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Abstract: This paper investigates the mean square delay-distribution-dependent exponential
synchronization problem of Markovian jumping discrete-time chaotic neural networks with
random delays. Introduced the probability distribution of the time delay, a random variable
that satisfying Bernoulli distribution is formulated to produce a new system which includes the
information of the probability distribution. Based on the Lyapunov-Krasovskii functional, the
Jensen’s inequality theory and linear matrix inequality (LMI) technique, delay-distribution-
dependent sufficient criteria are established for the discussed Markovian jumping discrete-
time chaotic neural networks with random delays to be exponentially synchronized in the
mean square. The derived criteria are expressed in terms of linear matrix inequalities and are
dependent on the sizes as well as probabilities distribution of delays. The feasibility and the
effectiveness of the presented synchronization scheme are demonstrated by one example.
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1. INTRODUCTION

Since the pioneering works of Pecora and Carroll (Pec-
ora and Carroll (1990)), the synchronization problem of
chaotic systems has attracted the attention of many re-
searchers and has been successively applied in many engi-
neering fields such as secure communications (Wen, S. et
al. (2013)), image encryption (Kalpana, M. et al. (2018))
and biomedical engineering (Tang, Y. et al. (2014)). In
addition, neural networks as one of the most important
dynamical system is ubiquitous in both nature and man-
made system. It has been shown that neural networks
with or without time-delays may exhibit chaotic behavior,
where the time-delays can be classified as constant, time-
varying, neutral delay, leakage delay and distributed delay
(Gilli, M. (1993); Zou and Nossek (1993); Lu (2002); Lu
and He (1993)). Therefore, synchronization analysis for
chaotic neural networks with time-delay is an attractive
subject of research in recent years and various results
have been reported in (Khadra, Liu and Shen (2005);
Xing, Peng and Wang (2010); Zhang, Lv and Li (2017);
Abdurahman, Jiang and Teng (2016); Zhang, Shen and
Wang (2013); Zhang, Lv and Li (2017); Cheng and
Peng (2016); Pratap, et al. (2018); Yang, Cao and Qiu
(2015); Liu, Yang and Chen (2011); Hu, et al. (2018).
For instance, in (Xing, Peng and Wang (2010)), glob-
al exponential synchronization of a class of time-varying
delayed chaotic neural networks is investigated based on
M-matrix theory. In Zhang, Lv and Li (2017), the lag
synchronization of chaotic neural networks with time-delay

is discussed by employing the impulsive control theory.
The mean square exponential synchronization problem of
a class of stochastic neutral type chaotic neural networks
with mixed delay is studied by using stochastic analysis
and inequality technique in Liu, Yang and Chen (2011).

On the other hand, neural networks with Markov jump is
a special class of hybird system, which can cause abrupt
changes in their parameters or structures due to some
phenomenon such as random failures of the components
and sudden environment. Recently, dynamics analysis and
synchronization problem of neural networks with Markov
jump and time-delay have stirred initial research inter-
ests (Ma and Zheng (2018); Senthilraj, et al. (2016);
Rakkiyappan, et al. (2014); Ma and Zheng (2015); Tong,
et al. (2015)). In practice, the time delay in some neu-
ral networks often exists in a random form (Liu, Wang
and Liu (2008)), and its probabilities can be measured
by the statistical methods such as Bernoulli distribution,
normal distribution, uniform distribution and Poisson dis-
tribution. It is uncomplicated to see that disturbances
invariably exist, which can lead to instability and poor
performances always real physical systems (Rakkiyappan,
et al. (2014); Nagamani and Ramasamy (2016)). Conse-
quently, how to cut down the effect of disturbances in the
synchronization process for chaotic systems has become
a significant issue. It’s worth noting that the important
problem of the mean square delay-distribution-dependent
exponential synchronization of discrete-time Markov jump
chaotic neural networks with random delays has not been
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completely considered, so this situation motivates to our
present study.

As discussed above, this paper have mainly studied
the mean-square delay-distribution-dependent exponential
synchronization for a class of Markovian jumping discrete-
time chaotic neural networks with random delays. The
main contributions of this paper as follows: (i) By intro-
ducing a stochastic variable which satisfies Bernoulli distri-
bution, the information of probabilistic time delay is equiv-
alently transformed into the deterministic time delay with
stochastic parameters. (ii) A suitable Lyapunov-Krasovskii
functional is constructed with the full information of prob-
abilistic time. (iii) By employing the Jensen’s inequali-
ty theory, several delay-distribution-dependent sufficient
conditions have been derived in terms of simplified LMI.
(iv) one examples is given to illustrate the feasibility and
the effectiveness of the theoretical results. The remainder
of this paper is organized as follows. In Section 2, the
master system and the slave system are introduced, some
necessary assumptions, definition and lemmas are given.
Our main results and their rigorous proofs are described in
Section 3. In Section 4, one numerical simulation are given
to illustrate the effectiveness of our results. In Section 5,
conclusions are given.

Notations: Throughout this paper, Rn and Rn×m denote,
respectively, the n-dimensional Euclidean space and the
set of n × m real matrices. The superscript “T” denotes
the transpose of matrix or vector. I denotes the identity
matrix with compatible dimensions, “∗” denotes the sym-
metric parts, and ∥·∥ refers to the Euclidean vector norm in
Rn. ByA > 0, we mean thatA is a real symmetric positive-
definite matrix. If A is a symmetric matrix, λmax(A ) or
λmin(A ) denotes the maximum eigenvalue of matrix A
or the minimum eigenvalue of matrix A . Moreover, we
may fix a probability space (Ω,F ,P), where P is the
probability measure, has total mass 1. Finally, E{·} de-
notes the mathematical expectation operator with respect
to the given probability measure P.

2. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the following Markovian jumping discrete-time
chaotic neural networks with time delay of the term:

x(k + 1) = C(γk)x(k) +A(γk)f̃(x(k))

+B(γk)g̃(x(k − τ(k))) + J,

x(i) = φ1(i), i ∈ N
[
− τM , 0

]
,

(1)

where k ∈ N, x(k) =
[
x1(k), x2(k), . . . , xn(k)

]T ∈ Rn is
the neural state vector, and xj(k) is the state of the jth
neuron at time k; C(γk) = diag

(
c1(γk), c2(γk), . . . , cn(γk)

)
∈

Rn×n describes the rate which the each neuron will
rest its potential to the resting state in solation when
disconnected from the networks and external input-
s; A(γk) ∈ Rn×n and B(γk) ∈ Rn×n are the con-
nection non-delayed weight matrix and the discretely
delayed connection weight matrix, respectively; J =[
J1, J2, . . . , Jn

]T ∈ Rn is an external input vector;

f̃(x(k)) =
[
f̃1(x1(k)), f̃2(x2(k)), . . . , f̃n(xn(k))

]T
∈ Rn

and g̃(x(k)) = [g̃1(x1(k)), g̃2(x2(k)), . . . , g̃n(xn(k))]
T ∈ Rn

are the neuron activation functions; discrete time-varying
delay τ(k) satisfies

0 < τm ≤ τ(k) ≤ τM ,

where τm and τM are known positive integers; the param-
eter {γk}

(
k ∈ {1, 2, . . . ,K},K may be finite of infinite

)
is assumed to be a Markov chain taking value in a finite
set S={1, 2, . . . , s} with transition probabilities

Pr
{
γk+1 = q | γk = p

}
= πpq, ∀p, q ∈ S,

where 0 ≤ πpq ≤ 1 and
s∑

q=1
πpq = 1; φ(i) is the initial

condition.

Assumption 1. (Liu, Wang and Liu (2009)) For any u, v ∈
R, u ̸= v, the continuous and bounded activation functions
f̃j(·) and g̃j(·) satisfy

F−
j ≤ f̃j(u)− f̃j(v)

u− v
≤ F+

j ,

G−
j ≤ g̃j(u)− g̃j(v)

u− v
≤ G+

j , j = 1, 2, . . . , n,

where F−
j , F+

j , G−
j and G+

j are known constants.

Assumption 2. (Nagamani and Ramasamy (2016)) In
what follows, in order to employ the information of proba-
bility distribution of the discrete time-varying delay τ(k),
we define two sets and mapping functions by

Ω1 =
{
k | τ(k) ∈

[
τm, τ0

]}
, Ω2 =

{
k | τ(k) ∈

(
τ0, τM

]}
and

τ1(k) =

{
τ(k), for k ∈ Ω1

τ̃1, for k ∈ Ω2

,

τ2(k) =

{
τ(k), for k ∈ Ω2

τ̃2, for k ∈ Ω1

where τ0 ∈
[
τm, τM

]
, τ̃1 ∈

[
τm, τ0

]
and τ̃2 ∈

[
τ0, τM

]
.

Obviously, Ω1 ∪ Ω2 = R+, Ω1 ∩ Ω2 = ∅ (empty set).
According to the definitions of Ω1 and Ω2, it is easy to see
that k ∈ Ω1 means the event τ(k) ∈

[
τm, τ0

]
occurs and

k ∈ Ω2 means the event τ(k) ∈
[
τ0, τM

]
occurs. Therefore

the stochastic variable θ(k) can be defined as

θ(k) =

{
1, for k ∈ Ω1,

0, for k ∈ Ω2.

Assumption 3. (Nagamani and Ramasamy (2016)) θ(t) is
a Bernoulli distributed sequence with

Prob
{
θ(k) = 1

}
= E

{
θ(k)

}
= θ0,

Prob
{
θ(k) = 0

}
= 1− E

{
θ(k)

}
= 1− θ0,

where 0 ≤ θ0 ≤ 1 is a constant.

Remark 1. According to Assumption 3, we can show that

E
{
θ(k)− θ0

}
= 0, E

{
(θ(k)− θ0)

2
}
= θ0(1− θ0).

Then, based on the analysis in Assumption 2 and 3, the
Markovian jumping discrete-time chaotic neural network
(1) can be rewritten as:

x(k + 1) = C(γk)x(k) +A(γk)f̃(x(k))

+ θ(k)B(γk)g̃(x(k − τ1(k)))

+ (1− θ(k))B(γk)g̃(x(k − τ2(k))) + J,

x(i) = φ1(i), i ∈ N
[
− τM , 0

]
.

(2)
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The system (2) is considered as a master system, the
corresponding controlled slave system is given by

y(k + 1) = C(γk)y(k) +A(γk)f̃(y(k))

+ θ(k)B(γk)g̃(y(k − τ1(k)))

+ (1− θ(k))B(γk)g̃(y(k − τ2(k)))

+ J + u(k) + δ(k, e(k), γk)ω(k),

y(i) = φ2(i), i ∈ N
[
− τM , 0

]
,

(3)

where y(k) = [y1(k), y2(k), . . . , yn(k)]
T ∈ Rn is the state

vector; φ2(i) ∈ Rn denotes the initial conditions; u(k) =

[u1(k), u2(k), . . . , un(k)]
T ∈ Rn is the control input; e(k) =

(e1(k), e2(k), . . . , en(k))
T ∈ Rn is the synchronization

error vector; δ(·, ·, ·) : N × Rn × S → Rn is the noise
intensity function vector; ω(k) is a scalar Wiener process
on a probability space (Ω,F ,P) with

E{ω(k)} = 0, E{ω2(k)} = 1, E{ω(i)ω(j)} = 0 (i ̸= j).

Assumption 4. The noise intensity function δ(·, ·, ·) : N ×
Rn × S → Rn satisfies the Lipschitz condition and there
exist positive definite matrix Σγk

such that

δT(k, z, γk)δ(k, z, γk) ≤ zTΣγk
z,

for any z ∈ Rn.

To investigate the synchronization problem for (2) and (3),
we define the synchronization error state as e(k) = y(k)−
x(k) and the control input u(k) in the slave system is given
by

u(k) = K(γk)e(k), (4)

where K(γk) ∈ Rn×n is controller gain matrices to be
determined. Then, subtracting (2) from (3), which yields
the synchronization error dynamical system as follows:

e(k + 1) =
(
Cp +Kp

)
e(k) +Apf(e(k))

+ θ(k)Bpg(e(k − τ1(k)))

+ (1− θ(k))Bpg(e(k − τ2(k)))

+ δ(k, e(k), p)ω(k)

= ẽ(k) + δ(k, e(k), p)ω(k),

e(i) = φ2(i)− φ1(i) ≡ φ(i), i ∈ N
[
− τM , 0

]
,

(5)

which is equivalent to

e(k + 1) =
(
Cp +Kp

)
e(k) +Apf(e(k))

+ θ0Bpg(e(k − τ1(k)))

+ (1− θ0)Bpg(e(k − τ2(k)))

+ (θ(k)− θ0)Bp

[
g(e(k − τ1(k)))

− g(e(k − τ2(k)))
]
+ δ(k, e(k), p)ω(k)

=η̃(k) + δ(k, e(k), p)ω(k), (6)

where γk = p, p ∈ S, f(e(k)) = f̃(x(k) + e(k)) − f̃(x(k)),
g(e(k)) = g̃(x(k) + e(k))− g̃(x(k)).

To derive the main results, we introduce the following
synchronization concept and Lemmas.

Definition 1. (Wang, et al. (2009)) The master system
(2) and the slave system (3) are said to be globally
exponentially synchronized in the mean square if the error
dynamic system (5) is globally exponentially stable in

mean square , i.e., there exist constants α > 0 and
0 < β < 1 such that

E
{
∥e(k)∥2

}
≤ αβk sup

−τM≤i≤0
E
{
∥φ(i)∥2

}
.

Lemma 1. (Chen and Fei (2014)) Let Z ∈ Rn×n be
a symmetric positive semidefinite matrix, two positive
integers a and b satisfying b ≥ a, and a vector function
ω : [a, b] −→ Rn. Then, the following inequality holds(

b∑
i=a

ωi

)T

Z

(
b∑

i=a

ωi

)
≤ (b− a+ 1)

b∑
i=a

ωT
i Zωi.

Lemma 2. (Park, Ko and Jeong (2011)) For a given scalar
α ∈ [0, 1], an n × n matrix Z > 0, and two vectors
ζ1, ζ2 ∈ Rn, define the function Θ(α,Z) as

Θ(α,Z) =
1

α
ζT1 Zζ1 +

1

1− α
ζT2 Zζ2.

If there is a matrix M ∈ Rn×n such that

[
Z M
MT Z

]
> 0,

then the following inequality holds

min
α∈(0,1)

Θ(α,Z) ≥
[
ζ1
ζ2

]T [
Z M
MT Z

] [
ζ1
ζ2

]
.

3. MAIN RESULTS

In this section, by utilizing a new Lyapunov-Krasovskii
functional, the mean square delay-distribution-dependent
exponential stability criteria for the error dynamic system
(5) will be derived. Then based on the stability criteria,
the criteria of the globally exponentially synchronized in
the mean square for neural networks (2) and (3) will be
obtained.

Theorem 1. Under Assumptions 1–4, the synchronization
error dynamical system (5) is globally exponentially stable
in the mean square if there exist positive-definite matrices
Pp (p = 1, 2, . . . , s), Q1, Q2, Q3, Z1, Z2, S1, S2, R1, R2 ∈
Rn×n, diagonal positive-definite matrices Up, Λp ∈ Rn×n,
matrices M, N ∈ Rn×n, controller gain Kp ∈ Rn×n and
a positive scalar λ such that for any p ∈ S, the following
matrix inequalities hold:[

Z1 M
∗ Z1

]
> 0, (7)[

Z2 N
∗ Z2

]
> 0, (8)

s∑
q=1

πpqPq + τ21Z1 + τ22Z2 ≤ λI, (9)
Ξ11 ΞT

12 ΞT
13 ΞT

14

∗ −

(
s∑

q=1
πpqPq

)−1

0 0

∗ ∗ Ξ33 0
∗ ∗ ∗ Ξ44

 < 0, (10)

where Ξ11 =
(
Ωi,j

)
10×10

with
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Ω1,1 = −Pp +Q1 +Q2 +Q3 +
(
τ1 + 1

)
S1 +

(
τ2 + 1

)
S2

− UpF1 − ΛpG1 + λΣp, Ω1,2 = Ω1,3 = Ω1,4 = Ω1,5 =

Ω1,6 = 0, Ω1,7 = UpF2, Ω1,8 = ΛpG2, Ω1,9 = Ω1,10 = 0,

Ω2,2 = −Q1 − Z1, Ω2,3 = Z1 −M, Ω2,4 = Z2, Ω2,5 =

Ω2,6 = Ω2,7 = Ω2,8 = Ω2,9 = Ω2,10 = 0, Ω3,3 = −S1

− 2Z2 +MT +M, Ω3,4 = Z1 −M, Ω3,5 = Ω3,6 =

Ω3,7 = Ω3,8 = Ω3,9 = Ω3,10 = 0, Ω4,4 = −Q2 − Z1 − Z2,

Ω4,5 = Z2 −N, Ω4,6 = Z2, Ω4,7 = Ω4,8 = Ω4,9 =

Ω4,10 = 0, Ω5,5 = −S2 − 2Z2 +NT +N, Ω5,6 =

Z2 −N, Ω5,7 = Ω5,8 = Ω5,9 = Ω5,10 = 0, Ω6,6 = −Q3

− Z2, Ω6,7 = Ω6,8 = Ω6,9 = Ω6,10 = 0, Ω7,7 = −Up,

Ω7,8 = Ω7,9 = Ω7,10 = 0, Ω8,8 = −Λp +
(
τ1 + 1

)
R1

+
(
τ2 + 1

)
R2, Ω8,9 = Ω8,10 = 0, Ω9,9 = −R1,

Ω9,10 = 0, Ω10,10 = −R2, τ1 = τ0 − τm, τ2 = τM − τ0,

Ξ12 =
[
Cp +Kp 0 0 0 0 0 Ap 0 θ0Bp

(
1− θ0

)
Bp

]
,

Ξ13 =

[
τ1Ω 0 0 0 0 0 τ1Ap 0 τ1θ0Bp τ1Bp

τ2Ω 0 0 0 0 0 τ2Ap 0 τ2θ0Bp τ2Bp

]
,

Ξ14 =

[
0 0 0 0 0 0 0 0 τ1θ̄0Bp −τ1θ̄0Bp

0 0 0 0 0 0 0 0 τ2θ̄0Bp −τ2θ̄0Bp

]
,

Ξ33 = Ξ44 = diag
[
−Z−1

1 −Z−1
2

]
, Ω = Cp +Kp − I,

τ1 = τ1
(
1− θ0

)
, τ2 = τ2

(
1− θ0

)
, θ̄0 =

√
θ0
(
1− θ0

)
.

Proof. In order to show the stability of error system
(5), we construct a new Lyapunov-Krasovskii functional
candidate as follows:

V (k, e(k), γk) =
8∑

κ=1

Vκ(k, e(k), γk), (11)

where

V1(k, e(k), γk) =eT(k)P (γk)e(k),

V2(k, e(k), γk) =
k−1∑

l=k−τm

eT(l)Q1e(l) +
k−1∑

l=k−τ0

eT(l)Q2e(l)

+

k−1∑
l=k−τM

eT(l)Q3e(l),

V3(k, e(k), γk) =(τ0 − τm)

−τm−1∑
υ=−τ0

k−1∑
l=k+υ

ηT(l)Z1η(l),

V4(k, e(k), γk) =(τM − τ0)

−τ0−1∑
υ=−τM

k−1∑
l=k+υ

ηT(l)Z2η(l),

V5(k, e(k), γk) =
k−1∑

l=k−τ1(k)

eT(l)S1e(l)

+

−τm∑
υ=−τ0+1

k−1∑
l=k+υ

eT(l)S1e(l),

V6(k, e(k), γk) =
k−1∑

l=k−τ2(k)

eT(l)S2e(l)

+

−τ0∑
υ=−τM+1

k−1∑
l=k+υ

eT(l)S2e(l),

V7(k, e(k), γk) =

k−1∑
l=k−τ1(k)

gT(e(l))R1g(e(l))

+

k−τm∑
υ=k−τ0+1

k−1∑
l=υ

gT(e(l))R1g(e(l)),

V8(k, e(k), γk) =

k−1∑
l=k−τ2(k)

gT(e(l))R2g(e(l))

+

k−τ0∑
υ=k−τM+1

k−1∑
l=υ

gT(e(l))R2g(e(l)),

η(l) =e(l + 1)− e(l).

Letting

E {∆V (k)}
= E {V (k + 1, e(k + 1), γk+1 | e(k), γk = p)− V (k, e(k), p)} ,
s∑

q=1

Pr {γk+1 = q | γk = p}Pq =
s∑

q=1

πpqPq.

Calculating the difference of V (k, e(k), γk) along the solu-
tion of the error system (5), we can get that

E {∆V1(k)}

=E

{
eT(k + 1)

s∑
q=1

πpqPqe(k + 1)− eT(k)Ppe(k)

}

=E

{
ẽT(k)

s∑
q=1

πpqPq ẽ(k)− eT(k)Ppe(k)

}
+

δT (k, e(k), p)
s∑

q=1

πpqPqδ (k, e(k), p) , (12)

E {∆V2(k)}
=E

{
eT(k)

(
Q1 +Q2 +Q3

)
e(k)

− eT(k − τm)Q1e(k − τm)− eT(k − τ0)Q2e(k − τ0)

−eT(k − τM )Q3e(k − τM )
}
, (13)

E {∆V3(k)}
=E

{
(τ0 − τm)2ηT(k)Z1η(k)

−(τ0 − τm)

k−τm−1∑
l=k−τ0

ηT(l)Z1η(l)

}
=E

{
(τ0 − τm)2

(
η̃(k)− e(k)

)T
Z1

(
η̃(k)− e(k)

)
−(τ0 − τm)

k−τm−1∑
l=k−τ0

ηT(l)Z1η(l)

}
+ (τ0 − τm)2δT (k, e(k), p)Z1δ (k, e(k), p) , (14)

E {∆V4(k)}
=E

{
(τM − τ0)

2ηT(k)Z2η(k)

−(τM − τ0)

k−τ0−1∑
l=k−τM

ηT(l)Z2η(l)

}
=E

{
(τM − τ0)

2
(
η̃(k)− e(k)

)T
Z2

(
η̃(k)− e(k)

)
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−(τM − τ0)

k−τ0−1∑
l=k−τM

ηT(l)Z2η(l)

}
+ (τM − τ0)

2δT (k, e(k), p)Z2δ (k, e(k), p) , (15)

E {∆V5(k)}

=E

eT(k)S1e(k) +

k−1∑
l=k+1−τ1(k+1)

eT(l)S1e(l)

− eT(k − τ1(k))S1e(k − τ1(k)) +
k−1∑

l=k+1−τ1(k)

eT(l)S1e(l)

+
(
τ0 − τm

)
eT(k)S1e(k)−

k−τm∑
l=k+1−τ0

eT(l)S1e(l)

}
≤E

{(
τ0 − τm + 1

)
eT(k)S1e(k)

−eT(k − τ1(k))S1e(k − τ1(k))
}
, (16)

E {∆V6(k)}
≤E

{(
τM − τ0 + 1

)
eT(k)S2e(k)

−eT(k − τ2(k))S2e(k − τ2(k))
}
, (17)

E {∆V7(k)}
≤E

{(
τ0 − τm + 1

)
gT(e(k))R1g(e(k))

−gT(e(k − τ1(k)))R1g(e(k − τ1(k)))
}
, (18)

E {∆V8(k)}
≤E

{(
τM − τ0 + 1

)
gT(e(k))R2g(e(k))

−gT(e(k − τ2(k)))R2g(e(k − τ2(k)))
}
, (19)

By (6), the first terms in (14) and (15) can be obtained
that

(
η̃(k)− e(k)

)T
Z1

(
η̃(k)− e(k)

)
=ξT(k)A T

1 Z1A1ξ(k) +
(
θ(k)− θ0

)2
ξT(k)A T

2 Z1A2ξ(k)+

2
(
θ(k)− θ0

)
ξT(k)A T

1 Z1A2ξ(k), (20)

(
η̃(k)− e(k)

)T
Z2

(
η̃(k)− e(k)

)
=ξT(t)A T

1 Z2A1ξ(t) +
(
θ(t)− θ0

)2
ξT(t)A T

2 Z3A2ξ(t)+

2
(
θ(t)− θ0

)
ξT(t)A T

1 Z2A2ξ(t), (21)

where

ξ(k) =
[
eT(k), eT

(
k − τm

)
, eT(k − τ1(k)), e

T
(
k − τ0

)
,

eT(k − τ2(k)), eT
(
t− τM

)
, fT(e(k)), gT(e(k)),

gT(e(k − τ1(k))), g
T(e(k − τ2(k)))

]T
,

A1 = [Cp +Kp − I 0 0 0 0 0 Ap 0 θ0Bp (1− θ0)Bp ] ,

A2 = [ 0 0 0 0 0 0 0 0 Bp −Bp ] .

Using Lemma 1, we deal with the second term in (14)

−(τ0 − τm)

k−τm−1∑
l=k−τ0

ηT(l)Z1η(l)

=− (τ0 − τm)

k−τ1(k)−1∑
l=k−τ0

ηT(l)Z1η(l)

− (τ0 − τm)

k−τm−1∑
l=k−τ1(k)

ηT(l)Z1η(l)

≤− τ0 − τm
τ0 − τ1(k)

k−τ1(k)−1∑
l=k−τ0

η(l)

T

Z1

k−τ1(k)−1∑
l=k−τ0

η(l)


− τ0 − τm

τ1(k)− τm

 k−τm−1∑
l=k−τ1(k)

η(l)

T

Z1

 k−τm−1∑
l=k−τ1(k)

η(l)

 .

According to Lemma 2, there exists matrix M such that[
Z1 M
MT Z1

]
> 0, then we can have

−(τ0 − τm)

k−τm−1∑
l=k−τ0

ηT(l)Z1η(l)

≤

[
e(k − τm)

e(k − τ1(k))
e(k − τ0)

]T
Σ1

[
e(k − τm)

e(k − τ1(k))
e(k − τ0)

]
, (22)

where

Σ1 =

−Z1 Z1 −M Z1

∗ −2Z1 +MT +M Z1 −M
∗ ∗ −Z1

 .

Similarly, there exists matrix N such that

[
Z2 N
NT Z2

]
> 0,

then one can deal with the second term in (15)

−(τM − τ0)

k−τ0−1∑
l=k−τM

ηT(l)Z2η(l)

≤

[
e(k − τ0)

e(k − τ2(k))
e(k − τM )

]T
Σ2

[
e(k − τ0)

e(k − τ2(k))
e(k − τM )

]
, (23)

where

Σ2 =

−Z2 Z2 −N Z2

∗ −2Z2 +NT +N Z2 −N
∗ ∗ −Z2

 .

Based on Assumption 1, we can acquire the following
inequalities:(

fj(ej(t))− F+
j ej(t)

) (
fj(ej(t))− F−

j ej(t)
)
≤ 0,(

gj(ej(t))−G+
j ej(t)

) (
gj(ej(t))−G−

j ej(t)
)
≤ 0,

where j = 1, 2, . . . , n. Then, there exist matrices Up =
diag(up1, up2, . . . , upn) > 0, Λp = diag (λp1, λp2, . . . , λpn) >
0 for any p ∈ S such that

n∑
j=1

upj

[
e(t)

f(e(t))

]T  F+
j F−

j υjυ
T
j −F+

j
+F−

j

2 υjυ
T
j

−F+
j
+F−

j

2 υjυ
T
j υjυ

T
j

[ e(t)
f(e(t))

]

=

[
e(t)

f(e(t))

]T [
UpF1 −UpF2

−UpF2 Up

] [
e(t)

f(e(t))

]
≤ 0,

(24)
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n∑
j=1

λpj

[
e(t)

g(e(t))

]T  G+
j G

−
j υjυ

T
j −G+

j
+G−

j

2 υjυ
T
j

−G+
j
+G−

j

2 υjυ
T
j υjυ

T
j

[ e(t)
g(e(t))

]

=

[
e(t)

g(e(t))

]T [
ΛpG1 −ΛpG2

−ΛpG2 Λp

] [
e(t)

g(e(t))

]
≤ 0,

(25)

where

F1 = diag
[
F+
1 F−

1 , F+
2 F−

2 , . . . , F+
n F−

n

]
,

F2 = diag
[
F+

1 +F−
1

2 ,
F+

2 +F−
2

2 , . . . ,
F+

n +F−
n

2

]
,

G1 = diag
[
G+

1 G
−
1 , G

+
2 G

−
2 , . . . , G

+
nG

−
n

]
,

G2 = diag
[
G+

1 +G−
1

2 ,
G+

2 +G−
2

2 , . . . ,
G+

n+G−
n

2

]
,

and υj denotes the unit column vector having “1” element
on its j−th row and zeros elsewhere.

On the other hand, it follows from Assumption 4 and the
condition (9) that

δT (k, e(k), p)Σ3δ (k, e(k), p) ≤ λeT(k)Σpe(k), (26)

where

Σ3 =
s∑

q=1

πpqPq +
(
τ0 − τm

)2
Z1 +

(
τM − τ0

)2
Z2.

Combining (12)-(26), we deduce

E {∆V (k)} = E
{
ξT(k)Ξξ(k)

}
, (27)

where

Ξ =Ξ11 + ΞT
12

s∑
q=1

πpqPqΞ12

+
(
τ0 − τm

)2
A T

1 Z1A1 +
(
τM − τ0

)2
A T

1 Z2A1

+ θ0
(
1− θ0

) [(
τ0 − τm

)2
A T

2 Z1A2

+
(
τM − τ0

)2
A T

2 Z2A2

]
.

Utilizing Schur complement formula and Eq. (10), the
following results are yielded:

Ξ =Ξ11 + ΞT
12

s∑
q=1

πpqPqΞ12

+
(
τ0 − τm

)2
A T

1 Z1A1 +
(
τM − τ0

)2
A T

1 Z2A1

+ θ0
(
1− θ0

) [(
τ0 − τm

)2
A T

2 Z1A2

+
(
τM − τ0

)2
A T

2 Z2A2

]
< 0.

Next, we will investigate the exponential stability in the
mean square of error system (5). We can obtain from (7)–
(10) that there exists a sufficiently small scalar ε > 0 such
that

E {∆V (k)}

=− ε

(
E
{
∥e(k)∥2

}
+

k−1∑
l=k−τm

E
{
∥e(l)∥2

}

+

k−1∑
l=k−τ0

E
{
∥e(l)∥2

}
+

k−1∑
l=k−τM

E
{
∥e(l)∥2

}
+

−τm−1∑
υ=−τ0

k−1∑
l=k+υ

E
{
∥η(l)∥2

}
+

−τ0−1∑
υ=−τM

k−1∑
l=k+υ

E
{
∥η(l)∥2

}
+

k−1∑
l=k−τ1(k)

E
{
∥e(l)∥2

}
+

−τm∑
υ=−τ0+1

k−1∑
l=k+υ

E
{
∥e(l)∥2

}
+

k−1∑
l=k−τ2(k)

E
{
∥e(l)∥2

}
+

−τ0∑
υ=−τM+1

k−1∑
l=k+υ

E
{
∥e(l)∥2

}
+

k−1∑
l=k−τ1(k)

E
{
∥g(e(l))∥2

}
+

k−τm∑
υ=k−τ0+1

k−1∑
l=υ

E
{
∥g(e(l))∥2

}
+

k−1∑
l=k−τ2(k)

E
{
∥g(e(l))∥2

}
+

k−τ0∑
υ=k−τM+1

k−1∑
l=υ

E
{
∥g(e(l))∥2

})
. (28)

In addition, we can conclude from the definition of function
V (k, e(k), γk) that

E {V (k)}
≤λmax(Pp)E

{
∥e(k)∥2

}
+ λmax(Q1)

k−1∑
l=k−τm

E
{
∥e(l)∥2

}
+ λmax(Q2)

k−1∑
l=k−τ0

E
{
∥e(l)∥2

}
+ λmax(Q3)

k−1∑
l=k−τM

E
{
∥e(l)∥2

}
+
(
τ0 − τm

)
λmax(Z1)

−τm−1∑
υ=−τ0

k−1∑
l=k+υ

E
{
∥η(l)∥2

}
+
(
τM − τ0

)
λmax(Z2)

−τ0−1∑
υ=−τM

k−1∑
l=k+υ

E
{
∥η(l)∥2

}
+ λmax(S1)

 k−1∑
l=k−τ1(k)

E
{
∥e(l)∥2

}
+

−τm∑
υ=−τ0+1

k−1∑
l=k+υ

E
{
∥e(l)∥2

})

+ λmax(S2)

 k−1∑
l=k−τ2(k)

E
{
∥e(l)∥2

}
+

−τ0∑
υ=−τM+1

k−1∑
l=k+υ

E
{
∥e(l)∥2

})

+ λmax(R1)

 k−1∑
l=k−τ1(k)

E
{
∥g(e(l))∥2

}
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+

k−τm∑
υ=k−τ0+1

k−1∑
l=υ

E
{
∥g(e(l))∥2

})

+ λmax(R2)

 k−1∑
l=k−τ2(k)

E
{
∥g(e(l))∥2

}
+

k−τ0∑
υ=k−τM+1

k−1∑
l=υ

E
{
∥g(e(l))∥2

})
. (29)

Meanwhile, for any scalar µ > 1 satisfying

ε >
µ− 1

µ

{
λmax(Pp), λmax(Q1), λmax(Q2), λmax(Q3),(
τ0 − τm

)
λmax(Z1),

(
τM − τ0

)
λmax(Z2),

λmax(S1), λmax(S2), λmax(R1), λmax(R2)
}
.

Thus, from (28) and (29), it follows that

E
{
µkV (k)− V (0)

}
=E

{
k−1∑
κ=0

[
µκ+1V (κ+ 1)− µκV (κ)

]}

=
k−1∑
κ=0

E
{
µκ+1∆V (κ+ 1)− µκV (κ)

}
≤
[
− µε+ (µ− 1)λmax(Pp)

] k−1∑
κ=0

µκE
{
∥e(κ)∥2

}
+
[
− µε+ (µ− 1)λmax(Q1)

] k−1∑
κ=0

µκ
κ−1∑

l=κ−τm

E
{
∥e(l)∥2

}
+
[
− µε+ (µ− 1)λmax(Q2)

] k−1∑
κ=0

µκ
κ−1∑

l=κ−τ0

E
{
∥e(l)∥2

}
+
[
− µε+ (µ− 1)λmax(Q3)

] k−1∑
κ=0

µκ
κ−1∑

l=κ−τM

E
{
∥e(l)∥2

}
+
[
− µε+ (µ− 1)

(
τ0 − τm

)
λmax(Z1)

]
×

k−1∑
κ=0

µκ
−τm−1∑
υ=−τ0

κ−1∑
l=κ+υ

E
{
∥η(l)∥2

}
+
[
− µε+ (µ− 1)

(
τM − τ0

)
λmax(Z2)

]
×

k−1∑
κ=0

µκ
−τ0−1∑
υ=−τM

κ−1∑
l=κ+υ

E
{
∥η(l)∥2

}
+
[
− µε+ (µ− 1)λmax(S1)

]
×

k−1∑
κ=0

µκ

 κ−1∑
l=κ−τ(κ)

E
{
∥e(l)∥2

}
+

κ−τm∑
υ=κ−τ0+1

κ−1∑
l=υ

E
{
∥e(l)∥2

})
+
[
− µε+ (µ− 1)λmax(S2)

]
×

k−1∑
κ=0

µκ

 κ−1∑
l=κ−τ(κ)

E
{
∥e(l)∥2

}
+

κ−τ0∑
υ=κ−τM+1

κ−1∑
l=υ

E
{
∥e(l)∥2

})

+
[
− µε+ (µ− 1)λmax(R1)

]
×

k−1∑
κ=0

µκ

 κ−1∑
l=κ−τ(κ)

E
{
∥g(e(l))∥2

}
+

κ−τm∑
υ=κ−τ0+1

κ−1∑
l=υ

E
{
∥g(e(l))∥2

})
+
[
− µε+ (µ− 1)λmax(R2)

]
×

k−1∑
κ=0

µκ

 κ−1∑
l=κ−τ(κ)

E
{
∥g(e(l))∥2

}
+

κ−τ0∑
υ=κ−τM+1

κ−1∑
l=υ

E
{
∥g(e(l))∥2

})
≤ 0. (30)

Let

ζ = max
1≤j≤n

{
|F−

j |2, |F+
j |2, |G−

j |
2, |G+

j |
2
}
. (31)

From (11), (30) and (31), it follows that

λmin(Pp)µ
kE
{
∥e(k)∥2

}
≤ µkE {V (k)} ≤E {V (0)} , (32)

where

E {V (0)}
≤{λmax(Pp) + τmλmax(Q1) + τ0λmax(Q2)

+ τMλmax(Q3) +

[(
τ0 − τm

)2(
τ0 + τm + 1

)
2

λmax(Z1)

+

(
τM − τ0

)2(
τM + τ0 + 1

)
2

λmax(Z2)

]
E
{
ΠTΠ

}
+

[
τ0 +

(
τ0 − τm

)(τ0 + τm + 1
)

2

]
λmax(S1)

+

[
τM +

(
τM − τ0

)(
τM + τ0 + 1

)
2

]
λmax(S2)

+

[
τ0 +

(
τ0 − τm

)(
τ0 + τm + 1

)
2

]
ζλmax(R1)

+

[
τM +

(
τM + τ0 + 1

)(τM − τ0
)

2

]
ζλmax(R2)

}
× sup

−τM≤i≤0
E
{
∥φ(i)∥2

}
,

with

E
{
ΠTΠ

}
≤∥Cp +Kp − I∥+ ζ [∥Ap∥+ ∥Bp∥]
+ λmax(Σp).

Thus, it follows from (32) that

E
{
∥e(k)∥2

}
≤ αβk sup

−ρ≤i≤0
E
{
∥φ(i)∥2

}
,

where α = γ
λmin(Pp)

, β = 1
µ and
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γ =λmax(Pp) + τmλmax(Q1) + τ0λmax(Q2)

+ τMλmax(Q3) +

[(
τ0 − τm

)2(
τ0 + τm + 1

)
2

λmax(Z1)

+

(
τM − τ0

)2(
τM + τ0 + 1

)
2

λmax(Z2)

]
E
{
ΠTΠ

}
+

[
τ0 +

(
τ0 − τm

)(τ0 + τm + 1
)

2

]
λmax(S1)

+

[
τM +

(
τM − τ0

)(
τM + τ0 + 1

)
2

]
λmax(S2)

+

[
τ0 +

(
τ0 − τm

)(
τ0 + τm + 1

)
2

]
ζλmax(R1)

+

[
τM +

(
τM + τ0 + 1

)(τM − τ0
)

2

]
ζλmax(R2).

Therefore, by Definition 1, it is shown that the synchro-
nization error dynamical system (5) is globally exponen-
tially stable in the mean square. This completes the proof.

On the basis of Theorem 1, we can derive the synchro-
nization criteria in the form of strict LMIs by designing
the feedback controller (4) such that the master system
(2) and the slave system (3) are globally exponentially
synchronized in the mean square.

Theorem 2. Under Assumptions 1–4, the master system
(2) and the slave system (3) are globally exponentially
synchronized in the mean square if there exist positive-
definite matrices Pp (p = 1, 2, . . . , s), Q1, Q2, Q3, Z1, Z2,
S1, S2, R1, R2 ∈ Rn×n, diagonal positive-definite matri-
ces Up, Λp ∈ Rn×n, matrices M, N, X, Yp ∈ Rn×n and a
positive scalar λ such that (7), (8), (9) and the following
LMIs hold for any p ∈ S:

Ξ11 Ξ
T

12 Ξ
T

13 Ξ
T

14

∗
s∑

q=1
πpqPq −XT −X 0 0

∗ ∗ Ξ33 0
∗ ∗ ∗ Ξ44

 < 0, (33)

where τ1, τ2, τ1, τ2, σ and Ξ11 follow the same definitions
as those in Theorem 1, and

Ξ12 =
[
XCp + Yp 0 0 0 0 0 XAp 0 θ0XBp

(
1− θ0

)
XBp

]
,

Ξ13 =

[
τ1 0 0 0 0 0 τ1XAp 0 τ1θ0XBp τ1XBp

τ2 0 0 0 0 0 τ2XAp 0 τ2θ0XBp τ2XBp

]
,

Ξ14 =

[
0 0 0 0 0 0 0 0 τ1θ̄0XBp −τ1θ̄0XBp

0 0 0 0 0 0 0 0 τ2θ̄0XBp −τ2θ̄0XBp

]
,

Ξ33 = Ξ44 = diag
[
Z1 −XT −X Z2 −XT −X

]
,

Ω̄ = XCp + Yp −X.

Moreover, the feedback controller gain matrix can be
designed by Kp = X−1Yp.

Proof. Defining the following new matrix variables as

Yp = XKp,

and pre-and, post-multiplying Eq. (10) by

diag {I, I, I, I, I, I, I, I, I, I,X,X,X,X,X} ,
diag

{
I, I, I, I, I, I, I, I, I, I,XT, XT, XT, XT, XT

}
,

respectively, we obtain
Ξ11 Ξ

T

12 Ξ
T

13 Ξ
T

14

∗ X

(
s∑

q=1
πpqPq

)−1

XT 0 0

∗ ∗ Ξ33 0
∗ ∗ ∗ Ξ44

 < 0, (34)

Notice that
s∑

q=1
πpqPq > 0 and Zi > 0, (i = 1, 2), we can

obtain that(
s∑

q=1

πpqPq −X

)T( s∑
q=1

πpqPq

)−1( s∑
q=1

πpqPq −X

)
≥ 0,

(
Zi −X

)T
Z−1
i

(
Zi −X

)
≥ 0,

which imply

−X

(
s∑

q=1

πpqPq

)−1

XT ≤
s∑

q=1

πpqPq −X −XT,

−XZ−1
i XT ≤ Zi −X −XT, (35)

from which one can see that if (33) is satisfied, then (34) is
also satisfied. Hence, we can obtain from Theorem 1 that
the master system (2) and the slave system (3) are globally
exponentially synchronized in the mean square, and then
the proof is completed.

Remark 2. If there is no stochastic term and θ(k) ≡ 1(θ0 =
1), the synchronization error system (5) is reduced to the
following form

e(k + 1) =
(
Cp +Kp

)
e(k) +Apf(e(k))

+Bpg(e(k − τ(k))) + δ(k, e(k), p)ω(k)

=ẽ(k) + δ(k, e(k), p)ω(k). (36)

Construct the following Lyapunov-Krasovskii functional
for synchronization error system (36) as

V (k, e(k), γk) =

5∑
κ=1

Vκ(k, e(k), γk),

where

V1(k, e(k), γk) = eT(k)P (γk)e(k),

V2(k, e(k), γk) =
k−1∑

l=k−τm

eT(l)Q1e(l)

+

k−1∑
l=k−τM

eT(l)Q2e(l),

V3(k, e(k), γk) = (τM − τm)

−τm−1∑
υ=−τM

k−1∑
l=k+υ

ηT(l)Zη(l),

V4(k, e(k), γk) =
k−1∑

l=k−τ(k)

eT(l)Se(l)

+

−τm∑
υ=−τM+1

k−1∑
l=k+υ

eT(l)Se(l),

V5(k, e(k), γk) =
k−1∑

l=k−τ(k)

gT(e(l))Rg(e(l))
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+

k−τm∑
υ=k−τM+1

k−1∑
l=υ

gT(e(l))Rg(e(l)),

η(l) = e(l + 1)− e(l).

By utilizing the similar proof methods of Theorem 1 and
Theorem 2, we can acquire the following corollary.

Corollary 1. Under Assumptions 1–4, the master system
(2) and the slave system (3) are globally exponentially
synchronized in the mean square if there exist positive-
definite matrices Pp (p = 1, 2, . . . , s), Q1, Q2, Z, S, R ∈
Rn×n, diagonal positive-definite matrices Up, Λp ∈ Rn×n,
matrices M, X, Yp ∈ Rn×n and a positive scalar λ such
that the following LMIs hold for any p ∈ S:[

Z M
∗ Z

]
> 0, (37)

s∑
q=1

πpqPq + τ̃2Z ≤ λI, (38)
Φ11 ΦT

12 ΦT
13

∗
s∑

q=1
πpqPq −XT −X 0

∗ ∗ Z −XT −X

 < 0, (39)

where Φ11 =
(
Θi,j

)
7×7

with

Θ1,1 = −Pp +Q1 +Q2 +
(
τ̃ + 1

)
S − UpF1 − ΛpG1

+ λΣp, Θ1,2 = Θ1,3 = Θ1,4 = 0, Θ1,5 = UpF2,

Θ1,6 = ΛpG2, Θ1,7 = 0, Θ2,2 = −Q1 − Z,

Θ2,3 = Z −M, Θ2,4 = Z, Θ2,5 = Θ2,6 = Θ2,7 = 0,

Θ3,3 = −S − 2Z +MT +M, Θ3,4 = Z −M,

Θ3,5 = Θ3,6 = Θ3,7 = 0, Θ4,4 = −Z, Θ4,5 = Θ4,6 =

Θ4,7 = 0, Θ5,5 = −Up, Θ5,6 = Θ5,7 = 0, Θ6,6 = −Λp

+
(
τ̃ + 1

)
R, Θ6,7 = 0, Θ7,7 = −R, τ̃ = τM − τm,

Φ12 = [XCp + Yp 0 0 0 XAp 0 XBp ] ,

Φ13 =
[
τ̃
(
XCp + Yp −X

)
0 0 0 τ̃XAp 0 τ̃XBp

]
.

Moreover, the feedback controller gain matrices can be
designed by Kp = X−1Yp.

4. NUMERICAL EXAMPLE

In this section, one example is presented to show the effec-
tiveness of the proposed results. Consider the parameters
of the Markovian jumping neural networks (2) and (3) as
follows:

C1 =

[
0.9 0
0 0.9

]
, A1 =

[
0.21 −0.012
−0.51 0.32

]
,

B1 =

[
−0.16 −0.01
−0.02 −0.24

]
, C2 =

[
0.9 0
0 0.9

]
,

A2 =

[
0.2 −0.01
−0.5 0.45

]
, B2 =

[
−0.15 −0.01
−0.04 −0.42

]
.

Respectively, the neuron activation functions and the noise
intensity function vectors are given as

f̃(x(k)) = g̃(x(k)) =

[
tanh(x1(k))
tanh(x2(k))

]
,

δ(k, e(k), 1) =

[√
0.1e1(k) 0

0
√
0.1e2(k)

]
,

δ(k, e(k), 2) =

[√
0.2e1(k) 0

0
√
0.2e2(k)

]
.

Clearly, the neuron activation functions and the noise
intensity function vector satisfy the Assumption 1 and 4
with the following parameters:

F1 = G1 =

[
0 0
0 0

]
, F2 = G2 =

[
0.5 0
0 0.5

]
,

Σ1 =

[
0.1 0
0 0.1

]
, Σ2 =

[
0.2 0
0 0.2

]
.

The transition probability matrix is assumed to be

π =

[
0.35 0.65
0.45 0.55

]
. The time delay is taken as τ(k) =

e0.1k

0.1∗(1+e0.1k)
. It can be verified that τm = 5, τ0 = 8,

τM = 10 and let θ0 = 0.35. By solving the LMIs in
Theorem 2, the controller gain matrices K1 and K2 are
designed as follows:

K1 =

[
−0.0360 0.1301
0.0042 −0.1044

]
, K2 =

[
−0.0298 0.1309
−0.0057 −0.1709

]
.

Fig. 1 depicts the master system (2) has a chaotic attractor

with initial values x(0) = [−0.5 0.4]
T
. In the absence of

control input u(t), Fig. 2 shows the slave system (3) has

a chaotic attractor with initial values y(0) = [−3 3]
T
.

Based on the above controller gain matrices K1 and
K2, the responses of the state x(t) and y(t), and the
error signal e(t) are shown Figs. 3, 4 and 5, respectively.
From simulation results Figs. 3, 4 and 5, we can see
that the master system (2) and the slave system (3) are
exponentially synchronized in the mean square.
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Fig. 1. Chaotic attractor of the master system (2).

5. CONCLUSIONS

In this paper, we have dealt with the mean-square delay-
distribution-dependent exponential synchronization for a
class of Markovian jumping discrete-time chaotic neural
networks with random delays. By constructing an appro-
priate Lyapunov-Krasovskii functional and utilizing the
Jensen’s inequality, several delay-distribution-dependent
sufficient conditions have been derived. Furthermore, the
derived criteria have been expressed in terms of linear
matrix inequalities, which can be easily solved by MAT-
LAB LMI control toolbox. One simulation example has
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Fig. 2. Chaotic attractor of the slave system (2).
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Fig. 3. State trajectories of k − x1(k)− y1(k).

illustrated the feasibility and effectiveness of the presented
synchronization scheme.
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