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Abstract: The paper addresses the problem of planning the motion of a team of drones such that a
co-safe Linear Temporal Logic (LTL) formula is accomplished. The high-level formula can include
visits or avoidance of some known and static regions of interest from the 3D environment. The team
mission is decomposed into independent tasks that can be accomplished by each drone, while the
workspace is abstracted by a cell decomposition algorithm based on rectangular cuboid partitions.
An optimization problem for the task assignment yields the tasks to be fulfilled by each drone,
and independent trajectories are automatically obtained. The contributions include an algorithm for
decomposing the co-safe LTL specification into independent tasks, a recursive cell decomposition
method for 3D environments with regions of interest rather than obstacles, and an overall planning
procedure that returns a trajectory for each drone. The independent tasks imply that the drones fulfilling
them do not need to constantly communicate, the flight of each agent relying on positioning sensors
for following the predefined path. Simulations and comparative studies based on different partitions and
scenarios are included.
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1. INTRODUCTION

The interest of high-level path planning for multirobot systems
has increased in the last years, especially since the techno-
logical needs evolved and become more present in people’s
live. The high-level specifications are important when a certain
execution of tasks is desired (Belta et al., 2007), and not only
the achievement of one target as in the classical navigation
problem in robotics (LaValle, 2006). One of the most used for-
malisms to specify high-level specifications is through Linear
Temporal Logic (LTL) formulas (Ding et al., 2014; Guo and
Dimarogonas, 2015; Kloetzer and Mahulea, 2015; Lacerda and
Lima, 2019; Lindemann et al., 2019; Moarref and Kress-Gazit,
2020), which has been used by Computer Science community
from decades ago for the verification of properties of discrete
systems. Other high-level formulas can be used to specify the
scope of a team of robots, such as: probabilistic Computation
Tree Logic (Li and Fu, 2019), parametric LTL (Alur et al.,
2001). Another importance is represented by the high-level
specification, where time constraints are concerned, for in-
stance: Time Window Temporal Logic (TWTL) (Mosca et al.,
2019), Metric Interval Temporal Logic (MITL) (Nikou et al.,
2018) or Signal Temporal Logic (STL) (Yang et al., 2020). The
present paper focuses on the benefits of using a co-safe LTL
specification as a general framework for specifications, while
the resulted plans can constitute inputs for available simulators
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(Gânsari and Buiu, 2017; Dosoftei et al., 2020; Mahulea et al.,
2020) or for real-time experiments.

The motivation of using high-level specifications is twofold:
(a) specifications that require infinite length trajectories, e.g.,
surveillance tasks, and (b) complex tasks in which conditionals
and/or a given order of performing tasks are needed, e.g., “first
visit region A or B and then region C, while always avoiding
region D”. There are many possible applications of using high-
level specifications. For example, in the case of transportation
and delivery of goods when different possible destinations are
available for a good; or in the case of factory of the future where
the Automated Guided Vehicles (AGVs) should coordinate with
the human workers to transport intermediate products in the
factory; or in the agriculture where a team of drone should
perform a task depending on some measurements acquired by
other drones; or in applications based on Search and Rescue
(SAR) missions, where drones play a crucial part in visiting
essential regions of interest.

In the case of high-level specifications, almost all proposed
solutions are based on a discretization of the state space, i.e.,
the environment where the robots are moving. This allows
the high-level planners to compute trajectories that include
some necessary intermediate points that should be reached,
while possibly avoiding other positions. For solving a high-
level path planning problem where the specification is an LTL
formula, the formula is usually translated to a Büchi or Rabin
automaton that accepts runs of infinite lengths, each of these
runs containing a sequence of tasks that would satisfy the
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formula. Having the automaton of the specification, the next
step is to combine it with the discrete model of the team of
robots. This model is obtained by the discretization of the
continuous state space in which the robots are moving (e.g.,
2D in the case of ground robots or 3D in the case of drones)
and it abstracts the possible movements of each agent between
adjacent regions (cells) of the workspace.

The result of the discretization process is an automaton de-
scribing the movement capabilities of one agent, and in order
to obtain the model of the team, the product of a number of
identical automatons may be used. This process could induce a
very large number of states in the team model, resulting in the
so-called state explosion problem that would yield intractable
computation complexity. Finally, having both discrete systems
(one of the specification and one of the team), they are com-
bined by using a particular product (using the property that
the outputs of the team model are inputs in the specification
model) and a search algorithm is applied on the global model
to compute a path from the initial to final state.

In the last years, many efforts have been put in obtaining com-
putational attractive solution for the high-level path planning
by overcoming the mentioned state explosion problem. The
first one is based on using Petri nets for modeling the team
(Mahulea et al., 2020; Kloetzer and Mahulea, 2020; Mahulea
and Kloetzer, 2018; Lacerda and Lima, 2019; Mahulea et al.,
2021), since this type of models are scalable with respect to
the number of robots. In particular, the size of the team model
is comparable with the size of the corresponding automaton
model of one robot. Adding one robot to the team does not
change the model structure, but only the initial (numerical)
state. Another solution is based on decomposing the LTL spec-
ification into sub-formulas (or tasks) that can be achieved in
parallel (independently) by the robots (Schillinger et al., 2018;
Tumova and Dimarogonas, 2016). By using this last solution,
it is not necessary to compute the full team model, and further-
more, no additional synchronizations among the robots during
their movements are required. This independence has beneficial
aspects in terms of requiring less sensing and communication
devices on the drones.

Recently, the developments moved in 3D domains, where
mobile robots are represented by Unmanned Aerial Vehicles
(UAVs). The appearing challenge is due to the 3D discretiza-
tion approaches, which are more complex than the ones from
2D. The most utilized techniques for path planning in 3D are:
rapidly exploring random tree (RRT) (Sahil, 2019), cell decom-
position (Vespa et al., 2018; Lupascu et al., 2019), probabilistic
graph (Sanchez-Lopez et al., 2019), simultaneous localization
and mapping (SLAM) (Azim, 2013; Hafez, 2015).

In this paper we consider an LTL formula given for a whole
team of drones evolving in a static 3D environment. The for-
mula expresses the required mission over visiting or avoiding
some 3D regions of interest. For overcoming the state explosion
problem, our method is related to the decomposition of the
LTL formula in independent tasks. The first contribution is to
propose an algorithm returning the decomposition of the LTL
specification for the team in individual tasks, each task being
achievable by one agent. The algorithm is based on theoretical
results presented in (Tumova and Dimarogonas, 2016), but, as
far as we know, there is no formal method to automatically
obtain such a decomposition. Our algorithm is based on the
conference version we proposed in (Hustiu et al., 2020), and

it works on a particular sub-class of LTL formulas, namely
co-safe LTL (which induce finite lengths or accepting runs).
The work embodied in this paper extends the outcome from
(Hustiu et al., 2020) in two directions: first, it considers a 3D
environment suitable for drone applications, and therefore it
develops a partitioning and modelling technique suitable for
this scenario. Second, the individual agent models enable the
computation of individual trajectories via graph searches rather
than using Petri net models and optimization problems as in
(Hustiu et al., 2020), and hence the computational complexity
is reduced.

The second contribution refers to obtaining a computationally
tractable method for 3D planning in the given scenario. For this,
we use discretization approaches for 3D environments into rect-
angular cuboid cells. Two distinct techniques are considered:
(a) grid (all the cells have the same size and volume) and (b)
octtree (the cells have different size and volume). The latter
technique extends the one from (Lupascu et al., 2019) (which
works only for obstacles to be avoided), and it also represents
the regions of interest, rather than removing from the model
such parts of the environment. Formal details are given for LTL
decomposition and for environment abstraction, and based on
the two mapping techniques of the 3D domain, we provide a
numerical evaluation of the proposed LTL decomposition and
planning.

The proposed approach implies a contribution in the sense of
fulfilling a complex mission for the whole team, by having
drones with a reduced number of communication and sensing
devices. This is because once each drone receives its computed
path from a central unit, it can follow it independently of other
robots, by using on-board positioning sensors.

The paper is structured as follows: Sec. 2 describes the problem
formulation for our study. Our main contributions regarding
this research are highlighted in the next three sections: Sec.
3 contains the algorithmic solution for the decomposition of
the co-safe LTL specification into independent tasks. The au-
tomaton representing the considered environment is defined and
constructed in Sec. 4. Sec. 5 assigns the independent tasks to
each UAV in an optimal way and uses the drone automaton to
produce the trajectories to be followed. For all the mentioned
sections, formal details are accompanied by small examples.
Sec. 6 contains more complex examples and a detailed compar-
ative study of the influence of environment representation on
the resulted trajectories. In the end, conclusions are provided
together with future work proposal.

2. PROBLEM DEFINITION

Let us assume a team of identical robots denoted R =
{r1, r2, . . . , r|R|} that evolve in an 3D environment. The agents
are assumed omni-directional and of negligible size. A typical
example is that the robots are represented by small drones.
The environment is a rectangular cuboid E = [xmin, xmax] ×
[ymin, ymax] × [zmin, zmax] ⊂ R3 and in E there exist some
convex polyhedral regions of interest labeled with elements
of set Y = {y1, y2, . . . , y|Y |}. The environment is assumed
known and static, in terms that the vertices of each region from
set Y are fixed and given, and the initial deployment of robots
is also known. The assumption of omni-directional robots is
natural in case of drones, and the assumption of their negligible
size can be achieved by reducing each robot to a point and
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correspondingly enlarging regions from Y (Choset et al., 2005;
LaValle, 2006).

The work is devoted to develop a planning strategy for our
multi-robot system based on a high-level specification. Due to
this top-down approach, we are not interested in the actual low-
level control routines for each robot, which would depend on
the specific dynamic model of each agent. Instead, we provide
algorithm for the path-planning part, which constitutes the base
for the upcoming path-following controllers. This motivates
our above assumptions for simplifying the agents to omni-
directional point robots. Referring to the applicability of the
results to be presented, the planning part is centralized, being
computed by a unit that returns individual trajectories. It is
assumed that the central unit can communicate with the drones
only when they are in their initial position (e.g., in charging
stations that are also equipped with communication devices).
Once each drone receives its movement plan from this central
unit, the movement of the team is performed in a decentral-
ized manner, since each robot independently follows the des-
ignated trajectory. The decomposition of the global task into
independent ones guarantees that no intermediate coordinations
or synchronizations are required, with possible exception of
some local collision-avoidance rules in case that two drones
fly dangerously close to each other. During movement, each
drone would use localization sensors (as an indoor/outdoor GPS
system) in order to execute some predefined trajectory-tracking
control laws - e.g., see (Rubı́ et al., 2019) for a selection of such
routines. Proximity and communication sensors would also
be used in real-time experiments only for avoiding collisions
among agents.

Our goal is to derive independent trajectories for the robots
such that their overall movement fulfills a specification given
for the whole team. The “independent” attribute means that
the each robot can move without having to communicate or
to synchronize with other team members, as for example in
centralized approaches from (Kloetzer and Mahulea, 2020).
The global specification will be given as a so-called co-safe
LTLX formula over set Y , this class being able to express rich
behaviors including visits or avoidance of specific regions of
interest.

In short, an LTL formula is recursively defined over the set
of atomic propositions Y , by using (i) the standard Boolean
operators (¬ - negation, ∨ - disjunction, ∧ - conjunction, ⇒ -
implication, and ⇔ - equivalence) and (ii) some temporal op-
erators with straightforward meaning (U - until, ♦ - eventually,
� - always, © - next). Extensive details on this language can
be found in studies as (Clarke et al., 1999; Baier and Katoen,
2008). The LTLX subclass lacks the “next” symbol, this opera-
tor being meaningless for continuous trajectories (as the ones
generated by drones). In this paper we use syntactically co-
safe LTLX formulas (Kupferman and Vardi, 2001). While the
satisfaction of LTL and LTLX formulas has to be interpreted on
infinite strings with elements from 2Y , a co-safe LTL formula
is satisfied by a finite sequence with elements from the power-
set 2Y (called prefix) continued by any infinite string over 2Y .
Semantically, an LTLX formula including only the temporal
symbols ♦ and U when written in positive normal form (i.e.,
¬ can precede only elements of Y ) is syntactically co-safe
(Kupferman and Vardi, 2001). In the remainder of this work we
simply denote as LTL the co-safe LTLX specifications that are
used. As short examples of such formulas, ϕ = ♦(y1 ∨ y2)
requires that at least one of regions y1 and y2 is eventually

visited by a robot, while ϕ = ¬(y1)Uy2 imposes that y1 should
be avoided until y2 is visited.

Any LTL formula over set Y can be transformed into a Büchi
automaton that accepts all and only the input strings from
2Y that satisfy the formula (Wolper et al., 1983). The Büchi
automaton can be obtained by feeding existing software tools
as (Gastin and Oddoux, 2001) with an LTL formula ϕ.
Definition 1. The Büchi automaton corresponding to an LTL
formula over the set Y is denoted byB = (S, S0,ΣB ,→B , F ),
where:

• S is a finite set of states;
• S0 ⊆ S is the set of initial states;
• ΣB = 2Y is the set of inputs;
• →B⊆ S × ΣB × S is the transition relation;
• F ⊆ S is the set of final states. �

For si, sj ∈ S, we denote by %B(si, sj) the set of all inputs of
B that enable transition from si to sj . An infinite input word
(sequence with elements from ΣB) is accepted by B if the
word produces at least one sequence of states of B that visits
set F infinitely often. However, for syntactically co-safe LTL
formulas, an input word is accepted by B if it starts with a
finite sequence (prefix) that drives B from S0 to the set of final
states F (while any continuation of the prefix cannot violate
the formula). Thus, for satisfying a co-safe formula ϕ we have
to find a finite sequence with elements from 2Y that drives the
formula’s Büchi automaton to one of its final states.

Summing up, the problem we here solve receives as inputs the
environment E, regions Y , robots R (each with a different
initial position) and formula ϕ. The solution we seek is a
trajectory for each drone, such that when the robots individually
follow their trajectories the formula ϕ is accomplished.
Example 1. For easier following the problem and its solution,
we provide a simple example that will be revisited through-
out the next sections. Figure 1 depicts an environment E =
[0, 80]× [0, 50]× [0, 100] with four disjoint regions of interest.
Two robots evolve in this environment, their initial deployment
being marked with the red (for r1) and blue (for r2) circles. The
imposed specification is

ϕ = ♦y1 ∧ ¬y2U (y3 ∨ y4) , (1)

which requires that (1) region y1 is eventually reached, and (2)
region y2 is avoided until either of the y3 and y4 regions is
eventually visited. Intuitively, if a robot solves part (1) while
it avoids y2 and the other solves part (2) of ϕ, they can do
this in a distributed manner, i.e. without any synchronization
or communication. Contrary, if we change the last parenthesis
to (y3 ∧ y4), both robots would have to cooperate in fulfilling
it, e.g. if a robot reaches y3 it should wait there until the other
robot visits the disjoint region y4. The next three sections pro-
vide an automated method to decide and solve the situations
of distributing LTL specifications. As mentioned, this planning
method is running on a central unit that sends the independent
paths to robots before their actual movement. All the algorithms
to be discussed were implemented in MATLAB, and the in-
cluded computation times were obtained on a system with i7
8th gen. CPU and 8 GB RAM.

As the ideas leading to problem’s solution, instead of finding
a single finite sequence over 2Y that satisfies the formula, we
look for individual robot sequences that can be independently
followed. The trajectory of each robot will show the sequence
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Fig. 1. Environment with four regions of interest and initial
positions of two robots ( r1 - red, r2 - blue).

of regions visited by the agent. Due to independent movements
of robots and since we do not account the exact time when each
robot enters (visits) a region, the team can actually produce a
multitude of possible strings over 2Y . We have to make sure
that any such possible string satisfies the imposed formula, and
for this we first decompose the specification as in Sec. 3. Then,
we abstract the environment and the possible motion of each
robot into an automaton, for this adapting a cell decomposition
method in Sec. 4. Finally, we assign parts of the decomposed
formula to robots and we search trajectories in their abstractions
as in Sec. 5.

3. TASK DECOMPOSITION

For distributing a given LTL mission ϕ among team mem-
bers, the goal of this section is to automatically obtain decom-
positions of ϕ. Each decomposition is a set containing sub-
formulas, denoted as tasks, that have the independence prop-
erty and can be executed by a single robot. Collectively, the
tasks must assure two properties: independence and fullness.
As stated previously, the first property is referring to the con-
straint that we assume no synchronizations between the drones,
therefore the independence implies that each task can be ac-
complished by only one robot. This also implies that a task ϕi
should not violate another task ϕj , where {ϕ1, . . . , ϕn} is the
decomposition set, j 6= i, j = 1, . . . , n. The second property
implies that the global mission ϕ becomes accomplished once
all tasks are executed.

Algorithm 1 describes a way of obtaining decomposition sets
for a mission ϕ. The LTL formula ϕ is first converted into a
Büchi automaton B using the existing software from (Gastin
and Oddoux, 2001). Besides input B, Algorithm 1 needs two
additional inputs, a partition P of the environment and an obser-
vation map h showing the partition regions that intersect with
regions of interest from Y . These two inputs will be algorith-
mically constructed in Sec. 4, and for easier understanding we
mention that setO from line 1 contains all observations (regions
of interest from Y ) that can be generated by a single robot.

The beginning of Algorithm 1 trims the Büchi automaton such
that all the observations that define transitions in B can be
enabled by a single robot (lines 1-3). The purpose for this is
to be able to decompose the mission ϕ into independent tasks,
which are basically elements from ΣB . Thus, we will have the
guarantee that a robot can perform a specific task (since it can
generate observations from trimmed B), whereas without this
trimming more robots might have to cooperate for enabling
a single transition from set →B . The trimming procedure is
here adapted from (Kloetzer and Mahulea, 2020), with the
mention that in (Kloetzer and Mahulea, 2020) it was designed
for cooperating robots rather than individual ones.

Further, in lines 4-11, all loopless accepted runs from B are
found by using k-shortest path algorithm (Yen, 1971) and
stored in a set Runs. For this, we consider each pair (s0, sf )
of initial and final states, we initially set k to be the number of
states of B, i.e. |S| (first call of line 8) and we use the k-shortest
path algorithm with these inputs (line 9). If there are exactly k
loopless paths returned, we increase k (on subsequent iterations
of line 8) until we are sure that set |Runss0→sf | includes all
possible paths from s0 to sf . Thus, when finishing the loop
from lines 5-11, set Runs includes all loopless accepted runs
of B.

Next, a run ρ is selected from Runs (line 13) and all the
transitions from ρ are stored. Between lines 17-22 we verify if
all possible permutations of these transitions are feasible runs
in B, in the sense that they would conduct from the same initial
state to the same final state as the selected run ρ. If the previous
statement is true, then we can affirm that a decomposition set
Decompρ was found and the observation set corresponding to
each transition becomes a task. In other words, each task from
the identified decomposition is a subset of 2Y that contains
observations realizable by a single robot. These tasks guarantee
the fullness property since ρ is an accepted run of B.

To ensure the independence of tasks we must also take into
account the self-loops of states of B. Therefore, a constraint is
imposed such that the self-loops of all states that have the same
output transition have to be replaced with the intersection of all
self-loops of these states. Through lines 23-25 we satisfy this
necessary constraint, so that a task cannot violate another part
of the main goal ϕ. Additionally, the selected feasible run ρ and
its permutations are removed from the set Runs (lines 14 and
21) to avoid unnecessary iterations pertaining the same tasks.

Algorithm 1 has a high number of iterations, as implied by the
given pseudo-code. The trimming of the Büchi automaton has
linear complexity on the number of transitions in →B , while
the size of B depends on the imposed LTL specification. The
k-shortest algorithm is reiterated on lines 5-11 for an initially
unknown number of times that is imposed by the structure
of B, but each of these iterations has a pseudo-polynomial
complexity (Yen, 1971). From the tests we performed, there
are normally less than 5 iterations of lines 7-10, while S0

and SF usually include up to two states. Although there are
an order of |Runs|2 iterations imposed by lines 12 and 17,
each of these iterations includes simple set operations, and the
cardinality of Runs is greatly decreased due to trimming B,
rather than considering its initial structure. Consequently, the
trimming - which is necessary for obtaining independent tasks
- also alleviates the necessary computations. Complexity of
Algorithm 1 does not depend on the number of robots |R|.
Algorithm 1 is not complete in terms of obtaining all possi-
ble decomposition sets, because it does not account possible
sequences of more tasks in a specific order that could be latter
assigned to a single agent, while guaranteeing the independence
and fullness properties.
Example 2. We advance the Example 1 on the basis presented
in this section. The Büchi automaton corresponding to formula
ϕ from (1) is given in Figure 2(a). As noted, B should be
trimmed before applying the task decomposition algorithm. In
this context, observations as y1 ∧ y3 or y1 ∧ y4 are redundant
since these regions are disjoint and a drone cannot be at the
same time in y1 and in y3 or y4. Similarly, observation that
enable the transition from s0 to s2 becomes y1, because y1 and
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Algorithm 1 Mission decomposition
Input : Büchi automaton B, partition P and observation map

h
Output: Feasible decompositions TaskSet

1 Compute O =
⋃
p∈P h(p)

2 for (si, ρ(si, sj), sj) ∈→B do
3 ρ(si, sj) = ρ(si, sj) ∩O
4 Initialize Runs := ∅
5 for s0 ∈ S0 and sf ∈ F do
6 k := 0
7 repeat
8 k := k + |S|
9 Let Runss0→sf := k shortest path(k, s0, sf )

10 until |Runss0→sf | < k;
11 Runs := Runs ∪Runss0→sf
12 while Runs 6= ∅ do
13 Choose a run ρ ∈ Runs
14 Runs := Runs \ {ρ}
15 Compute Decompρ :=

⋃|ρ|−1
i=1 {%B(ρ(i), ρ(i+ 1))}

16 Set counter := 1
17 for γ ∈ Runs do
18 if (|γ| = |ρ|) then
19 Compute Decompγ :=

⋃|γ|−1
i=1 {%B(γ(i), γ(i +

1))}
20 if ( (Decompρ \Decompγ) = ∅ ) then
21 Runs := Runs \ {γ}
22 counter := counter + 1
23 for ρ(i) ∈ ρ and γ(j) ∈ γ such that sets

%B(ρ(i), ρ(i + 1)) and %B(γ(j), γ(j + 1)) are
identical do

24 Set %B(ρ(i), ρ(i)) := %B(ρ(i), ρ(i)) ∩
%B(γ(j), γ(j))

25 Set %B(γ(j), γ(j)) := %B(ρ(i), ρ(i)) ∩
%B(γ(j), γ(j))

26 if ( counter = (|ρ|!) ) then
27 Decompρ is a feasible decomposition; ap-

pend it to TaskSet

28 if TaskSet is empty then
29 Mission cannot be decomposed

y2 are disjoint. Figure 2(b) shows the trimmed Büchi automaton
obtained after lines 1-3 of Algorithm 1. In this case, the set
of accepted runs obtained after line 11 is Runs = {ρ1 =
s0, s2, s3; ρ2 = s0, s1, s3}. The construction of B, its trimming
and the computation of set Runs took in our implementation
less than 0.22 seconds.

At the first iteration in Algorithm 1, ρ1 is chosen on line 13 and
the decomposition Decompρ1 = {{y1}, {y3 ∨ y4}} is obtained
on line 15. Since ρ1 was eliminated after being selected, only
ρ2 can be now considered on iteration starting on line 17, and in
this case the decomposition setDecompρ2 = {{y3∨y4}, {y1}}
is computed on line 19. The decomposition sets are identical
(line 20), and condition from line 26 becomes accomplished,
thus one decomposition is found, namely {{y1}, {y3∨y4}}. To
guarantee that tasks are not violating the mission during their
independent executions, the self-loops of the states must be
taken into account as previously explained, this being handled
on lines 23-25. Therefore, the self-loop of s1 becomes ¬y2 (as

the self-loop of s2), and this implies that the region y2 will
not be visited along any trajectory. For this simple example,
Algorithm 1 returned the formula decomposition in about 0.04
seconds. �

4. ABSTRACTION FOR 3D ENVIRONMENT

The goal of this section is to construct for each robot r an
automaton denoted by Tr. This automaton abstracts the drone’s
possible motions in environment E into a form suitable for
connections with the Büchi automaton corresponding to an LTL
formula over set of regions Y .
Definition 2. For each r ∈ R, the automaton Tr has the struc-
ture Tr = (P, p0r, Adj, 2

Y , h,mixed,Waypoint), where:

• P is the set of states, being a partition of E whose
elements are also denoted by places or cells. Each element
p ∈ P will be a rectangular cuboid, the intersection of
any two different places has volume zero (V olume(pi ∩
pj) = 0, ∀pi 6= pj), and ∪p∈P p = E;

• p0r ∈ P is the initial state, i.e. the place in which drone r
is initially deployed;

• Adj : P × P → {0, 1} is the adjacency relation, with
Adj(pi, pj) = 1 if pi ∩ pj is a set with area different
than zero. I.e., two cells are adjacent if they share an entire
part of their facets, such that a robot can pass through this
part for going from pi to pj without intersecting any other
cell. Conversely, if two cells intersect only in one point or
have only a common line segment, they are not adjacent
since enforcing that a drone passes exactly through that
intersection would be impossible in real scenarios;

• 2Y is the set of observations;
• h : P → 2Y is the observation map, showing the regions

of interest intersected by partition element p, i.e., h(p) =
{y ∈ Y |V olume(p ∩ y) 6= 0}. Thus, h(p) = ∅ if p
does not intersect with any region of interest. Note that
we consider the volume of intersection based on the same
ideas as before, of generating an observation when the
drone’s position is strictly inside a region from Y ;

• mixed : P → {0, 1} is a flag showing if p lies entirely or
only partially inside regions from h(p), i.e.mixed(p) = 0
if h(p) = ∅ or p ∩ y = p, ∀y ∈ h(p), and mixed(p) = 1
otherwise;

• Waypoint : P × P → R3 ∪ ∅ is a map giving the
waypoint through which the robot is allowed to pass
from place pi to an adjacent place pj . Thus, for pi, pj ∈
P with Adj(pi, pj) = 1, we choose Waypoint(pi, pj)
as being the centroid of the intersection pi ∩ pj , and
since this intersection has a non-empty area we allow
small deviations of the drone from its trajectory, without
affecting the sequence of cells to be visited. For pi, pj ∈ P
with Adj(pi, pj) = 0, we let Waypoint(pi, pj) = ∅. �

Since the robots are identical, the only difference between the
automatons Tr is given only by their initial states. While there
are many partition techniques for 2D environments (Berg et al.,
2008; Belta and Habets, 2006; Mahulea et al., 2020), for 3D
ones with regions of interest we here focus on two methods:

(i) Grid cell decomposition - the workspace E is divided
into equal rectangular cuboids. To this end, a precision
ε is imposed, showing how many equal cuboids (cells)
are along any axis of E. E.g., for ε = 8, the whole



CONTROL ENGINEERING AND APPLIED INFORMATICS 81

s1s0start s3

s2

y3 ∨ y4 y1

y1 ∧ ¬y2 y3 ∨ y4

> >

¬y2

¬y2

(y1 ∧ y3) ∨ (y1 ∧ y4)

s1s0start s3

s2

y3 ∨ y4 y1

y1 y3 ∨ y4

> >

¬y2

¬y2

(a) Original Büchi automaton (b) Trimmed Büchi automaton

Fig. 2. Büchi automaton corresponding to the LTL formula (1), ϕ = ♦y1 ∧ ¬y2U (y3 ∨ y4). After running Algorithm 1, the
self-loop of s1 from the trimmed automaton becomes ¬y2.

environment is divided in 83 equal rectangular cuboids,
each of them forming a place in Tr.

(ii) Octtree based decomposition - the imposed precision ε
is a power of 2, and now the environment is recursively
divided in rectangles of different size. The idea is to divide
parts of E where an increased resolution (smaller cells)
is needed, thus obtaining an abstraction with fewer states
than in the previous method (Vespa et al., 2018; Lupascu
et al., 2019).

Both methods will be used for simulations and compared in
Sec. 6. The only conceptual difference between these methods
is given by the partition, since the other elements of Tr (adja-
cency, observation etc.) are constructed identically once P is
obtained. The partition for method (i) is easy to understand and
therefore it is not detailed.

The remainder of this section details method (ii), which extends
a cell decomposition technique that we previously used in 3D
environments cluttered with obstacles (Lupascu et al., 2019).
The extension refers to the fact that the technique in (Lupascu
et al., 2019) partitions only a part of the free space, i.e. space
that does not intersect any obstacle, and thus it could only
be used for avoiding obstacles, but not for capturing possible
movements to regions of interest. Here, we tailor this method
for abstracting the entire 3D workspace in a finite discrete
representation based on cells. The idea is inspired by so-called
octtrees, and we employ a procedure that labels any given rect-
angular cuboid as free (no intersection with any region of inter-
est), occupied (included in one of more regions of interest) or
mixed (partially intersecting at least one region). The concept is
to start by labeling the environment E (which is clearly mixed)
and then recursively split every mixed rectangular cuboid in
eight equal cuboids, by cutting in half each of its edges. Due
to recursive procedure, each of these eight cuboids is labeled
and the mixed ones are split as long as the precision ε is not
reached, i.e. the smallest obtained cuboids have edges ε-times
smaller thanE. At the end, the partition elements (cells from P )
will be the free, the occupied and the small mixed rectangular
cuboids.

Due to splitting in equal cuboids, all rectangular cuboids from
P will have the same ratio of edges as environment E, and the
number of obtained cells is usually much smaller than ε3, as

it results in case of method (i). For each free cell p we will
have in Tr the output h(p) = ∅ and mixed(p) = 0. For each
occupied cuboid h(p) shows the regions from Y that include the
current cuboid and mixed(p) = 1. For each mixed cuboid (too
small to further split) h(p) contains the regions from Y that are
intersecting p and we will have mixed(p) = 1, inducing that
when the drone is somewhere inside p it is possible - but not
certain - that the robot visits one or more regions from h(p).
This information of mixed flag will be exploited in Sec. 5.

The pseudo-code expressed in Algorithm 2 includes the previously-
discussed ideas for constructing automatons Tr. The lines 1-
31 contain the recursive procedure for labeling and partition-
ing a generic rectangular cuboid RC. Along Algorithm 2, the
intersection of any two polyhedra (e.g. lines 4, 37) is com-
puted based on half-space (H-) representations of these shapes
(Grünbaum, 2003). The test from line 5 is fulfilled only for
free cells, which are added to P . If RC partially intersects at
least one region from Y (test on line 10), then RC is mixed.
RC is split in eight equal parts if these smaller cells do not go
beyond precision ε, and for each of these smaller cuboids the
procedure recursive partitioning follows (lines 12-21). Too
small mixed rectangular cuboids become cells in P with the
mixed flag set to 1 (lines 22-26). If the current RC is not free
nor mixed, then it is completely included in some region(s) of
interest (occupied), and it becomes a place in P (lines 27-31).

Based on the above, by applying the recursive partitioning
procedure for the full 3D environmentE, the partition P results
along with its observations and mixed map (line 34). The
adjacency map Adj and the map Waypoint are built according
to Def. 2 on lines 35-39. As mentioned, 2 cells RCi, RCj are
adjacent if their intersection has a positive area. Because all
partition elements are cuboids with parallel edges, if test on line
37 is true, pi∩pj is a rectangle, and the corresponding waypoint
is its centroid.

From a complexity point of view, there is an upper-bound
ε3 for the number of cells returned by Algorithm 2. Each
iteration for the recursive partitioning of the environment has
a polynomial complexity, while it mainly includes operations
based on intersection of convex polyhedra. The scalability of
Algorithm 2 is provided by its independence on the formula
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Algorithm 2 Robot abstractions
Input : Environment E, regions Y , initial positions of robotsR, precision ε
Output: Automaton Tr, r = 1, . . . , |R|

1 /* —– Structure of the recursive partitioning procedure —– */
2 (P, h,mixed) = recursive partitioning(RC,P, h,mixed, ε, Y )
3 Denote RC as RC = [x1, x2]× [y1, y2]× [z1, z2]
4 Compute V olume(RC ∩ yi), ∀i = 1, . . . , |Y |
5 if

∑|Y |
i=1 V olume(RC ∩ yi) = 0 then

6 /* the current rectangular cuboid RC is free */
7 P := P ∪RC, h(RC) := ∅, mixed(RC) := 0
8 return P, h,mixed
9

10 else
11 if ∃i = 1, . . . , |Y | such that V olume(RC ∩ yi) ∈ (0, V olume(RC)) then
12 /* the current rectangular cuboid RC is mixed */
13 if 2 · ε · (x2 − x1) ≥ (xmax − xmin) then
14 /* the mixed RC is further split in eight equal cuboids */
15 (P, h,mixed) = recursive partitioning([xmin,

xmin+xmax

2 ] × [ymin,
ymin+ymax

2 ] ×
[zmin,

zmin+zmax

2 ], P, h,mixed, ε, Y )

16 (P, h,mixed) = recursive partitioning([xmin,
xmin+xmax

2 ] × [ymin+ymax

2 , ymax] ×
[zmin,

zmin+zmax

2 ], P, h,mixed, ε, Y )

17 (P, h,mixed) = recursive partitioning([xmin,
xmin+xmax

2 ] × [ymin,
ymin+ymax

2 ] ×
[ zmin+zmax

2 , zmax], P, h,mixed, ε, Y )

18 (P, h,mixed) = recursive partitioning([xmin,
xmin+xmax

2 ] × [ymin+ymax

2 , ymax] ×
[ zmin+zmax

2 , zmax], P, h,mixed, ε, Y )

19 (P, h,mixed) = recursive partitioning([xmin+xmax

2 , xmax] × [ymin,
ymin+ymax

2 ] ×
[zmin,

zmin+zmax

2 ], P, h,mixed, ε, Y )

20 (P, h,mixed) = recursive partitioning([xmin+xmax

2 , xmax] × [ymin+ymax

2 , ymax] ×
[zmin,

zmin+zmax

2 ], P, h,mixed, ε, Y )

21 (P, h,mixed) = recursive partitioning([xmin+xmax

2 , xmax] × [ymin,
ymin+ymax

2 ] ×
[ zmin+zmax

2 , zmax], P, h,mixed, ε, Y )

22 (P, h,mixed) = recursive partitioning([xmin+xmax

2 , xmax] × [ymin+ymax

2 , ymax] ×
[ zmin+zmax

2 , zmax], P, h,mixed, ε, Y )
23
24 else
25 /* the mixed RC reached the imposed precision */
26 P := P ∪RC, mixed(RC) := 1
27 h(RC) := {yi ∈ Y |V olume(RC ∩ yi) > 0}
28 return P, h,mixed

29
30 else
31 /* RC is included by the regions of interest it intersects */
32 P := P ∪RC, mixed(RC) := 0
33 h(RC) := {yi ∈ Y |V olume(RC ∩ yi) > 0}
34 return P, h,mixed

35 /* —– Main algorithm —– */
36 Initialize P = ∅, h(RC) = ∅, mixed(RC) = ∅
37 (P, h,mixed) = recursive partitioning(E,P, h,mixed, ε, Y )
38 Initialize Adj = 0|P |×|P |
39 for pi, pj ∈ P , i 6= j do
40 if Area(pi ∩ pj) > 0 then
41 Adj(pi, pj) := 1
42 Waypoint(pi, pj) := centroid(pi ∩ pj)

43 For each r ∈ R, set p0r as the cell where r is initially deployed
44 Return Tr = (P, p0r, Adj, 2

Y , h,mixed,Waypoint), ∀r ∈ R
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ϕ and on the number of agents - |R| being necessary only for
returning the initial cell for each robot.
Example 3. Let us revisit Example 1 for an easier understating
of the abstraction approach from Algorithm 2. Thus, Figure
3(a) reveals a visual representation of the partitioning of en-
vironment from Figure 1, with precision ε = 16. Figure 3(b)
represents an enlarged part of this partition, by emphasizing
with black a free cuboid, with yellow a mixed cell and with
red an occupied one (the red cuboid being completely included
in region y1). For this environment, the resulted abstraction has
1002 cells in P , 7254 adjacency relations (transitions between
states), and it was computed in 2.7 seconds. �

5. TASK ASSIGNMENT

If Algorithm 1 returns a nonempty TaskSet, it means that
the formula can be decomposed in independent tasks, and
we now have to assign these tasks to the |R| robots. For
this, we choose any decomposition from TaskSet, generically
denoted as

⋃|ρ|−1
i=1 {%B(ρ(i), ρ(i + 1))}. As shown in Sec. 3,

this decomposition is in fact a set of elements of ΣB that enable
transitions along run ρ of B.

For simplifying the notations, denote the task %B(ρ(i), ρ(i +
1)), i = 1, . . . , |ρ| − 1 by ϕi. According to notations from
Sec. 2, ϕi contains the inputs of B that induce transition from
state ρ(i) to ρ(i + 1). Thus, a drone from the team should
generate any observation from ϕi (i.e., an element of 2Y ),
such that the task is accomplished. Since B was trimmed
before computing its accepted runs, we have the guarantee
that any element of ϕi can be produced by a proper position
of a single robot, e.g., ϕi cannot be a conjunction of two
disjoint regions. Also, the independence and fullness properties
guarantees that the imposed LTL formula is satisfied if all tasks
ϕi are independently accomplished by the robots, i.e., without
necessary synchronizations or order of visiting regions.

Therefore, the |ρ| − 1 tasks ϕi should be allocated to the |R|
robots, and to this end we solve the following steps:

(i) Construct a cost matrix W ∈ R(|ρ|−1)×|R|, where W (i, r)
is the cost incurred if robot r satisfies task ϕi.

(ii) Having matrixW , assign all tasks to drones such that a de-
sired cost function for the whole team is minimized. Note
that we may end up with more tasks being sequentially
solved by a robot.

For fulfilling step (i), we consider each robot r ∈ R and
each task ϕi, i = 1, . . . , |ρ| − 1, and we iterate a procedure
that drives r from its initial deployment to a position where
it satisfies ϕi. This procedure is basically a graph search, but
instead of considering the underlying graph of the model Tr, we
have to consider a reduced graph, as follows. Robot r should
reach a place where where an element of %B(ρ(i), ρ(i + 1))
is true (for accomplishing ϕi), hence the set of possible des-
tination nodes for r is given by D = {p ∈ P | h(p) ⊆
%B(ρ(i), ρ(i + 1)) andmixed(p) = 0}. Note that we avoid
going in a mixed state, because we need to have desired ob-
servations generated in the reached state, rather than a possible
generation. While drone r moves towards any state from set
D, it should produce in any intermediate position observations
from set %B(ρ(i), ρ(i)), such that the state ρ(i) of B is not
left until transition to ρ(i + 1) becomes enabled. Therefore, r
is allowed to move only through intermediate nodes from set
I = {p ∈ P | h(p) ⊆ %B(ρ(i), ρ(i))}. Thus, from automaton

Tr we keep the graph having nodes D ∪ I and transitions
inherited from Adj, and on this graph we run a shortest path
search from initial node p0r to any node from set D. For this,
we use the Dijkstra algorithm (Cormen et al., 2001), and the
cost of the returned path is the value to be saved in W (i, r).

The procedure for solving step (i) is captured by lines 7-15 from
the overall algorithmic solution provided in Algorithm 3.
Remark 1. (Unfeasible distribution). It is possible that for a
pair i, r the graph search does not give a solution - in cases
when p0r does not belong to or is disconnected from set D ∪ I .
If this happens, it means that robot r cannot move to a position
where ϕi becomes true while yielding along the path observa-
tions in %B(ρ(i), ρ(i)), and we store in W (i, r) a big number
N (with the significance of infinite cost). If the obtained matrix
W has at least one row containing only values N , we conclude
that the problem is infeasible for the current distribution. In
this case, one should choose a different distribution returned
by Algorithm 1, or should use the centralized approach from
(Kloetzer and Mahulea, 2020). The condition from line 16 of
Algorithm 3 handles such cases, by switching to the centralized
planning method (Kloetzer and Mahulea, 2020).

Three observations are in order regarding step (i):

• The graph search approach is totally different than the
methods from (Hustiu et al., 2020; Kloetzer and Mahulea,
2020), where two versions of a Mixed Integer Linear
Programming (MILP) problem were used for computing
W (i, r). In (Kloetzer and Mahulea, 2020) the MILP was
necessary for planning the whole team of robots in a cen-
tralized manner by using a Petri net model, while in (Hus-
tiu et al., 2020) the MILP was inherited and tailored for
a single robot. Thus, the current approach benefits from
the computational point of view, since the complexity of
the Dijkstra graph search algorithm is |P |2, while a MILP
optimization belongs to the NP-hard class.

• Based on the above, the costs from W are the sum of
weights on transitions of Tr, and thus they can be cast
to reflect the expected time or energy for moving between
adjacent cells from the environment partition. Here, we
consider unitary costs on transitions on Tr, thus resulting
in costs in W that minimize the number of drone move-
ments, in terms of direction changes in visited cells.

• Any cost W (i, r) is computed by considering that r starts
from its initial position p0r. However, if step (ii) assigns
more tasks to a robot, the total moving cost incurred
by the robot will be sightly different that the sum of
corresponding costs from W .

Step (ii) is in essence a form of optimal task allocation method,
since the |ρ| − 1 tasks have to be independently solved by the
|R| drones, while incurring a minimum cost based on elements
fromW . This step is solved by MILP problem (2) (Hustiu et al.,
2020), with the following accompanying explanations:

• The variables are: a binary matrix Z ∈ {0, 1}|R|×(|ρ|−1)
and a real variable λ.

• The solution Z returned by the optimization indicates the
task(s) that should be satisfied by each robot, in the sense
that robot r ∈ R is allocated to task(s) ϕi for which
Z(r, ϕi) = 1.

• Variable λ is used for transforming a type of mimimax
optimization into a MILP formulation. Basically we are
interested in minimizing the maximum cost of any indi-
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Fig. 3. (a) Decomposition in rectangular cuboids of the environment from Figure 1. (b) Enlarged part of the partition, showing a
free cell (black), a mixed cell yellow and an occupied one (red).

vidual robot, and this is done by upper-bounding with λ
the cost incurred by any drone.
• The cost function, where N has a big value, reduces the

number of cells visited by any robot (through term in λ),
while avoiding unnecessary movements of “faster” robots
(through second term).
• The first set of constraints imposes that all tasks from the

chosen decomposition will be accomplished.
• The second set of constraints upper-bounds by λ the cost

incurred by any robot r. Note that if r will be allocated
to multiple tasks, e.g., ϕi and ϕj , its actual moving cost is
approximated withW (r, ϕi)+W (r, ϕj) - recall that these
costs were computed in W by assuming that the drone
always starts from its initial position.

min N · λ+
∑|R|
r=1 Z(r, :) ·W (:, r)

s.t.
∑|R|
r=1 Z(i, r) = 1, ∀i = 1, . . . , |ρ| − 1

Z(r, :) ·W (:, r) ≤ λ, ∀r = 1, . . . , |R|
Z ∈ {0, 1}|R|× |ρ|−1, λ ∈ R≥0

(2)

MILP (2) can be solved with existing software tools (IBM,
2016). Its feasibility (existence of a solution) is guaranteed
because the MILP is not called when some tasks cannot be
accomplished, as mentioned in Rem. 1. The solution Z returned
by (2) shows the tasks that should be satisfied by each robot,
but without a specific order. In our approach, for avoiding an
additional computation overhead, we simply order the tasks to
be solved by each agent based on their cost from W , i.e., drone
r first heads to accomplishing its lower-cost task, and so on
until it finishes all assignments.

The pseudo-code description of our entire method is given in
Algorithm 3, which finishes with constructing the trajectory
(sequence of cells) to be individually followed by each drone.
We consider that an individual robot movement cannot solve
the problem in two cases: if the mission cannot be decomposed,
or the chosen decomposition is unfeasible as in Rem. 1. In
either of these two situations, the approach from (Kloetzer and
Mahulea, 2020) can be used for returning a centralized solution
where the robots will have to communicate and synchronize
along paths (lines 5, 17 from Algorithm 3). If a feasible distri-
bution is found, MILP (2) is used for showing the individual
tasks to be solved by robots. For each robot r, the sequence
of cells to be traversed, Seqr, is build by imposing that it
sequentially accomplishes its allocated tasks, in an ascending
expected cost from matrix W (order chosen on line 22). For
accomplishing each of these tasks ϕi, we use the graph search
that was iterated for finding the element W (i, r), by simply

updating the start node based on the current position of robot r
(lines 24, 30). Finally, the drone follows the imposed sequence
of cells by connecting the waypoints from Tr (centroids of
common facets shared by successive cells from Seqr), thus
obtaining a piece-wise linear trajectory that can be followed
by an omni-directional agent. Additionally, we enforce that the
robot enters in each cell pnr (instead of reaching only one of its
facets) by inserting in its trajectory the centroid of pnr (line 28).
This is done since a task ϕi is satisfied in each such cell pnr.
All drones individually follow their trajectories Trajectoryr,
and thus the global mission ϕ is accomplished in a distributed
manner. As anticipated at the beginning of Sec. 2, Algorithm 3
yields a centralized path-planning part that constitutes the base
for trajectory-following routines, with the advantage that the
robot movements are executed in a decentralized manner.
Remark 2. Inter-robot collisions. Note that the individual
robot trajectories may intersect. Thus, for implementations in
real scenarios, the robots should have local collision-avoidance
rules, e.g., based on priorities and waiting modes, or on tech-
niques inspired from resource allocation systems (Reveliotis
and Roszkowska, 2011). These local rules fall beyond the scope
of the current work, but they would require only a small com-
munication radius of agents, without affecting the distribution
of the imposed formula.

The complexity of Algorithm 3 depends on those mentioned
regarding Algorithms 1 and 2, each being called one time. Also,
there is a single call to MILP (2). The number of iterations is
imposed by R and |ρ| − 1 (lines 7, 19, 22), in each iteration
the Dijkstra graph search being the most demanding part, and
hence its small complexity is promising in terms of scalability
on the number of robots.

Algorithm 3 is not complete in terms of independence between
robots. Thus, it may sometimes switch to the centralized solu-
tion from (Kloetzer and Mahulea, 2020), even if the current for-
mula may have independent tasks. This is because we consider
only one decomposition from TaskSet (rather than testing all
of them), Algorithm 1 does not account specific sequences of
tasks to be imposed to the same robot. Besides fully indepen-
dent tasks, future work may also be targeted towards identifying
some possible intermediate synchronizations between which it
may be possible to have independent tasks.
Example 4. We here conclude the example introduced in Sec.
2 and revisited at the end of each Sec. 3 and Sec. 4. Step (i)

returns in 0.3 seconds the cost matrix W =

[
11 3
4 12

]
. MILP (2)

from step (ii) is solved in 0.45 seconds and it allocates the task



CONTROL ENGINEERING AND APPLIED INFORMATICS 85

Algorithm 3 Overall solution
Input : Environment (initial position of robots and regions of

interest), LTL specification ϕ
Output: Individual robot movement plans Planr

1 Run Algorithm 2 to obtain robot model Tr, r = 1, . . . , |R|
2 Convert ϕ to Büchi automaton B
3 Run Algorithm 1 to obtain TaskSet - the possible decomposi-

tions of ϕ
4 if TaskSet = ∅ then
5 Use approach from (Kloetzer and Mahulea, 2020) and

return (synchronized) movement plans
6 Choose a decomposition from TaskSet, denoted by⋃|ρ|−1

i=1 {%B(ρ(i), ρ(i+ 1))}
7 for i = 1, . . . , |ρ| − 1 and r = 1, . . . , |R| do
8 Di := {p ∈ P | h(p) ⊆ %B(ρ(i), ρ(i+1))andmixed(p) =

0}
9 Ii := {p ∈ P | h(p) ⊆ %B(ρ(i), ρ(i))}

10 Construct graph with set of nodesDi∪Ii and corresponding
arcs inherited from transitions in Tr

11 Run Dijkstra’s graph search, with source node p0r and
destination set Di

12 if Solution is obtained then
13 W (i, r) := minimum cost of the returned paths to

nodes from Di
14 else
15 W (i, r) := N

16 if ∃i ∈ {1, . . . , |ρ| − 1} such that W (i, :) · 1 = N · |R| then
17 Use approach from (Kloetzer and Mahulea, 2020) and

return (synchronized) movement plans
18 Solve MILP (2) and obtain Z - robot-to-task(s) allocations
19 for r = 1, . . . , |R| do
20 Set Seqr := p0r
21 Set Trajectoryr := x0r
22 for i ∈ {1, . . . , |ρ| − 1} such that Z(r, i) = 1 and

W (i, r) ≤W (j, r),∀j ∈ {1, . . . , |ρ| − 1}, j 6= i do
23 Consider the graph from line 10, with set of nodesDi∪

Ii and arcs inherited from Tr
24 Run Dijkstra’s graph search, with source node p0r and

destination set Di

25 Denote the returned minimum cost path with
p0r, p1r, p2r, ..., pnr

26 Append sequence of cells p1, p2, ..., pn to Seqr
27 Append to Trajectoryr the centroids of common

facets, Waypoint(p(k)r, p(k+1)r), k = 1, . . . , n
28 Append to Trajectoryr the centroid of cell pnr
29 Set Z(r, i) := 0 - task ϕi was solved
30 Update p0r := pnr

31 Return individual piece-wise linear trajectories Trajectoryr,
∀r = 1, . . . , |R|

ϕ1 = y1 to the first robot (red) and ϕ2 = y3 ∨ y4 to r2 (blue).
Thus, r1 should move to a cell with observation y1 (set D for
ϕ1 containing all places with observation y1) and should cross
only through cells not intersecting y2 (according to set I that
includes all places with observations different than y2). Drone
r2 independently moves to a cell with observation belonging to
set {y3, y4}, while also avoiding y2. There result 4 cells in the
sequence Seqr1 from Algorithm 3 and 3 cells in Seqr2 . The
trajectories obtained by linking the corresponding waypoints
are shown in Figure 4. �

Fig. 4. Independent trajectories of the two drones, giving a
solution to Example 1.

Fig. 5. Environment E with 6 regions of interest Y .

6. NUMERICAL EVALUATION

This section numerically evaluates our solution, by considering
a team of 3 drones and the configuration of the workspace
depicted in Figure 5: a 3D environment E = [0, 80]× [0, 50]×
[0, 100] (in any length units lu) with 6 regions of interest
Y = {y1, y2, y3, y4, y5, y6}. All regions are convex bounded
polyhedra with flat base (z = 0), having distinct shapes and
heights. The regions are disjoint, except y2 and y3 that intersect.
The LTL specification is given in (3), requiring that the team
of drones must eventually visit regions y1, y4, y5, y6 and the
intersection of y2 and y3.

ϕ = ♦y1 ∧ ♦ (y2 ∧ y3) ∧ ♦y4 ∧ ♦y5 ∧ ♦y6. (3)

The two types of partitions described in Sec. 4 are shortly
referred here as Grid and OctTree, respectively. We decom-
posed the environment with a precision ε = 16. As a result, we
obtained a graph with 1849 nodes and 13081 transitions for the
OctTree approach, with a run time of 6.7 seconds. On the other
hand, for the Grid procedure we achieved a graph with 4096
nodes with 27136 transitions in 19 seconds. As mentioned in
Sec. 2, the algorithms were implemented and run in MATLAB,
on a laptop with i7 - 8th gen. CPU @ 2.20Ghz and 8GB RAM.

The initial drone deployments are not displayed in the Figure 5,
since we will assume 100 random deployments. For each exper-
iment, the initial positions yield different sequences of cells and
trajectory lengths for the robots, with small variations regarding
the computation times. For the numerical interpretation, we will
report average results over these 100 experiments.

First we discuss execution times of different phases of our
proposed method. The computing time for trimming the Büchi
automaton and for decomposing the mission into independent
tasks as in Algorithm 1 took 17.58 seconds, of course this
time being independent of the used partitioning method. The
computation for obtaining the cost matrix W (average over
100 different initial deployments of drones) took 6.84 seconds
for the Grid case and 1.51 seconds for the OctTree one. As
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expected, Grid method induces more time, since computing
each costs requires a graph search on a subset of states from
P . Solving the MILP allocation took around 0.03 seconds, this
formulation being independent of size of automatons Tr.

The second part of the comparison contains performances for
the resulted trajectories of drones. Thus, Table 1 gives the
average length of trajectories for each drone. Recall that the
length is influenced by the size of each traversed cell from
Seqr (Algorithm 3), and we optimized the number of traversed
places (due to unitary costs in Adj). The OctTree partition
includes larger cells, and this coarser abstraction may attract
longer trajectories than Grid, but with smaller computation
times.

Table 1. Average lengths of the trajectory for each
drone, OctTree and Grid decompositions.

Average trajectory length OctTree Grid

r1 [lu] 76.84 68.55
r2 [lu] 86.02 69.56
r3 [lu] 79.44 71.54

Table 2 includes information about the maximum cost and the
total cost, as per elements from W . Thus, the meaning of the
cost is the number of cells traversed by the drone, i.e., the
number of direction changes. The maximum cost from the first
line means the maximum number of traversed cells over the 3
robots, while each robot satisfies all its assigned tasks. The total
cost include the number of places visited by all robots until
specification ϕ is accomplished. The fewer states yielded by
OctTree imply less direction changes for drone flight, even if
the actual trajectory length is longer.

Table 2. Averages for maximum cost and total cost,
in terms of number of traversed places.

Average cost OctTree Grid

Maximum cost 11.31 19.13
Total cost 27.52 47.10

For a better visualization of the trajectories and for a simulation
of drone’s flight, the reader is directed to the video available
at https://youtu.be/awzeIZbexng. We mention that
the motivation behind the considered simulation with 3 drones
and 5 independent tasks is to highlight a scenario in which at
least one drone must execute multiple tasks. More complicated
formulas with a greater number of robots would yield to hard-
to-visualize trajectories.

One important contribution of this paper is the algorithm for
decomposing the LTL mission. To demonstrate this, we com-
puted the cost for fulfilling the mission from (3) with only one
drone, instead of distributing it among the team members. Thus,
for the OctTree partition a single drone would have to cross
in average through 34.6 cells, and for the Grid case it would
traverse 68.74 cells. By comparing these data with Table 2,
we can affirm that the decomposition is truly beneficial both
from the point of view of the total number of traversed cells, as
well as from the parallel execution of independent tasks, whose
completion time is reflected by the maximum cost from Table
2.

7. CONCLUSIONS

This paper presents an approach for path planning in a 3D
environment, by considering a team of drones that should com-
plete a co-safe LTLX mission over some regions of interest.
Before drones start their movement, a central unit decomposes
the overall requirement into independent tasks and find trajec-
tories that are independently followed by the drones, hence
the motion itself occurs in a distributed manner. The team
mission is modeled as a Büchi automaton and based on this
model a decomposition into independent tasks is computed.
The workspace with regions of interest is abstracted into an
automaton for each robot, by using either a grid decomposition
with equal rectangular cuboid cells, or a recursive octtree-based
partitioning method.

The contributions include an automated way for decomposing
the LTL formula into independent tasks, an extension of the
recursive partitioning method for 3D environments with regions
of interest. Moreover, all these parts are integrated in an overall
algorithmic solution whose performance is numerically evalu-
ated based on several criteria.

For future work we intend to include collision avoidance meth-
ods based on safe distances between drones and to support the
simulation results through real-time experiments in a laboratory
setup. Here, we aim to use the advantage of having independent
trajectories that can be followed by drones based on some feed-
back from on-board positioning sensors, while a reduced usage
of communication or proximity sensors may be necessary for
enforcing local collision-avoidance rules.
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