriate choice.  

 

(a)  

 
(b)  

 
(c)  

 

(d)  

Fig. 5. Simulations for SOM error analysis. (a) Simulation case 

1; (b) Simulation case 2; (c) Simulation case 3; (d) Simulation 

case 4. 
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(4) Simulation case 4: Then, shorten the learning rate range (

0 (0) 0.3   ), and investigate the influence of    on the 

convergence speed of q . It can be seen from Fig. 5(d) that 

although 15,  20,  25 =  converges consistently in the case of 

0.2 = , the increase of   will prolong the calculation time, 

which is unfavorable for the real-time design. So 15 =  is a 

better choice. 

Ultimately, the SOM parameters are selected in Table 1，

combined with the simulation results. 

Table 1. SOM parameter design. 

n  N  (0)    

20 2 0.2 15 

4.2 SOM simulation results 

In this section, the simulation verification of the SOM 

algorithm is carried out for the initial posture of the soft 

manipulator. SOM initialization includes linear initialization 

and random initialization, and linear initialization can capture 

the real initial shape of the soft manipulator in a shorter time. 

In Fig. 6(a), the dynamic process of SOM training is expressed 

by gradient red. With the increase of  , L, jW  gradually 

moves from the initial state L, (0)jW  (described by blue) to the 

position of the centerline. Finally, the left and right image 

simulation results of the SOM algorithm for the initial attitude 

of the soft manipulator are shown in Fig. 6(b). Additionally, 

starting from the first frame, the SOM training result of the 

previous frame is treated as the initial weight vector for the 

next frame, thereby further improving the tracking 

performance of the SOM algorithm.  

It is worth noting that there is no y-axis offset after image 

correction when a certain point in physical space is projected 

on the left and right images. However  the SOM training on the 

left and right images is performed separately  so there is no 

guarantee that the corresponding points do not have a y-axis 

offset. This offset on the y-axis is named as the misalignment 

error 
w  

w L, R,

1

1
.

n

j j

j

v v
n


=

= −                                                        (11) 

To completely compensate for this error  taking L, jW   as a 

reference  cubic spline interpolation is figured out on R , jW . In 

the generated interpolation  the new data points that satisfy 
*

R, L,j jv v=  are found as the compensated right weight vector 

*

R, jW  . The SOM simulation results before and after error 

compensation are shown in Fig. 6(c). The numerical 

simulation of the misalignment error is shown in Fig. 6(d). 

After calculation  the 
w   for the initial posture of the soft 

manipulator is 1.53. 

 

(a) 

 
(b) 

 
(c) 

  
(d) 

Fig. 6. SOM algorithm simulation results. (a) Linear 

initialization and dynamic training process (left image); (b) 

Simulation results of the SOM algorithm; (c) The final SOM 

simulation results after error compensation; (d) Numerical 

simulation for the misalignment error. 
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4.3 Centerline extraction comparison  

In order to clarify the superiority of the SOM algorithm in 

centerline extraction, the other three centerline extraction 

algorithms in machine learning, machine vision, and other 

fields are proposed for comparative study.  

Firstly, the competitive learning algorithm, a common 

unsupervised learning strategy, is introduced, which is the 

initial version of the SOM algorithm. The difference between 

it and SOM algorithm is that the competitive learning 

algorithm takes WTA (Winner-Take-All) as the principle and 

only adjusts the weights of the winning neurons, while SOM 

additionally defines the concept of the winning neighborhood 

and adjusts the weights of the neurons in the whole winning 

neighborhood according to the distance. The pseudocode is 

summarized in Algorithm 2. 

Algorithm 2 Competitive learning algorithm  

1: Initialize the weight vector (0)jW ，the learning rate 

( )0,1    the training times    and input 2D contour P . 

2:   for (0) 1; ( ) ; ( )t t   =  ++  do 

3:     for each kP  do 

4:       for 1; 1; j j n j=  + ++  do 

5:         Calculate the Euclidean distance between kP  and 

each weight vector jW   by the principle of competitive 

learning, namely 

( ) ( )
T

k j k j k j− = − −P W P W P W          

6:       end for 

7:     Find the winner neuron as 

                                  ( )* arg  min k jj = −P W                 

8:        Only the winning neurons *j
W  is updated based on 

the gradient descent method  

* * *( 1) ( ) ( )kj j j
t t t  + = + −

 
W W P W    

9:    end for 

10:  end for 

11:  Obtained L, jW  and R, jW  respectively 
 

Then, the K-Means++ algorithm is an improved version of K-

means, the most classical clustering algorithm in machine 

learning. This improvement is mainly reflected in the fact that 

the selection of the initial point is no longer randomly selected 

like K-means but calculates the shortest distance between each 

input sample and the known initial point. The greater the 

distance, the greater the probability of being selected as the 

initial point. Use route wheel selection to select the next initial 

point. This method ensures that the distance between the initial 

points is as far as possible, which can further reduce the 

clustering error. After the initial point is selected, the 

subsequent calculation steps are entirely consistent with K-

means. The pseudocode is given in Algorithm 3. For the 

bending shape of the soft manipulator, the experimental results 

of the above three machine learning algorithms are shown in 

Fig. 7. 

Algorithm 3 K-Means++ algorithm  

1: Select the center points number n   and iterations 

number 15l =   and input 2D contour P . 

2: Initialize a sample 
1(0)W  randomly. 

3: for 1; ; j j n j=  ++  do 

4:     for each 
kP  do  

5:          Calculate the shortest distance   

[1, ]
min (0)k k r
r j

D


= −P W  

6:        Calculate the probability of being selected as the 

initial point 
2

2

1

k
k h

k

k

D

D



=

=


 

7:     end for 

8:     Select the next initial point 1(0)j+W  by referring to 

the route wheel selection. 

9: end for 

10: Complete initialization (0)W  

11: Define the set  1,..., nC C C= =   

12: for 1; 16; l l l=  ++  do  

13:   for each kP  do 

14:       Calculate ( )
[1, n]

arg min k j
j

j


 = −P W   

Assign j j kC C = P . 

15:   end for 

16:   for 1; 1; j j n j=  + ++  do 

17:    Update 
k j

j k j

C

C






= 
P

W P  using all kP  belonging to 

jC  . 

18:   end for 

19: end for 

20: Output the center points W  

(a)                                 (b)                          (c) 

Fig. 7. Experimental results of various centerline extraction 

algorithms. (a) Competitive learning; (b) K-Means++; (c) 

SOM. 

What's more, thinning (Anton et al.  2017) is also a popular 

machine vision method to extract the centerline. It can thin the 

connected component pixel width of the binary image of the 

soft manipulator to one pixel for backbone extraction and 

topology representation. The algorithm steps are shown in Fig. 

8(a). After that, the desired number of center points is solved 

by taking points at equal intervals on the obtained centerline, 

and the center points extraction of the manipulator is 

completed. However, when the manipulator is not 

monotonically deformed along a certain axis, the center points 
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obtained by this method have a chaotic topology relationship 

(see Fig. 8(b)).  

 

(a)  

  

(b)  

Fig. 8. The effect of the thinning algorithm. (a) Steps of the 

thinning algorithm; (b) The topological relationship of the 

thinning and SOM. The center points obtained by the two 

algorithms are connected in order. 

To sum up, the results indicate that the competitive learning, 

K-means++, and thinning algorithm are not suitable for this 

research work. Competitive learning algorithm cannot 

accurately learn complex input samples because only the 

winning neuron is adjusted each time. K-means++ is too 

sensitive to initial conditions, which greatly affects the 

clustering results. The single iterative calculation process for 

the average value makes it have better results only for the input 

data with the circular distribution. The thinning algorithm 

requires an additional sorting algorithm to get the ordered 

center point. The SOM algorithm can not only intelligently 

learn complex input sample data, but also output the ordered 

center points. Therefore, the SOM algorithm is applied to the 

framework of this work for centerline extraction. 

5. EXPERIMENTAL RESULTS 

In this section, a real-time bending deformation experiment 

and comparative verification experiments are conducted, 

respectively, to evaluate the performance of the proposed 

framework by error analysis, including accuracy and real-time 

performance. 

5.1 Setup 

To further validate the effectiveness of the proposed 

framework, the experimental platform with the soft 

manipulator is established to conduct the experimental study. 

The details of the setup composition are shown in Fig. 9(a). In 

this work, the three-section pneumatic soft manipulator (Guan 

et al., 2020) is taken as the prototype to verify the framework. 

Each section of the prototype has PMAs with different bending 

modes, depending on the placement of the internal elastic 

frame, as shown in Fig.9(b). In the first section, four bending 

contractile PMAs (the braid angle is below 54.74 ) 

symmetrically distributed in parallel are fixed on the baseplate, 

which can bear the maximum load. The second section is 

composed of two bending extensile PMAs (the braid angle is 

larger than 54.74 ) symmetrically distributed in parallel, 

which is considered to provide a larger range of motion. The 

third section adopts a helical extensile PMA that produces both 

bending and rotational motions to facilitate grasping the target 

object. Each section of the prototype is connected in series by 

a 3D printed baseplate, and the maximum aspect ratio can 

reach 13.7. 

      

(a)                                                    (b) 

Fig. 9. Experimental platform of the soft manipulator. (a) 

Detail of the experimental setup; (b) The soft manipulator used 

in this work. 

5.2 Real-time bending deformation experiment  

A real-time bending deformation experiment is designed to 

verify the feasibility and robustness of the proposed 

framework. The voltage driver of the proportional valve is 

programmed to continuously increase the pressure filled into 

each section of the soft manipulator from 0 bar to 2.5 bar in 

fixed steps of 0.05 bar  thereby gradually deforming the 

manipulator to the maximum bending posture. ZED camera is 

opened to capture the image  and the resolution is 1280 × 720. 

At the same time  the shape estimation algorithm we proposed 

is run to track the 3D posture of the soft manipulator in real 

time. The whole dynamic bending process lasted for 58s  and 

690 groups of data were generated. The contour segmentation 

results during deformation are shown in Fig. 10(a). The 

selected data at equal time intervals are printed on the frame 

(20 sets of data in total)  and the initial and end posture are 

marked in red. The relative plane centerline extraction results 

based on the SOM algorithm LW and final 3D reconstruction 

results Q  are shown in Fig. 10(b) and Fig. 10(c)  respectively. 

For better description in the continuum form  the 6th-degree 

polynomial fitting is developed for each pose to form a smooth 

3D space curve. 
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(a)  

 

(b)   

 

(c)  

Fig. 1. Experimental results. (a) Contour segmentation during 

motion; (b) Plane centerline extraction results (c) Final 3D 

centerline estimation results. 

It should be pointed out that the first section manipulator is 

bent backward, orthogonal to the bending direction of the 

second section. Furthermore, the bending of the third section 

also appears as 3D torsion, but these actuation characteristics 

are not apparent from the above shooting angle. The 

framework we proposed has strong robustness to sense a 

variety of complex 3D postures of the soft manipulator in real 

time. 

5.3 Performance verification and error analysis 

Next  the accuracy of the proposed framework is evaluated. As 

a depth camera  ZED's built-in depth detection function can 

directly obtain 3D coordinates from the 2D left image 

coordinates of the target  that is  

L, L,,  ,  ( ,  )j j j j j jX Y Z g u v      = =   Q  . For the result of the 

same plane SOM algorithm in each frame  the depth detection 

function is called to obtain Q  directly and compare it with the 

Q   calculated by our framework. The 3D centerline 

comparison for the selected pose is shown in Fig. 11. 

Remark 4 The measurement error of the ZED camera is 

ignored to default Q  as the true value. 

 

Fig. 2. The 3D centerline comparison for the selected pose. 

Obviously  Q   is able to continuously approach to the Q  

with high accuracy. The following detailed error analysis will 

quantify the accuracy during the dynamic bending process. 

Calculate the root mean square error (RMSE) 
1/2

2

RMSE

1

e /
n

j j j
j

n
=

 
= − 

 
 Q Q   between the experimental 

results Q  and the true value Q  on each axis per frame  and 

the numerical error simulations before and after misalignment 

error compensation are shown in Fig. 12. In the process of 

dynamic deformation  the pose of the prototype at four times 

is recorded and marked at the corresponding time. It can be 

observed that RMSE is significantly reduced in each axis via 

misalignment error compensation. The z-axis error of each 

frame is the largest compared with other axes whether error 

compensation or not  because the depth is generated by 

employing the least squares method to solve the optimal 

solution of the system of linear overdetermined equations. 

Overall  in the whole process of dynamic deformation  the 

error fluctuation range is relatively stable  which also suggests 

that the proposed framework has strong robustness. 

 

Fig. 3. Error simulations on x  y  z axes during the motion. 
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Based on the above error data  the RMSE on each dimension 

during the entire motion (After error compensation) is further 

calculated as published in Table 2. Referring to the size of the 

entire manipulator (total length of 685mm)  the accuracy is 

still within an acceptable range. The generation of errors can 

be analyzed for the following two reasons: 1) ZED itself has 

an inevitable measurement error (<1%) for depth detection  

especially the stereo camera is sensitive to illumination 

changes  resulting in a deviation between Q   and the real 

value; 2) In the 3D reconstruction model  the numerical 

method can only find the optimal solution but can never get 

the exact solution  which also produces certain errors; 

Table 2. RMSE during the entire motion. 

x -axis y -axis z -axis 

2.9178 2.3287 5.5122 

In terms of real-time performance, the running time can be 

measured by setting the getTickCount function (supported by 

OpenCV) in the designed program. The fps (frames per 

second) during bending deformation is recorded in real time, 

as shown in Fig. 13, which indicates that our proposed 

algorithm framework can run stably at around 10 fps and 

perform well in real-time performance. Note that 

compensating for the misalignment error reduces the frame 

rate slightly but is not evident. Among them, there are two 

parts that mainly occupy time: 1) The SOM algorithm is 

executed independently for the left and right images per frame, 

which takes about 0.061s. 2) Owing to the slow real-time 

update of Matplotlib-3D, the 3D visualization program runs 

0.037s, and other 3D visualization modules will be considered 

to replace it in the future. The factors affecting real-time 

performance also include external factors such as processor 

performance and camera resolution. But in fact, the current fps 

of the framework is enough to provide shape information for 

the controller in real time. 

 

Fig. 13. The real-time performance simulation curve. 

In the end, the proposed framework is compared with five 

vision-based shape sensing algorithms for the soft manipulator 

in the current works. Table 3. lists that the performance of our 

framework has been improved in all aspects. The real-time 3D 

centerline estimation video is available in the supplementary 

file to further demonstrate it. 

Table 3. Comparison with other research work 

Algorithm 
Structure 

configuration 

Maximum 

error / 

manipulator 

length 

Real-time 

performance 

/fps 

Our work Three sections 
5.5/680 

=0.81% 
10 

AlBeladi et 

al. (2021) 
Three sections 

28.2/287 

=9.8% 
Not designed 

Manakov et 

al. (2021) 
Two sections 

0.56/80 

=0.7% 
1.43 

Lai et al. 

(2020)  
Two sections 

20.15/310 

=6.5% 
Not designed 

Vandini et al. 

(2014) 
One section 

2.98/60 

=4.9% 
2.78 

Camarillo et 

al. (2008)  

Alternative 

model 

7.84/160 

=4.9% 
3-4 

6. CONCLUSION 

In this work, a real-time 3D centerline estimation framework 

is proposed to reconstruct the spatial posture for the three-

section soft manipulator, and the algorithm verification and the 

performance evaluation are completed. The framework we 

designed integrates machine vision, machine learning, and 

real-time computing. The main conclusions are as follows: 

(1) For the plane centerline extraction of the soft manipulator, 

the clustering process of the SOM algorithm is more intelligent 

than other algorithms, and it has stronger robustness and 

effectiveness for the complex centerline extraction. In 

addition, the SOM algorithm also has order preserving for 

output, which is more suitable to settle this work. 

(2)  Experiments show that the proposed framework can stably 

estimate the centerline in real time during the whole dynamic 

bending process. 

(3) The accuracy and real-time performance are verified. The 

results confirm that the maximum RMSE is 5.5122, and the 

running speed can achieve 10fps. It is worth mentioning that 

although the misalignment error compensation makes the real-

time performance of the framework decline slightly, the 

accuracy has been greatly improved, which proves that the 

compensation is meaningful. 

(4) Compared with the visual shape detection algorithms in 

other works, our framework still has better accuracy and real-

time performance for the complex three-section soft 

manipulator. 
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