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Abstract: The paperwork presents results of applying genetic algorithms in Job Shop Scheduling 
Problems specific to pharmaceutical industry. These problems proved to be complex enough to 
require special approaches, from the demand forecast stage to the distribution stage. In this study 
there were applied, then compared, four genetic algorithms; there are two test cases: a real 
scheduling problem in pharmaceutical production and the test-instance JSSP-type ft10, both 
solved as uniobjective and multiobjective problems. The results show that the complex JSSPs can 
be efficiently solved using the NSGA_II algorithms or the elitist genetic algorithm, depending on 
the specific type of complexity. 
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1. STATE-OF-THE-ART IN PRODUCTION 
SCHEDULING 

 
In production environments, one of the main 
purposes for global optimization is the 
scheduling of all involved tasks, so that both 
makespan and idleness time to be minimum. 
 
The aim of this paperwork is to test genetic 
algorithms on production complex scheduling in 
order to detect the adequate conditions and the 
possible limitations associated to this process. 
 
The terminology in scheduling theory refers to 
jobs formed of operations, resources, processing 
time for an operation on a resource, routings of 
jobs on the resources, production plant and 
schedules. The schedule represents an order for 

executing operations, plus the start processing 
times for each operation. The solutions in 
production scheduling are valid schedules. 
 
The classes of production scheduling problems 
are multiple, based on the different production 
conditions:  
• Minimum Job Shop Scheduling Problem 

(JSSP), where jobs are structurally 
heterogeneous;  

• Minimum Open-Shop Scheduling, where 
the operations do not have to be processed 
in a certain order and the jobs are 
homogenous (each job is processed on each 
machine);  
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• Minimum Flow-Shop Scheduling, where the 
processing order on the machines is 
identical for each job.  

 
The complexity of JSSP class is bigger, taking 
into account the heterogeneousness of the jobs 
and the possibility of alternative routings for an 
operation.  
 
In this paperwork the focus is on this class of 
production scheduling.  
 
 
1.1 Job Shop Scheduling Problem 
 
The JSSP is placed among the most difficult 
combinatorial optimization problems. Formally, 
the JSSP is defined as it follows [8]: 
 
Input data:  
- a set M of  m ∈ Z+ resources (machines); 
- a set J of jobs, each job  consisting in a 
sequence of n

Ji∈
i operations with ; jio , inj ≤≤1

- for each operation we know the machine which 
processes it (mi,j) and the processing time 
( Nji ∈,τ , , ).   Ji∈ inj ≤≤1
 
Requirement:  
A schedule for J - a collection of machine 
schedules  such that:  Nmmof jijim →= }|{: ,,

• implies )()( ',', jimjim ofof >

','',', )()( jijimjim ofof τ+≥  (the operation 
once started, the  machine which 

processes it will become available only after 
 is finished) and  

jio ,

jio ,

•  jijimjim ofof ,,1, )()( τ+≥+  (for an operation, 
its successor in the same job will be 
processed only after it is finished). 

 
The cumulative constraints of JSSP are stated 
here: non-preemption constraint, precedence 
constraint and capacity constraint (a machine 
processes one operation at a time). The last one 
is understood from input data. 
 
Objective:  
Minimization of makespan for the schedule, 
namely minimization of: 

))(( ,,max max niiniim
Ji

ofC τ+=
∈

                       (1)  

If we note with ti,j the start processing time of 
operation j of job i, then we can rewrite the 
relation (1) as it follows: 
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i
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                                   (2) 

 
The objective in JSSP is to find value of: 
 

)min( maxmax
* CC =                                            (3) 

 
The JSSP can be viewed from many points of 
view. It can be deterministic or stochastic, static 
or dynamic, with flexible scheduling or not. The 
variability of the parameters indicates the level 
of incertitude. If this level is insignificant, the 
JSSP is deterministic. Otherwise, it is stochastic. 
In the static model of JSSP, the number and the 
characteristics of the jobs remain unmodified 
during the solving process, while in the dynamic 
model these vary. The scheduling is flexible if 
certain operations can be processed on more  
alternative machines, which form a set of 
alternatives. 
 
The experience shows that JSSPs are not only 
NP-difficult, but very difficult to solve even 
heuristically [2]. 
 
For an accurate comparison of the techniques 
and algorithms designed to solve JSSP, there 
were created test problems, which provided a 
common standard for testing and comparing. 
These test problems represents, by dimension 
and structure of input data, certain scheduling 
characteristics. They are relevant for the 
industry, they are realistic containing attributes 
that produce commercial software products and  
research results, and their input data are easy to 
be read and interpreted. The instances have 
different dimensions and complexity levels; this 
fact leads to an easy determination of the 
abilities and the limitations of the methods 
tested on them. 
 
The OR Library [1] provides over 80 scheduling 
test instances. 
 
Among these, the ft10, the most famous, was 
proposed by Fisher & Thompson in 1963; it is a 
difficult one, the first solution being identified 
only after 24 years. It consists in 10 jobs, each 
being formed of 10 operations, to be scheduled 
on 10 machines.  
 
Once that many schedules (different solutions) 
were determined, we can compare them by 
unary and binary performance measures (see 
figure 1). 
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Fig. 1. Performance measures for schedules 
 
The last unary indicator (average idleness 
fraction) is proposed by the author for 
measuring how compact the operations in the 
schedule sequence are. The more reduced its 
value is, the more compact the schedule is, 
because the waiting times of the operations are 
small. 
 
The most of performance measures for 
schedules work at processing sequence level – 
they consider the operation order, but ignore the 
information about the start times associated to 
the schedule.  
 
One measure that takes into account both the 
order of operations and the start and stop times 
is the schedules overlapping measure. This 
quantify the similarity of two schedules so that 
identical schedules (as order and times) will 
have a measure equal to 1, and two schedules 
completely different a measure equal to 0.  
 
 
1.2 The specific of scheduling in 

pharmaceutical industry 
 
The pharmaceutical industry requires special 
conditions, from the demand forecast to the final 
products distribution. 
 
The hall-mark of job shop scheduling problems 
is their complexity, determined by the difficulty 
of representation, by the frequently hard 
constraints, by a big consume of resources for 
evaluating (partial) solutions and the huge 
dimension of the search space. The inherent 
restrictions of the production stage are: 
 
• A high level of stringency, from the drug 

formula detection to the financial decisions; 

• The diversity of conditioning and packing 
forms (sometimes, even for the same 
product) – tabloids, capsules, solutions, 
creams etc.;  

• The often dynamic character of the 
operations; in other industries the processes 
remain constant for a certain product. The 
processing stages can depend on the 
previous or the next stages (ex. multiple 
levels of clean up for tools); 

• Generally, intolerance to wait for the 
products, at any stage; 

• The need to schedule so that certain stages 
must not be interrupted at a shift end (for 
those plants that do not work in flow); 

• The impossibility to blend different 
substances in storing rooms; 

• Strict rules concerning the quality. 
Frequently, the production is put on hold 
until the quality experts approve the next 
phases of processing; 

• Flexible state of products: in formulation 
stage, in production, stored, medicine for 
approval or product in transit. 

 
The strict quality standards are the main factor 
which places this industry on a distinct position 
against other production industries. 
 
In every country there are professional agencies, 
which deal with legislation, foreknowledge and 
common practices in this field. In Romania, for 
example, these are the Health Ministry and the 
National Medicine Agency.  
 
In a medicine production company, 
conformation to GMP norms (Good 
Manufacturing Practices) ensures the 
international standards. The GMP certificate is 
valid for both medicine fabrication and for 
division, packing and labelling. Other practices 
in the field are GLP (Good Laboratory 
Practices) and GCP (Good Clinical Practices). 
 
Besides these norms is also favourable the 
international approval or expertise from certain 
governmental organisations (Food and Drug 
Administration, European Agency for the 
Evaluation of Medical Products or 
Environmental Protection Agency). 
 
All these considerations imply supplementary 
requirements to the scheduling systems. These 
have to be flexible even if there are many 
constraints, to be able to represent and to solve 
problems for processes with diverse structures 
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and to generate detailed schedules for diverse 
periods (from one week to five years). 
 
 

2. USING GENETIC ALGORITHMS IN 
PHARMACEUTICAL INDUSTRY 

 
Specifically, the JSSP is a nondeterministic hard 
problem. Exact methods have been successfully 
applied in solving only small instances. Their 
most important disadvantages are: 
• Lack of a global perspective; 
• Inefficiency for problems with discrete 

variables; 
• Tendency to block in local optimal regions; 
• Convergence dependent on initial solution; 
• Inefficiency for parallel work environment; 
• An efficient algorithm for a specific 

problem may be inefficient for others 
problems. 

 
In contrast, the approximate methods, though do 
not guarantee the global optimum identification, 
they find much faster almost optimal solutions, 
generally multiple. Among the approximate 
techniques applied in scheduling domain 
(GRASP - Greedy Randomized Adaptive Search 
Procedure, agent-based methods, genetic 
algorithms, PDRS - Priority Dispatch Rules 
Systems, simulated annealing and tabu search),  
the genetic algorithms prove to be well adequate 
to the complex and big problems, with no 
ordinary objective functions, such as scheduling 
problems in pharmaceutical production. 
 
Moreover, the genetic algorithms, being 
evolutionary algorithms, present the advantage 
of simultaneous treatment for many candidate 
solutions, and by using the adequate 
mechanisms for maintaining the population 
diversity; they avoid blocking in local optima.  
Besides these advantages, we can add: 
• Free derivative characteristics; 
• The global perspective; 
• Simplicity for the preparation of the 

optimization model; 
• Parallel processing suitability. 
The mathematical foundation for the 
evolutionary algorithms (and consequently for 
the genetic algorithms) is related to the 
evolutionary search algorithms. According to 
the theorems in evolutionary search algorithms 
area, if an instance of a search problem, based 
on fitness, can be described in terms of: 
• a set of candidate solutions,  

• a fitness function and   
• a success fitness level, 
then an evolutionary search algorithm can be 
described in terms of two functions (one of 
generating individuals and one of rejecting 
individuals), that maintain the state of current 
population [7]. 
 
As an effect, a JSSP can be solved with genetic 
algorithms if we hold a set of candidate 
solutions, an adequate fitness function and, 
eventually, a success level of fitness. 
 
The first attempt to use genetic algorithms to 
solve JSSP belongs to Davis in 1985 [3]. He 
demonstrated that these algorithms are adequate 
to the simple scheduling, but the reasons for his 
poor results were the ad-hoc genetic operators, 
inadequate to the chosen encoding and the big 
memory consumer chromosome representation.  
Over the last twenty years, the evolutionary 
algorithms have been applied to a variety of 
scheduling problems, those in production area 
being the majority. 
 
The genetic encoding used is the most adequate 
for the JSSP - the permutation encoding; every 
candidate solution is a string of genes, 
representing the operations to be processed. One 
gene has the form (jobi, operationj), meaning the 
j-th operation of the job i. An example of 
candidate solution (individual), is this: 
 
(6,1)(76,1)(53,1) ... (69,3) ... (54,8)(60,8). 
 
A candidate solution will be interpreted by the 
order of operations and the start times for every 
operation. In the tests these times are obtained 
by decoding the permutation in semiactive 
schedule. 
 
The validity of a candidate solution is judged 
only from the precedence constraints point of 
view, because the decoding of a candidate 
solution is made so that the other constraints to 
be satisfied.  
 
The fitness function used for candidate solution 
evaluation depends on the JSSP objective(s). 
  
The test instances were solved:  
• as uniobjective problems, where we aim 

minimization of C*
max (see formula 2); 

• as multiobjective problems, when we want 
minimization of every value in (f0(x), f1(x), 
f2(x)), where: 
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x  is the candidate solution; 
f0(x) is the makespan: C*

max; 
f1(x) is the number of delayed jobs; 
f2(x) is the average idleness fraction(idleFr): 
 

f2(x) = 
ns

dvirtual
dvirtualdrealns

i i

ii∑
=

−

1 .                             (4) 

 
Here, ns is the number of jobs, dreali the actual 
duration of job i in the system and dvirtuali the 
duration that job i would spend in the system if 
all the needed resources were available when 
they are necessary. 
 
A big average idleness fraction is translated by 
repeated waiting of some jobs in certain stages, 
a fact with implications on overloading spaces in 
the plant and on raising the number of delayed 
operations. 
 
The genetic operators were applied in many 
variants, with the aim to identify the most 
adequate model for each operator. For selection 
we used the roulette-wheel model, the 
tournament model and the elitist model. The 
mutation variants were the frame-shift operator, 
the translocation and the inversion operator. 
 
For crossover there were developed over 10 
different operators for permutation encoding. 
Among these we used UX (Uniform Order-
Based Crossover) and PPX (Precedence 
Preserving Crossover). 
 
If the individual obtained by applying an 
operator is not valid, the next action is one of the 
following: apply an algorithm to legalize the 
individual, apply iteratively the operator until 
the result is valid or give up the operator 
application. 
 
In the paper there were tested four genetic 
algorithms: the canonic genetic algorithm, one 
elitist genetic algorithm, NSGA_II and 
NSGA_II ADR (NSGA_II with Dynamic 
Application of genetic operators and partial 
population Reinitialization).  
The canonic genetic algorithm requires 
replacing entire population at each generation 
with the new one, formed by applying genetic 
operators. This algorithm, designed by Holland 
in 1975 is: 
 
1. t <- 0 (first generation) 
2. pseudo-random initialization of population Pt

3. evaluate Pt
4. while evolution is not ended 

4.1. t <- t + 1 
4.2. selection in Pt
4.3. crossover of parents selected 
4.4. insert the descendents in the new 

population P’t
4.5. mutation for P’t
4.6. evaluate P’t
4.7. Pt <- P’t

5. return the best solutions in Pt
 
The elitist genetic algorithm uses an archive of 
best individuals, formed during the evolution; 
selection considers both current population and 
archive.          
 
The classical NSGA_II (Non-dominated Sorting 
Genetic Algorithm), specially designed for 
multiobjective problems, sorts the population 
according to the level of non-domination, each 
solution being compared with each other 
solution to find if it is dominated. In this way 
there are constructed the non-dominated fronts 
(F) one by one, each consisting in individuals 
non-dominated by those in the subsequent 
fronts. NSGA_II uses as diversity preservation 
mechanism a crowding distance comparison 
operator, which guides the selection process 
towards the true Pareto-optimal front, by 
favouring the solutions in less dense regions in 
each front. This algorithm uses a binary 
tournament selection, where the selection 
criterion is based on this operator [4]. The 
pseudocode of NSGA_II is [4]: 
 
1. t <- 0  
2. pseudo-random initialisation of population Pt  
3. quick sort (Pt) 
4. Qt <- new_population(Pt) 
5. while evolution is not ended 

   5.1. Rt <- Pt ∪ Qt
   5.2. F <- quick_sort(Rt) 
   5.3. Pt+1 <- ∅ , i <- 0 
   5.4. until ⎜Pt+1⎜+⎜Fi⎜ ≤ N 

     5.4.1. Pt+1 <- Pt+1 ∪ Fi
     5.4.2. crowding_distance(Fi) 
     5.4.3. i <- i+1 

   5.5. sor Pt t(Fi, ≥n ) 
   5.6. Pt+1 <- Pt+1∪ Fi[1:(N-⏐Pt+1⏐)] 
   5.7. Qt+1 <- new_population(Pt+1) 
   5.8. t <- t+1 

6. return the best solutions in Pt
 
The improved variant of NSGA_II is designed 
for multimodal problems, where the population 
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can get attracted to a local Pareto-optimal front. 
Although the crowded comparison operator 
ensures a good diversity, this is done along the 
current front; the lateral diversity is lost. To 
ensure a better convergence, the authors of [5] 
proposed a controlled elitism mechanism which 
controls the extent of exploitation. This is done 
by restricting adaptively the number of 
individuals in the current best non-dominated 
front using a reduction rate coefficient. This 
mechanism allows solutions from all non-
dominated fronts to coexist in the population. 
 
In this paperwork we applied the improved 
variant. 
 
The NSGA_II ADR contains two mechanisms 
to avoid the premature convergence of the 
algorithm towards suboptimal regions: dynamic 
application of genetic operators and partial 
population reinitialization [6]. To treat the 
multiobjective aspect, in the canonic and the 
elitist algorithms, we aggregated the objectives 
by certain coefficients. For the NSGA_II and 
NSGA_II ADR, we used the Pareto dominance.  
 
 

3. SIMULATION RESULTS 
 
3.1 Test cases  
 
The first test case is a deterministic predictive 
flexible JSSP, a real world problem in 
pharmaceutical industry; here, the lot production 
consists in fabrication of tabloids packed in 
blisters or bottles, both of them being then 
packed in boxes. The search space for this 
instance is very big; it contains approximately 
26*10388 candidate solutions. 
 
This test problem consists in 79 jobs of 16 
different types, each having maximum 10 
operations, processed on 20 machines. In 
addition, the routings involve the possibility to 
choose the best machine among many 
alternatives (the first available). The 
chromosome length is therefore 606 genes. 
 
For this test case, the measure unit chosen for 
makespan is the number of 8 hours shifts. 
 
The second test case is the ft10 test-instance. For 
this, the candidate solutions are formed only by 
100 genes, but its complexity level is high 
enough. The best known solution has a value of 
930 makespan.  

From the multiobjective point of view, the 
deadline for the first test case is 44 shifts, and 
for the ft10 the deadline is the moment 1000. 
 
 
3.2 Results  
 
The comparative tests consist in execution of the 
four genetic algorithms for the two test cases, 
both solved as uniobjective and multiobjective 
problems. The presented results are obtained 
based on many sets of different parameters 
values. In addition, taking into account the 
random factor correspondent to the application 
of genetic algorithms, every algorithm was run 
many times for each set of parameters values.  
 
We executed for every algorithm 50 runs for 5 
different parameters values; the evolution was 
performed with a population of 300, 500 
generations, crossover rates between 0.3 and 0.7 
and mutation rates between 0.01 and 0.1.  
 
The comparative results are presented in Table 
1- 4; we use the following abbreviations: BF for 
the best fitness, AvF for average fitness, WF for 
the worst fitness, DivSS for diversity in 
schedules space (measured by the number of 
solutions identified per run), DivOS for diversity 
in objective space (measured by variance of 
objective values), OSE1 for objective space 
exploration (measured by variation range 
dimension for makespan) and OSE2 for 
objective space exploatation (measured by 
solutions with best makespan). RT specifies the 
run time. 
 
For the uniobjective case the fitness is denoted 
by makespan value. For the multiobjective case: 
 
• BF is the aggregated objective value plus 

the makespan associated with that value; 
• AvF and WF are the average and, 

respectively, worst aggregated fitness; 
• the coefficients used for aggregation were 

(0.5, 0.1, 0.4) for the first test case and (0.8, 
0.2) for ft10. 
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Table 1: Performance measures obtained by the four 
genetic algorithms, in the first uniobjective test case 

 
  A
Measure  

lgorithm Canonic Elitist  NSGA
_II 

NSGA_II
ADR 

BF 58.25 48.56 48.16 47.99
AvF  60.37 49.02 48.64 48.48
WF 68.27 50.05 49.23 48.99
DivSS 1.40 67.40 184.20 235.04
DivOS 3.29 0.48 0.40 0.33
OSE1, 
shifts 10.02 1.49 1.70 1.00

OSE2, %  10% 23% 24% 27%
RT, s 19.08 14.24 10.40 10.80
 
These data show th DR

est genetic algorithm viewed from all 

 

s in the first multiobjective test case 

 that e NSGA_II A  is the 
b
perspectives: solutions fitness, diversity in 
schedules space and objective space, exploration 
and exploitation of objective space. The 
NSGA_II algorithm obtains better results than 
the elitist, and the canonic genetic algorithm 
detaches from all of these by its low efficiency.  
 
In the multiobjective first test case, the 

erformance separation is not so clear any morep
(see Table 2). 
 
Table 2: Performance measures obtained by the four 
enetic algorithmg

 
  Algorithm 
Measure  

Canonic Elitist  NSGA
_II 

NSGA_II
ADR 

MinM 56.40 48.24 48.08 48.10
Aggr. 43.76 29.97 29.29 29.66

Solution 
C*

max 56.40 48.83 48.08 48.72
delay
Op 68.00 9.00 6.00 10.00

BF 

idleFr 21.90 11.65 11.62 10.77
AvF  51.16 29.30 29.57 31.15
WF 58.00 29.92 29.92 34.08
DivSS 1.00 1.90 1.20 15.66
DivOS 5.06 0.27 0.23 0.70
OSE1, shifts 5.89 3.55 3.94 3.70 

C*
ma

x
39% 64% 62% 78%OSE2, 

%  
Aggr 12% 32% 28% 15%

RT, s 30.95 276.24 202.3
6 225.67

 
The NSGA_II algorithm obtained a solution 

ith makespan 48.08 shifts, while the NSGA_II 

the 
ominance relation between the algorithms can 

minate the canonic 

• 
 elitist genetic algorithm; 

g that 

 
By st makespans in the two 

bles, we see that the value obtained for the 

lues indicate best results. 

he 
est for the uniobjective case, obtaining 

formance measures obtained by the four 
genetic algorithms, in the uniobjective ft10 

Alg
Measure  _II 

_II
ADR 

w

ADR obtained a makespan with 10 minutes 
bigger. Another aspect is that the last algorithm 
is able to identify in big proportion (78%) good 
quality solutions, especially from the first 
objective point of view, the most important.  
 
Based on the Pareto optimal fronts, 
d
be expressed as it follows: 
• The elitist genetic algorithm, NSGA_II and 

NSGA_II ADR totally do
genetic algorithm; it means that every 
solution obtained by the last one is 
dominated by a solution of others 
algorithms; 
NSGA_II and NSGA_II ADR totally 
dominate the

• Between NSGA_II and NSGA_II ADR 
there is no dominance relation, meanin
they can not be compared based on the 
identified fronts.  

comparing the be
ta
multiobjective case (48.08 shifts) is only 1.6 
hours bigger than the value for the uniobjective 
case (47.99 shifts). 
 
In all tables, bold va
 
For the ft10, the NSGA_II ADR algorithm is t
b
solutions with makespan 1013 (see Table 3). 
This value is smaller (better) with 4% than the 
best makespan obtained by the elitist algorithm 
and with 16% than that obtained with NSGA_II 
algorithm. 
 
Table 3: Per

 
orithm Canonic Elitist  NSGA NSGA

BF 1342 1054 1216 1013
AvF  1384 1213  1265 1102
WF 1553 1355 1345 1306
OSE1 211 301 129 293
RT, s 0.11 3.30 1.75 0.70

 
For the biobjective ft10 (see Table 4), the elitist 
g  algorit ro o he  
dequate. The NSGA_II ADR algorithm 
enetic hm p ves t be t most

a
identifies the biggest number of solutions per 
run (8.36 in average), comparing to the elitist 
algorithm (4.3) and NSGA_II algorithm (5.5). 
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This indicates a better diversity of the solutions 
in the schedules space. Regarding the diversity 
in the first objective space, the biggest 
dimension for the makespan variation range is 
obtained when the elitist algorithm is used.  
 
Table 4: Performance measures obtained by the four 

genetic algorithms, in the biobjective ft10 
 

      Algorithm 
Measure  

Elitist  NSGA_II NSGA_II
ADR 

MinM 1054 1175 1096
Aggr. 844.2 943.2 878.4

Solution 
C*

max 1054 1175 1096
BF 

delayOp 5 16 8
AvF  823.5 934.6 890.3
WF 893.8 992.1 956.5
DivSS 4.3 5.5 8.36
OSE1 412 456 213

 
Th ulation results were obtained on a PC 
with AMD Athlon 1600 MHz processor and 256 

B RAM.  

. CONCLUSIONS 

 the attempt to test genetic algorithm usage in 
solving det P, we applied 

ur genetic algorithms on two test cases, seen 

. 
or the first uniobjective test case, the real 

se, ft10 test-instance, also show that 
enetic algorithms are recommended for this 
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