
CEAI, Vol. 9, No. 1, pp. 19-26, 2007 Printed in Romania

SOLVING SCHEDULING IN PHARMACEUTICAL INDUSTRY WITH
GENETIC ALGORITHMS

Elena Simona Nicoară

Petroleum-Gas University of Ploieşti, Informatics Department
Bd. Bucureşti, no. 39, Ploieşti, Romania, e-mail: snicoara@upg-ploiesti.ro

Abstract: The paperwork presents results of applying genetic algorithms in Job Shop Scheduling
Problems specific to pharmaceutical industry. These problems proved to be complex enough to
require special approaches, from the demand forecast stage to the distribution stage. In this study
there were applied, then compared, four genetic algorithms; there are two test cases: a real
scheduling problem in pharmaceutical production and the test-instance JSSP-type ft10, both
solved as uniobjective and multiobjective problems. The results show that the complex JSSPs can
be efficiently solved using the NSGA_II algorithms or the elitist genetic algorithm, depending on
the specific type of complexity.

Keywords: genetic algorithms, production systems, scheduling algorithms, multiobjective
optimizations, performance evaluation

1. STATE-OF-THE-ART IN PRODUCTION
SCHEDULING

In production environments, one of the main
purposes for global optimization is the
scheduling of all involved tasks, so that both
makespan and idleness time to be minimum.

The aim of this paperwork is to test genetic
algorithms on production complex scheduling in
order to detect the adequate conditions and the
possible limitations associated to this process.

The terminology in scheduling theory refers to
jobs formed of operations, resources, processing
time for an operation on a resource, routings of
jobs on the resources, production plant and
schedules. The schedule represents an order for

executing operations, plus the start processing
times for each operation. The solutions in
production scheduling are valid schedules.

The classes of production scheduling problems
are multiple, based on the different production
conditions:
• Minimum Job Shop Scheduling Problem

(JSSP), where jobs are structurally
heterogeneous;

• Minimum Open-Shop Scheduling, where
the operations do not have to be processed
in a certain order and the jobs are
homogenous (each job is processed on each
machine);

20 CONTROL ENGINEERING AND APPLIED INFORMATICS

• Minimum Flow-Shop Scheduling, where the
processing order on the machines is
identical for each job.

The complexity of JSSP class is bigger, taking
into account the heterogeneousness of the jobs
and the possibility of alternative routings for an
operation.

In this paperwork the focus is on this class of
production scheduling.

1.1 Job Shop Scheduling Problem

The JSSP is placed among the most difficult
combinatorial optimization problems. Formally,
the JSSP is defined as it follows [8]:

Input data:
- a set M of m ∈ Z+ resources (machines);
- a set J of jobs, each job consisting in a
sequence of n

Ji∈
i operations with ; jio , inj ≤≤1

- for each operation we know the machine which
processes it (mi,j) and the processing time
(Nji ∈,τ , ,). Ji∈ inj ≤≤1

Requirement:
A schedule for J - a collection of machine
schedules such that: Nmmof jijim →= }|{: ,,

• implies)()(',', jimjim ofof >

','',',)()(jijimjim ofof τ+≥ (the operation
once started, the machine which

processes it will become available only after
 is finished) and

jio ,

jio ,

• jijimjim ofof ,,1,)()(τ+≥+ (for an operation,
its successor in the same job will be
processed only after it is finished).

The cumulative constraints of JSSP are stated
here: non-preemption constraint, precedence
constraint and capacity constraint (a machine
processes one operation at a time). The last one
is understood from input data.

Objective:
Minimization of makespan for the schedule,
namely minimization of:

))((,,max max niiniim
Ji

ofC τ+=
∈

 (1)

If we note with ti,j the start processing time of
operation j of job i, then we can rewrite the
relation (1) as it follows:

)(,,
1,

max max jiji
njJi

tC
i

τ+=
≤≤∈

 (2)

The objective in JSSP is to find value of:

)min(maxmax
* CC = (3)

The JSSP can be viewed from many points of
view. It can be deterministic or stochastic, static
or dynamic, with flexible scheduling or not. The
variability of the parameters indicates the level
of incertitude. If this level is insignificant, the
JSSP is deterministic. Otherwise, it is stochastic.
In the static model of JSSP, the number and the
characteristics of the jobs remain unmodified
during the solving process, while in the dynamic
model these vary. The scheduling is flexible if
certain operations can be processed on more
alternative machines, which form a set of
alternatives.

The experience shows that JSSPs are not only
NP-difficult, but very difficult to solve even
heuristically [2].

For an accurate comparison of the techniques
and algorithms designed to solve JSSP, there
were created test problems, which provided a
common standard for testing and comparing.
These test problems represents, by dimension
and structure of input data, certain scheduling
characteristics. They are relevant for the
industry, they are realistic containing attributes
that produce commercial software products and
research results, and their input data are easy to
be read and interpreted. The instances have
different dimensions and complexity levels; this
fact leads to an easy determination of the
abilities and the limitations of the methods
tested on them.

The OR Library [1] provides over 80 scheduling
test instances.

Among these, the ft10, the most famous, was
proposed by Fisher & Thompson in 1963; it is a
difficult one, the first solution being identified
only after 24 years. It consists in 10 jobs, each
being formed of 10 operations, to be scheduled
on 10 machines.

Once that many schedules (different solutions)
were determined, we can compare them by
unary and binary performance measures (see
figure 1).

CONTROL ENGINEERING AND APPLIED INFORMATICS 21

Fig. 1. Performance measures for schedules

The last unary indicator (average idleness
fraction) is proposed by the author for
measuring how compact the operations in the
schedule sequence are. The more reduced its
value is, the more compact the schedule is,
because the waiting times of the operations are
small.

The most of performance measures for
schedules work at processing sequence level –
they consider the operation order, but ignore the
information about the start times associated to
the schedule.

One measure that takes into account both the
order of operations and the start and stop times
is the schedules overlapping measure. This
quantify the similarity of two schedules so that
identical schedules (as order and times) will
have a measure equal to 1, and two schedules
completely different a measure equal to 0.

1.2 The specific of scheduling in

pharmaceutical industry

The pharmaceutical industry requires special
conditions, from the demand forecast to the final
products distribution.

The hall-mark of job shop scheduling problems
is their complexity, determined by the difficulty
of representation, by the frequently hard
constraints, by a big consume of resources for
evaluating (partial) solutions and the huge
dimension of the search space. The inherent
restrictions of the production stage are:

• A high level of stringency, from the drug

formula detection to the financial decisions;

• The diversity of conditioning and packing
forms (sometimes, even for the same
product) – tabloids, capsules, solutions,
creams etc.;

• The often dynamic character of the
operations; in other industries the processes
remain constant for a certain product. The
processing stages can depend on the
previous or the next stages (ex. multiple
levels of clean up for tools);

• Generally, intolerance to wait for the
products, at any stage;

• The need to schedule so that certain stages
must not be interrupted at a shift end (for
those plants that do not work in flow);

• The impossibility to blend different
substances in storing rooms;

• Strict rules concerning the quality.
Frequently, the production is put on hold
until the quality experts approve the next
phases of processing;

• Flexible state of products: in formulation
stage, in production, stored, medicine for
approval or product in transit.

The strict quality standards are the main factor
which places this industry on a distinct position
against other production industries.

In every country there are professional agencies,
which deal with legislation, foreknowledge and
common practices in this field. In Romania, for
example, these are the Health Ministry and the
National Medicine Agency.

In a medicine production company,
conformation to GMP norms (Good
Manufacturing Practices) ensures the
international standards. The GMP certificate is
valid for both medicine fabrication and for
division, packing and labelling. Other practices
in the field are GLP (Good Laboratory
Practices) and GCP (Good Clinical Practices).

Besides these norms is also favourable the
international approval or expertise from certain
governmental organisations (Food and Drug
Administration, European Agency for the
Evaluation of Medical Products or
Environmental Protection Agency).

All these considerations imply supplementary
requirements to the scheduling systems. These
have to be flexible even if there are many
constraints, to be able to represent and to solve
problems for processes with diverse structures

22 CONTROL ENGINEERING AND APPLIED INFORMATICS

and to generate detailed schedules for diverse
periods (from one week to five years).

2. USING GENETIC ALGORITHMS IN
PHARMACEUTICAL INDUSTRY

Specifically, the JSSP is a nondeterministic hard
problem. Exact methods have been successfully
applied in solving only small instances. Their
most important disadvantages are:
• Lack of a global perspective;
• Inefficiency for problems with discrete

variables;
• Tendency to block in local optimal regions;
• Convergence dependent on initial solution;
• Inefficiency for parallel work environment;
• An efficient algorithm for a specific

problem may be inefficient for others
problems.

In contrast, the approximate methods, though do
not guarantee the global optimum identification,
they find much faster almost optimal solutions,
generally multiple. Among the approximate
techniques applied in scheduling domain
(GRASP - Greedy Randomized Adaptive Search
Procedure, agent-based methods, genetic
algorithms, PDRS - Priority Dispatch Rules
Systems, simulated annealing and tabu search),
the genetic algorithms prove to be well adequate
to the complex and big problems, with no
ordinary objective functions, such as scheduling
problems in pharmaceutical production.

Moreover, the genetic algorithms, being
evolutionary algorithms, present the advantage
of simultaneous treatment for many candidate
solutions, and by using the adequate
mechanisms for maintaining the population
diversity; they avoid blocking in local optima.
Besides these advantages, we can add:
• Free derivative characteristics;
• The global perspective;
• Simplicity for the preparation of the

optimization model;
• Parallel processing suitability.
The mathematical foundation for the
evolutionary algorithms (and consequently for
the genetic algorithms) is related to the
evolutionary search algorithms. According to
the theorems in evolutionary search algorithms
area, if an instance of a search problem, based
on fitness, can be described in terms of:
• a set of candidate solutions,

• a fitness function and
• a success fitness level,
then an evolutionary search algorithm can be
described in terms of two functions (one of
generating individuals and one of rejecting
individuals), that maintain the state of current
population [7].

As an effect, a JSSP can be solved with genetic
algorithms if we hold a set of candidate
solutions, an adequate fitness function and,
eventually, a success level of fitness.

The first attempt to use genetic algorithms to
solve JSSP belongs to Davis in 1985 [3]. He
demonstrated that these algorithms are adequate
to the simple scheduling, but the reasons for his
poor results were the ad-hoc genetic operators,
inadequate to the chosen encoding and the big
memory consumer chromosome representation.
Over the last twenty years, the evolutionary
algorithms have been applied to a variety of
scheduling problems, those in production area
being the majority.

The genetic encoding used is the most adequate
for the JSSP - the permutation encoding; every
candidate solution is a string of genes,
representing the operations to be processed. One
gene has the form (jobi, operationj), meaning the
j-th operation of the job i. An example of
candidate solution (individual), is this:

(6,1)(76,1)(53,1) ... (69,3) ... (54,8)(60,8).

A candidate solution will be interpreted by the
order of operations and the start times for every
operation. In the tests these times are obtained
by decoding the permutation in semiactive
schedule.

The validity of a candidate solution is judged
only from the precedence constraints point of
view, because the decoding of a candidate
solution is made so that the other constraints to
be satisfied.

The fitness function used for candidate solution
evaluation depends on the JSSP objective(s).

The test instances were solved:
• as uniobjective problems, where we aim

minimization of C*
max (see formula 2);

• as multiobjective problems, when we want
minimization of every value in (f0(x), f1(x),
f2(x)), where:

CONTROL ENGINEERING AND APPLIED INFORMATICS 23

x is the candidate solution;
f0(x) is the makespan: C*

max;
f1(x) is the number of delayed jobs;
f2(x) is the average idleness fraction(idleFr):

f2(x) =
ns

dvirtual
dvirtualdrealns

i i

ii∑
=

−

1 . (4)

Here, ns is the number of jobs, dreali the actual
duration of job i in the system and dvirtuali the
duration that job i would spend in the system if
all the needed resources were available when
they are necessary.

A big average idleness fraction is translated by
repeated waiting of some jobs in certain stages,
a fact with implications on overloading spaces in
the plant and on raising the number of delayed
operations.

The genetic operators were applied in many
variants, with the aim to identify the most
adequate model for each operator. For selection
we used the roulette-wheel model, the
tournament model and the elitist model. The
mutation variants were the frame-shift operator,
the translocation and the inversion operator.

For crossover there were developed over 10
different operators for permutation encoding.
Among these we used UX (Uniform Order-
Based Crossover) and PPX (Precedence
Preserving Crossover).

If the individual obtained by applying an
operator is not valid, the next action is one of the
following: apply an algorithm to legalize the
individual, apply iteratively the operator until
the result is valid or give up the operator
application.

In the paper there were tested four genetic
algorithms: the canonic genetic algorithm, one
elitist genetic algorithm, NSGA_II and
NSGA_II ADR (NSGA_II with Dynamic
Application of genetic operators and partial
population Reinitialization).
The canonic genetic algorithm requires
replacing entire population at each generation
with the new one, formed by applying genetic
operators. This algorithm, designed by Holland
in 1975 is:

1. t <- 0 (first generation)
2. pseudo-random initialization of population Pt

3. evaluate Pt
4. while evolution is not ended

4.1. t <- t + 1
4.2. selection in Pt
4.3. crossover of parents selected
4.4. insert the descendents in the new

population P’t
4.5. mutation for P’t
4.6. evaluate P’t
4.7. Pt <- P’t

5. return the best solutions in Pt

The elitist genetic algorithm uses an archive of
best individuals, formed during the evolution;
selection considers both current population and
archive.

The classical NSGA_II (Non-dominated Sorting
Genetic Algorithm), specially designed for
multiobjective problems, sorts the population
according to the level of non-domination, each
solution being compared with each other
solution to find if it is dominated. In this way
there are constructed the non-dominated fronts
(F) one by one, each consisting in individuals
non-dominated by those in the subsequent
fronts. NSGA_II uses as diversity preservation
mechanism a crowding distance comparison
operator, which guides the selection process
towards the true Pareto-optimal front, by
favouring the solutions in less dense regions in
each front. This algorithm uses a binary
tournament selection, where the selection
criterion is based on this operator [4]. The
pseudocode of NSGA_II is [4]:

1. t <- 0
2. pseudo-random initialisation of population Pt
3. quick sort (Pt)
4. Qt <- new_population(Pt)
5. while evolution is not ended

 5.1. Rt <- Pt ∪ Qt
 5.2. F <- quick_sort(Rt)
 5.3. Pt+1 <- ∅ , i <- 0
 5.4. until ⎜Pt+1⎜+⎜Fi⎜ ≤ N

 5.4.1. Pt+1 <- Pt+1 ∪ Fi
 5.4.2. crowding_distance(Fi)
 5.4.3. i <- i+1

 5.5. sor Pt t(Fi, ≥n)
 5.6. Pt+1 <- Pt+1∪ Fi[1:(N-⏐Pt+1⏐)]
 5.7. Qt+1 <- new_population(Pt+1)
 5.8. t <- t+1

6. return the best solutions in Pt

The improved variant of NSGA_II is designed
for multimodal problems, where the population

24 CONTROL ENGINEERING AND APPLIED INFORMATICS

can get attracted to a local Pareto-optimal front.
Although the crowded comparison operator
ensures a good diversity, this is done along the
current front; the lateral diversity is lost. To
ensure a better convergence, the authors of [5]
proposed a controlled elitism mechanism which
controls the extent of exploitation. This is done
by restricting adaptively the number of
individuals in the current best non-dominated
front using a reduction rate coefficient. This
mechanism allows solutions from all non-
dominated fronts to coexist in the population.

In this paperwork we applied the improved
variant.

The NSGA_II ADR contains two mechanisms
to avoid the premature convergence of the
algorithm towards suboptimal regions: dynamic
application of genetic operators and partial
population reinitialization [6]. To treat the
multiobjective aspect, in the canonic and the
elitist algorithms, we aggregated the objectives
by certain coefficients. For the NSGA_II and
NSGA_II ADR, we used the Pareto dominance.

3. SIMULATION RESULTS

3.1 Test cases

The first test case is a deterministic predictive
flexible JSSP, a real world problem in
pharmaceutical industry; here, the lot production
consists in fabrication of tabloids packed in
blisters or bottles, both of them being then
packed in boxes. The search space for this
instance is very big; it contains approximately
26*10388 candidate solutions.

This test problem consists in 79 jobs of 16
different types, each having maximum 10
operations, processed on 20 machines. In
addition, the routings involve the possibility to
choose the best machine among many
alternatives (the first available). The
chromosome length is therefore 606 genes.

For this test case, the measure unit chosen for
makespan is the number of 8 hours shifts.

The second test case is the ft10 test-instance. For
this, the candidate solutions are formed only by
100 genes, but its complexity level is high
enough. The best known solution has a value of
930 makespan.

From the multiobjective point of view, the
deadline for the first test case is 44 shifts, and
for the ft10 the deadline is the moment 1000.

3.2 Results

The comparative tests consist in execution of the
four genetic algorithms for the two test cases,
both solved as uniobjective and multiobjective
problems. The presented results are obtained
based on many sets of different parameters
values. In addition, taking into account the
random factor correspondent to the application
of genetic algorithms, every algorithm was run
many times for each set of parameters values.

We executed for every algorithm 50 runs for 5
different parameters values; the evolution was
performed with a population of 300, 500
generations, crossover rates between 0.3 and 0.7
and mutation rates between 0.01 and 0.1.

The comparative results are presented in Table
1- 4; we use the following abbreviations: BF for
the best fitness, AvF for average fitness, WF for
the worst fitness, DivSS for diversity in
schedules space (measured by the number of
solutions identified per run), DivOS for diversity
in objective space (measured by variance of
objective values), OSE1 for objective space
exploration (measured by variation range
dimension for makespan) and OSE2 for
objective space exploatation (measured by
solutions with best makespan). RT specifies the
run time.

For the uniobjective case the fitness is denoted
by makespan value. For the multiobjective case:

• BF is the aggregated objective value plus

the makespan associated with that value;
• AvF and WF are the average and,

respectively, worst aggregated fitness;
• the coefficients used for aggregation were

(0.5, 0.1, 0.4) for the first test case and (0.8,
0.2) for ft10.

CONTROL ENGINEERING AND APPLIED INFORMATICS 25

Table 1: Performance measures obtained by the four
genetic algorithms, in the first uniobjective test case

 A
Measure

lgorithm Canonic Elitist NSGA
_II

NSGA_II
ADR

BF 58.25 48.56 48.16 47.99
AvF 60.37 49.02 48.64 48.48
WF 68.27 50.05 49.23 48.99
DivSS 1.40 67.40 184.20 235.04
DivOS 3.29 0.48 0.40 0.33
OSE1,
shifts 10.02 1.49 1.70 1.00

OSE2, % 10% 23% 24% 27%
RT, s 19.08 14.24 10.40 10.80

These data show th DR

est genetic algorithm viewed from all

s in the first multiobjective test case

 that e NSGA_II A is the
b
perspectives: solutions fitness, diversity in
schedules space and objective space, exploration
and exploitation of objective space. The
NSGA_II algorithm obtains better results than
the elitist, and the canonic genetic algorithm
detaches from all of these by its low efficiency.

In the multiobjective first test case, the

erformance separation is not so clear any morep
(see Table 2).

Table 2: Performance measures obtained by the four
enetic algorithmg

 Algorithm
Measure

Canonic Elitist NSGA
_II

NSGA_II
ADR

MinM 56.40 48.24 48.08 48.10
Aggr. 43.76 29.97 29.29 29.66

Solution
C*

max 56.40 48.83 48.08 48.72
delay
Op 68.00 9.00 6.00 10.00

BF

idleFr 21.90 11.65 11.62 10.77
AvF 51.16 29.30 29.57 31.15
WF 58.00 29.92 29.92 34.08
DivSS 1.00 1.90 1.20 15.66
DivOS 5.06 0.27 0.23 0.70
OSE1, shifts 5.89 3.55 3.94 3.70

C*
ma

x
39% 64% 62% 78%OSE2,

%
Aggr 12% 32% 28% 15%

RT, s 30.95 276.24 202.3
6 225.67

The NSGA_II algorithm obtained a solution

ith makespan 48.08 shifts, while the NSGA_II

the
ominance relation between the algorithms can

minate the canonic

•
 elitist genetic algorithm;

g that

By st makespans in the two

bles, we see that the value obtained for the

lues indicate best results.

he
est for the uniobjective case, obtaining

formance measures obtained by the four
genetic algorithms, in the uniobjective ft10

Alg
Measure _II

_II
ADR

w

ADR obtained a makespan with 10 minutes
bigger. Another aspect is that the last algorithm
is able to identify in big proportion (78%) good
quality solutions, especially from the first
objective point of view, the most important.

Based on the Pareto optimal fronts,
d
be expressed as it follows:
• The elitist genetic algorithm, NSGA_II and

NSGA_II ADR totally do
genetic algorithm; it means that every
solution obtained by the last one is
dominated by a solution of others
algorithms;
NSGA_II and NSGA_II ADR totally
dominate the

• Between NSGA_II and NSGA_II ADR
there is no dominance relation, meanin
they can not be compared based on the
identified fronts.

comparing the be
ta
multiobjective case (48.08 shifts) is only 1.6
hours bigger than the value for the uniobjective
case (47.99 shifts).

In all tables, bold va

For the ft10, the NSGA_II ADR algorithm is t
b
solutions with makespan 1013 (see Table 3).
This value is smaller (better) with 4% than the
best makespan obtained by the elitist algorithm
and with 16% than that obtained with NSGA_II
algorithm.

Table 3: Per

orithm Canonic Elitist NSGA NSGA

BF 1342 1054 1216 1013
AvF 1384 1213 1265 1102
WF 1553 1355 1345 1306
OSE1 211 301 129 293
RT, s 0.11 3.30 1.75 0.70

For the biobjective ft10 (see Table 4), the elitist
g algorit ro o he
dequate. The NSGA_II ADR algorithm
enetic hm p ves t be t most

a
identifies the biggest number of solutions per
run (8.36 in average), comparing to the elitist
algorithm (4.3) and NSGA_II algorithm (5.5).

26 CONTROL ENGINEERING AND APPLIED INFORMATICS

This indicates a better diversity of the solutions
in the schedules space. Regarding the diversity
in the first objective space, the biggest
dimension for the makespan variation range is
obtained when the elitist algorithm is used.

Table 4: Performance measures obtained by the four

genetic algorithms, in the biobjective ft10

 Algorithm
Measure

Elitist NSGA_II NSGA_II
ADR

MinM 1054 1175 1096
Aggr. 844.2 943.2 878.4

Solution
C*

max 1054 1175 1096
BF

delayOp 5 16 8
AvF 823.5 934.6 890.3
WF 893.8 992.1 956.5
DivSS 4.3 5.5 8.36
OSE1 412 456 213

Th ulation results were obtained on a PC
with AMD Athlon 1600 MHz processor and 256

B RAM.

. CONCLUSIONS

 the attempt to test genetic algorithm usage in
solving det P, we applied

ur genetic algorithms on two test cases, seen

.
or the first uniobjective test case, the real

se, ft10 test-instance, also show that
enetic algorithms are recommended for this

EFERENCES

 OR library: distributing test
problems by electronic mail, European

[2]
cheduling problems, Osnabruck

[3]
Proceedings of the International

[4]
ominated Sorting

[5]
minated Sorting Genetic Algorithms

[6]
in

[7]
ology for using evolutionary search

[8]
 approximation

e sim

M

4

In

erministic flexible JSS
fo
as uniobjective and multiobjective problems.
The algorithms are the canonic genetic
algorithm, an elitist genetic algorithm, the
NSGA_II and the NSGA_II ADR algorithms.

The results obtained point out the suitability of
the last three algorithms for the complex JSSP
F
deterministic static flexible JSSP, the best
makespan obtained by using genetic algorithms
is 9% better than the makespan obtained through
empirical methods. In the multiobjective case,
the makespan is bigger than 47.99 with only 1.6
hours.

The performance values obtained for the second
test ca
g
kind of problems. The best makespan obtained
is 1013. Even if this value is bigger than the best

known value (with 0.089%), many other applied
methods obtained much poorer values than this.
As a final conclusion, the results are satisfactory
for the performance criteria of evolutionary

algorithms: covering and diversity of search
space and objective space, quality of the
solutions and algorithm convergence.

R

[1] Beasley, J.E.,

Journal of Operational Research 41, p. 1069,
1990.
Brucker, P., Knust, S., Complexity results
for s
University.
Davis, L., Job shop scheduling with genetic
algorithms,
Conference on Genetic Algorithms and their
Applications, San Mateo, Morgan
Kaufmann, p. 136, 1985.
Deb, K., Agrawal, S., Pratap, A., Meyarivan,
T., A Fast Elitist Non-D
Genetic Algorithm for Multi-Objective
Optimization: IEEE Transactions on
Evolutionary Computation, 6(2), p. 182
2000.
K. Deb, T. Goel (2000), Controlled Elitist
Non-do
for Better Convergence, Lecture Notes in
Computer Science, vol. 1993, Proceedings
of the First International Conference on
Evolutionary Multi-Criterion Optimization,
Springer-Verlag, London, p. 67, 2001.

Nicoară, E.S., Contributions regarding
evolutionary algorithms usage
pharmaceutical production precess, doctoral
thesis, Petroleum-Gas University of Ploieşti,
2005.

Sharpe, O.J., Towards a rational
method
algorithms, doctoral thesis, School of
Cognitive and Computing Sciences,
University of Sussex, 2000.
***, A compendium of NP optimization
problems, in Complexity and
combinatorial optimization problems and
their approximability properties, by Ausiello
et al., Springer Verlag, 2004.

http://www.springer.de/

