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Abstract: Buffer management and data reduction in wireless sensor networks (WSNs) are critical
wherever buffer overflow and number of transmissions cause power waste and data loss. To improve
energy consumption, this paper presents an Energy-Efficient Buffer Management based on data integrity
and multivariate data reduction (EEBM-IMR) scheme. To save the buffer space, EEBM-IMR classifies
the data measured by sensors, based on its integrity, into malicious or verified packets. To reduce data
transmissions, a multivariate data reduction scheme is introduced based on a binary tree data structure.
The efficiency of EEBM-IMR is evaluated in terms of transmission ratio, dropping probability and
throughput using a real world dataset of fifty sensors. The experimental results show that, as the number
of sensors increases, EEBM-IMR saves energy and outperforms some existing models in previous
studies.
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1. INTRODUCTION

Sensors, whether deployed in Wireless Sensor Networks (WSNs)
or Internet of Things (IoT), are embedded within objects to
sense and collect physical phenomenon from the world. The
aggregated data are locally filtered and stored in a storage mod-
ule called buffer which data are then conveyed over a network
for storing, analyzing and processing in powerful fog and cloud
servers (Adryan et al., 2017). WSNs are made up of two parts:
sensor and sink nodes. Each set of sensors forms a cluster with
a cluster head (CH) responsible for collecting data from the
cluster members (CMs) and sending it to a sink node. The later
forward data to a base station (BS) using either one hope or
multi-hops fashion along different routes from the sender to
receiver nodes (Kavitha and Suseendran, 2019).

Since the sensor nodes have very limited battery life (i.e.,
limited energy), their batteries must be replaced from time to
time. On the other hand, most WSNs are installed in disaster,
wild, hostile, battlefield, or underwater environments which
makes changing battery very difficult. Since sensor nodes can
be act as source nodes, routers and processing units, the energy
represents a bottleneck in the WSN. Due to the massive number
of sensor nodes, the data at CMs, CHs and sink nodes becomes
very vast which resulted in buffer overflow and more packets
get blocked or dropped. As the buffers get full, the number
of retransmissions increases. As a result, sensor nodes lose
significant amounts of energy during traffic transmissions.

Buffer management (BM) and data reduction are considered
one of the most critical issues that pretty much affect the per-
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formance of WSNs. The efficient BM scheme should decrease
the communication overhead and increase both the battery life
(i.e., safe the power consumption) and the overall throughput of
WSNs. Many buffer management schemes and data reductions
have been proposed in the literature.

A Packet Priority Heterogeneous Queue (PPHQ) buffer man-
agement scheme introduced in (Rabileh et al., 2018) to mini-
mize the important packets loss. The performance of PPHQ is
evaluated in terms of packet delivery ratio, throughput, and end-
to-end delay. On the other hand, this scheme ignores the mali-
cious packets and the number of transmissions between the CHs
and sink node. In (Jang et al., 2019), a new buffer thresholds-
based model was implemented to improve the energy efficiency
at cluster heads. The results were assessed using a mathematical
and simulation model. However, the authors neglected to handle
the redundant data at the buffers and the overhead of traffic
transmissions between sensors and CHs.

In (Lodhi et al., 2020), a buffer management scheme for im-
proving network efficiency was proposed. The authors higher
the packets delivery by removing the packet bottleneck prob-
lem. However, their evaluation did not include discard rate of
malicious packets and transmission ratio. Authors in (Jayarajan
et al., 2020) proposed an Energy-Aware Buffer Management
(EABM) routing protocol. They assume that WSN load can be
distributed equally through increasing the number of clusters
and decreasing the cluster size near the sink. Furthermore,
EABM routing protocol satisfied higher lifetime, throughput,
and lower packets drop when compared to LEACH routing
protocol.

In (Shwe et al., 2010), a multilayer WSN is discussed with
power efficient buffer management policy. The storage space
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is shared efficiently in each sensor node such that maximum
throughput and minimum recovery cost of packets lost are
achieved. The proposed model reduces packets loss through
dividing the network topology into three layers such that each
layer is interested in different data from the surrounding envi-
ronment. This scheme, on the other hand, ignored malicious
packets, which raise the risk of buffer overflow. Authors in
(Ghazi et al., 2018) presented a prioritized policy for control-
ling congestion in WSN. This strategy eliminates congestion
and fixes the problem when it does occur by returning the net-
work to a consistent state. In view of the obtained results, pack-
ets loss and power consumption have been improved. How-
ever, they fail to satisfy the varying Quality-of-Service (QoS)
requirements of heterogeneous applications.

A Priority based Adaptive Scheduling Algorithm (PASA) for
IoT sensor systems was proposed in (Kavitha and Suseendran,
2019) . The suggested scheduling put into consideration the
demands of heterogeneous applications. Depending on the de-
gree of traffic priority, remaining buffer size, and necessary
transmission energy, each sensor node is allocated collision-
free time slots. In view of experimental results, the performance
of PASA has been found to be improved in terms of throughput
and residual energy of nodes.

In WSNs, data reduction is generally used to save energy by re-
ducing the transmission of sensor readings across the network.
Several studies on WSN data reduction have been released.
Reducing and cleaning redundant data will save energy and
resources, which reduces connectivity costs. In (Idrees et al.,
2020), the authors presented Data Reduction and Cleaning Ap-
proach (DaReCA) scheme to save energy of WSNs of IoT. Two
levels of data reduction and cleaning are applied. In the former,
a cleaning algorithm is adopted by the sensor node for removing
redundant data before sending to the aggregator. Next, divide
and conquer method is implemented at the aggregator for merg-
ing and reducing similar data sets received from the sensor
nodes before sending to the sink node. The obtained results
showed better performance regarding energy consumption at
both the wireless sensors and the aggregator.

A prediction model based on Extended Cosine Regression
(ECR) was proposed in (Jain and Kumar, 2020). A high accu-
racy and minimized-energy consumption with successful pre-
dictions was introduced. Moreover, to minimize the cumulative
errors resulted from repeated predictions and to synchronize the
predicted data, ECR applied a two-vector model. The simu-
lation results indicated that the introduced technique achieves
better prediction accuracy energy preservations.

This paper aims to introduce an Energy-Efficient Buffer Man-
agement based on data integrity and multivariate data reduction
(EEBM-IMR). The main contributions of the proposed EEBM-
IMR scheme are summarized as follows:

(1) Buffer integrity-based scheduling policy is developed. To
our knowledge, most of proposed models in Literature
ignored the data integrity during the buffer scheduling
process. In fact, integrity insures that the data is not tam-
pered by unauthorized individuals (Ertürk et al., 2019).
In EEBM-IMR, data packets integrity will be taken into
consideration to safe the buffer size and to prolong the
battery life. Without data integrity, a cluster head is not
aware of data changes (Burhan et al., 2018). As a result,
the buffer space can be filled by several malicious packets,

which leads to buffer overflow and drastically reduces the
effective network throughput.

(2) A multivariate data reduction algorithm based on a binary
tree is developed to save the energy consumption resulting
from radio transmission. To comply with that, EEBM-
IMR should be able to reduce the number of transmissions
between cluster heads and sink node.

(3) The proposed EEBM-IMR increases the overall through-
put using data integrity. In doing so, the measured data
are filtered at the buffer of cluster heads to remove all
malicious packets.

Actually, there are two differences between our multivariate
data reduction algorithm introduced in EEBM-IMR scheme
and those in (Xu and Zhang, 2017; Arbi et al., 2017; Mo-
hamed et al., 2018). First, these algorithms are independently
applied to each sensor (i.e., single variable), while we consider
dependent sensors (multivariate data). The second is that they
are appropriate for clusters with few sensors, but our proposed
EEBM-IMR scheme is suitable for clusters with a large number
of sensors.

Cloud Layer

Sink Layer

Sensor Layer

Cluster Head

ß

ß ß

C1 C2 CM

Þ

ï

f�

G Þ

�

¯;

G �

L

¯�

G

Fig. 1. Conceptual structure of the EEBM-IMR scheme.

2. NETWORK MODEL

As shown in Figure 1, the WSN that we are considering in
this paper, consists of a massive number of tiny sensor nodes
deployed in a particular geographic area. The sensor nodes are
grouped in M clusters. Each cluster Ci (i = 1,2,3, . . . ,M) has a
coordinator called cluster head CHi and a set of sensor nodes
called cluster members (CMs). CHs expend more resources
than CMs and are in charge of aggregating data from CMs
and sending it to the Sink node (BS) for further analysis (Jain
and Reddy, 2014). CMs within each a cluster can sense data
like temperature, pressure, light, vibration, sound, radiation
and humidity. Many clustering methods has been proposed in
literature (Ullah and Youn, 2019, 2020).

The LEACH is one of the most popular clustering protocol
introduced in literature (Heinzelman et al., 2002). In addition,
enormous clustering techniques are introduced in literature to
select cluster head nodes based on some criteria like weight-
ing network nodes, battery mathematical cluster model, K-
step overlap, maximum residual energy and energy harvesting
(Sah and Amgoth, 2020; Zainalie and Yaghmaee, 2008). Let
φ = 1,2,3, . . . ,n and θ = 1,2,3 denoting CM type and mode
respectively, where n denotes the number of CM types within
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cluster Ci. A CM mode can be either awake (θ = 0), sleep
(θ = 1) or idle (θ = 2). Idle mode means a CM no longer
working or maybe hacked by attackers.

Let CMi
j ( j = 1,2,3, . . . ,N) denotes the jth CM within the ith

cluster Ci, where N denotes the number of CMs in the cluster
Ci. The CMs of the cluster Ci take the responsibility to sense
and transmit data to its CHi. Let IDi, j

1 and IDi
2 represent the

identifiers of CMi
j and CHi respectively. The values of IDi, j

1
are initially stored at CHi. The CHi gathers data from its
CMs and forwards to the sink node for further analysis and
decision making via one-hop or multi-hop. During transmission
from a certain CHi to sink node, packets may pass through
intermediate CH nodes. The selection of CH nodes across the
path is based on the routing table maintained in each CH.

We assume that arriving data packets at CHi are classified into
two classes: class-1 and class-2. Class-1 arrivals denote the data
packets originated from CMs of the cluster Ci. Class-2 arrivals
denote the data packets originated from the CHk, i 6= k. Each
CHi has a finite buffer with size B for buffering class-1 and
class-2 arriving packets. Sink node, on the other hand, has a
finite buffer with size K for buffering data packets arriving from
the different clusters heads.

Due to the limited capacity of the buffer size at CHs, data loss
at these CHs will occur during the transmission of packets from
CMs to sink node. This leads to energy consumption, decreased
throughput, and increased delay. The proposed EEBM-IMR,
as shown in Figure 2, is designed to include four interactive
processes for serving a packet. Namely, encryption, classifica-
tion, update and reduction processes. EEBM-IMR uses a light-
weight encryption algorithm in the encryption phase to encrypt
data at CMs. During the classification phase, the arriving pack-
ets are filtered and queued at CHs. The previous measures for
CMs are updated in the update phase, based on the output of the
second phase. In reduction phase, the updated data packets are
reduced. The implementation of EEBM-IMR generally consists
of two steps:

• Step 1: The data encryption process is carried out of the
CMs.
• Step 2: The processes of classification, updating and re-

duction are carried out of CHs.

3. EEBM-IMR DESCRIPTION

As shown in Figure 3, the total buffer size B of each CHi is
divided into number of virtual buffers. Namely, Local Buffer
(LB), Forward Buffer (FB), History Buffer (HB), Reduction
Buffer (RB). The size of LB, FB, HB and RB are N1, N2, N3 and
N4 respectively, where N1+N2+N3+N4≤B. The LB buffer of
CHi stores data packets measured by CMs within Ci at a certain
time.

The HB stores history measured data packets of the CMs within
Ci, where each CM has an entry in the HB buffer. On the other
hand, RB temporally stores the reduced data of packets residing
in the HB. Finally, FB receives packets coming from various

CHs. Moreover, each CHi is equipped with an Integrity Check
Module (ICM). The ICM is responsible for classifying class-1
arriving data packets as verified or malicious packet.

Classification

Cluster Head

Sink node

¤User

ICM
Class-1arrivals

�

LB

FB

CHs arrivals (Class-2)

T

HB
1 2 3 4 N-2N-1 N

Update Reduction

RB

Fig. 3. Conceptual structure of the EEBM-IMR scheme.

3.1 Encryption Process

Encryption process is first phase in EEBM-IMR, where each
CM encrypt its measured data using similar method introduced
in (Elshrkawey and Al-Mahdi, 2021). The encryption process
consists of two parts. The first part is implemented in CH,
while the second part is very light and implemented in CM.
Authors (Elshrkawey and Al-Mahdi, 2021) illustrate that, the
very light encryption at the CM-side has little impact on the
power consumption, specially when the data to be encrypted at
CM-side is very small.

Let Ki
prv and Ki

pub are initial private and public keys respectively
at the cluster CHi. These keys are generated according to the
Elliptic Curve Cryptography (ECC) (Boudia et al., 2017). The
value of Ki

prv is initially stored at the cluster head CHi and
its CMi

j ( j = 1,2,3, . . . ,N). The CHi generates the two points
Si

CH =
(
Si

x,S
i
y
)

and Ai
CH =

(
Ai

x,A
i
y
)

based on the public key Ki
pub

as follows.
Si

CH = rand(1,n−1)Ki
pub =

(
Si

x,S
i
y
)

(1)
and

Ai
CH = rand(1,n−1)Ki

pub =
(
Ai

x,A
i
y
)

(2)

For propose of security, the pairs
(
Si

x,S
i
y
)

and
(
Ai

x,A
i
y
)

are
changed from session to session. For each session, the cluster
head CHi sends the two points

(
Si

x,S
i
y
)

and
(
Ai

x,A
i
y
)

to its CMs
over a secure channel. Let Ki

data, Ki
MAC and Ki

ID are session keys
used to cipher/decipher data, digital signature and identifier of
each CMi

j, respectively. The cluster head CHi and its cluster
members CMi

j use Si
CH and Ai

CH to independently generate the
session keys Ki

data, Ki
MAC and Ki

ID using the well-known key
derivation function KFD(x,y) Barker et al. (2018) as follows.

Ki
data = KFD

(
(Si

x,A
i
x),K

i
prv
)
, (3)

Ki
MAC = KFD

((
Si

y,A
i
y
)
,Ki

prv
)

(4)
and

Ki
ID = KFD

((
Ki

data,K
i
MAC

)
,Ki

prv
)

(5)

Before sending the data packet (dPkt) from the CMi
j to its

cluster head CHi, the CM encrypts the dPkt through 32 stages
of the Unbalanced Feistel network. Feistel method was invented
by Horst Feistel, where the Feistel function, F , takes the packet
dPkt and the key Ki

data as inputs and the output is a cipher
packet (cPkt) as follows:

cPkt = F
(
dPkt,Ki

data
)
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Next, CMi
j generates its signature T i

j as follows:

T i
j = cPkt⊗ IDi, j

1 ⊗Ki
MAC (6)

The final encrypted message M j
i that will be sent from CMi

j to
its CHi is given as:

M j
i = EKi

ID

{
cPkt ‖ T i

j ‖ IDi, j
1 ‖ φ

}
(7)

Assume that the attacker succeeded to obtain the encrypted data
M j

i of the cluster member CMi
j. He tries to obtain the plain text

and signature T i
j of the cluster member CMi

j in two steps as
follows.

(1) Step 1: He tries to determine the value of K j
ID which used

to decrypt the encrypted data Mi
j. To do this, He needs all

the possible values of the keys Ki
data, IDi, j

1 and Ki
ID. The

length of each one of these keys are 32 bits (i.e., 4 bytes).
As a result, the number of trials needed for this step is
given as V1 = 296.

(2) Step 2: Assuming that, the attacker succeeded in step 1. In
such case, He tries to determine the signature T i

j . The tag
signature of each Mi

j was calculated based on the values

of cMsg, IDi, j
1 and Ki

MAC. As a result, the number of trials
needed for this step is given as V2 = 264.

Regarding to the two steps, the probability of hacking is given
as follows:

Ph =
1

V1

1
V2

3.2 Data classification

In this section, the classification and scheduling policy of mea-
sured data are illustrated. As shown in Figure 3, classification is
the second phase of EEBM-IMR that applied at CHi to treat the
encrypted class-1 incoming messages originating from CMs.
Upon the CHi of cluster Ci receives the encrypted message M j

i
from CM j, the ICM module starts to execute the classification
process as follows.

The ICM module decrypts the M j
i message using Ki

ID to extract
the encrypted data packet cPkt, the tag signature T i

j and the

cluster member identifier IDi, j
1 . It then recalculates the tag

signature T new
j using equation (6). Based on the comparison

between the received tag signature T i
j and the new calculated

tag signature T new
j , the data packet is categorized into either

verified or malicious packet. Malicious packet is dropped and
verified is treated based on the value of the threshold T as
follows.

(1) If LB queue is not full then the verified packet is accepted.
(2) If LB queue is full and the number of packets in FB queue

is less than the threshold T then one free space is borrowed
from FB and verified packet is accepted. The FB queue
size is decremented by one (i.e., N2 = N2−1).

(3) If LB and FB are full then the verified packet is dropped.

The ICM reconstructs the verified data packet as ϖ j =
{data, ID,φ} and stores it at the tail of the LB queue, where
ID = IDi, j

1 . Dropping the malicious packets will maximize the
useful data, save the buffer space and maximize the overall
throughput by minimizing the number of retransmitted packets.
The execution steps of the data classification are illustrated in

algorithm 1. On the other hand, the class-2 arriving messages
are accepted if the size of FB is less than max{N2,T} and
dropped otherwise.

Algorithm 1 Classification algorithm at CHi

1: Input: M j
2: Output: ϖ j

3: Extract the values of cPkt, T i
j , IDi, j

1 and φ from the received
M j

4: if T new
j = T i

j then
5: Mark cPkt as verified packet
6: Extract the measured value m j from the received cPkt
7: data← m j

8: ID← IDi, j
1

9: ϖ j←{data, ID,φ}
10: if LB.length < N1 then
11: Queue in ϖ j in the LB queue
12: else
13: if LB.length = N1 and FB.length≤ T then
14: Borrow one free space from the FB queue
15: LB.size = LB.size+1
16: Queue in ϖ j in LB
17: else
18: Drop ϖ j
19: end if
20: end if
21: else
22: cPkt is marked as malicious packet
23: Drop the malicious packet
24: end if

3.3 Data Update Process

This is an ongoing process which updates the history measures
of the whole CMs for the reduction phase. The data update
process is the third phase in EEBM-IMR scheme where by
the previous measures contained in the HB buffer are updated
based on the current measures ϖ j residing in the LB buffer.

The HB buffer consists of N3 = N storage elements, where each
element j = 1,2,3, . . . ,N, is used to store the history measured
value h j of the CM j. In other word, the sequence W =
{ϖ1,ϖ2,ϖ3, . . .} constructed at LB buffer is used to update the
values of the sequence H = {h1,h2,h3, . . . ,hN} at HB buffer,
where W ≤ H. Regarding to the stored measured values in LB
and HB buffers, the relationship between the sequences H and
W can be either Normal or Abnormal case as follows.

(1) Normal case. All elements of the sequence H will be
updated (i.e., H =W ). This is achieved only if all current
measures of CMs are marked as a verified packets and
accepted at the LB buffer.

(2) Abnormal case. In this case some elements in H have no
equivalent in W (i.e., H > W ). This case takes place in
either one of the following three situations:
• The ICM module classifies some measured data pack-

ets as malicious and get dropped.
• The ICM module classifies some measured data pack-

ets as verified and get dropped because there is no free
buffer space in LB.

• Some sensors may did not send data due to battery
life or they are no longer working.
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For clarity, an example of six sensors in Figure 4 illustrates
the possible situations of the Normal and Abnormal cases. In
normal case, all sensors send their measured data and marked as
verified packets and accepted during the classification process.
In abnormal case 1, packets of sensors 3 and 6 are marked
as malicious by the ICM module and get dropped while the
remaining data packets are accepted. Finally, in abnormal case
2, sensor 2 does not work while the data packet of sensor 4 is
marked as verified via ICM module but get dropped due to the
buffer space. The remaining data packets are accepted.
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Fig. 4. An example of classification and update processes.

3.4 Data Reduction

In this process, instead of transmitting all data packets residing
in the HB queue to the sink node, the EEBM-IMR scheme
decreases the number of packets transmitted via the execution
of the data reduction process based on binary tree data structure
as depicted in algorithm 2 as follows.

The data packets h j,( j = 1,2,3, . . . ,N) residing in the HB
buffer are arranged into sequences Sk, 1 ≤ k ≤ n, based on the
sensor type φ , where Sk contains all the data packets originated
from sensors of the type φ = k and n denoting the number of
sensor types within the cluster Ci. For each sequence Sk, we
construct a binary tree data structure as follows. The first parent
(root) of the binary tree is the leftmost element in the sequence
Sk (i.e. r0 = Sk [0]). For the remaining elements of the sequence
Sk, construct the list L1 such that

|r0−Sk [ j]|< εk, j = 1,3, . . . ,Sk.length−1 (8)
and construct the list R1 such that

|r0−Sk [ j]| ≥ εk, j = 1,3, . . . ,Sk.length−1 (9)
where the tolerance εk is non-negative real number for sensors
of type k.

The two lists L1 and R1 represent the children of the parent
r0. Repeat this process for the list R1 to generate the parent r1
and the two children L2 and R2. The child R1 is replaced with
the parent r1. The two lists L2 and R2 represent the children of
the parent r1. This process continue until we reach the parent
rw (w = 0,1,2, . . . ,E) with the empty child list Rw+1, where
E denotes the number of parent nodes in the generated binary
tree. The continent of each parent node rw is reformulated as
follows:

rw = {data,φ = k, ID} (10)

where ID = IDi
2 is the identifier of the CHi. By the end of

binary tree construction, the parents r0,r1,r2, . . . ,rE are moved
one by one into the RB queue. The RB queue entries are then
transmitted to the sink node using FIFO policy. Based on the
value of E, we have three different cases:

• Best case (E = 1): In such case, the elements of the
sequence Sk are reduced into one data packet.

• Moderate case (1 < E ≤ bSk.length/2c): In such case, the
elements of the sequence Sk are reduced into more than
one data packet.

• Worst case (E = Sk.length): In such case, the sequence Sk
is not reduced and all its elements are moved into the RB
queue.

Algorithm 2 Data Reduction Process at the CHi

1: Input: Sensor types n, updated history values
h1,h2,h3, . . . ,hN

2: Output: r0,r1,r2, . . . ,rE
3: for all k ∈ n do
4: for j ∈ N do
5: if HB.h j.φ = k then
6: Add h j to Sk
7: end if
8: end for
9: Set z = 0

10: while Sk is not empty do
11: rz.data = Sk[0].data
12: rz.φ=Sk[0].φ
13: rz.ID=IDi

2
14: Queue in rz into RB queue
15: remove Sk[0]
16: for all J ∈ Sk.length do
17: if |rz−Sk[ j]|< εk then
18: Add Sk[ j] to Lz+1
19: remove Sk[ j]
20: end if
21: end for
22: Rz+1 = Sk
23: z = z+1
24: end while
25: end for

For clarity, Figure 5 illustrates the construction of binary tree
data structure for 16 sensors of type 2 (i.e. φ = 2). These
measures are arranged into sequences S2 = {h1,h2,h3, . . . ,h16},
where h j.φ = 2 for all j = 1,2,3, . . . ,16. As shown in Figure 5-
(a), the best case is achieved only if the number of parents in the
generated binary tree is equal to one (i.e., E = 1). In this case
|h1−Sk[ j]| < εk for j = 2,2,3, . . . ,16). In the moderate case
(b), the number of parents E = 3. On the other hand, As shown
in Figure 5-(c), the worst case arises if the number of parents in
the generated binary tree is equal to 16 (i.e., E = 15).

r0

L1 R1

empty list

E = 1
r0

r0

L1 R1

L2 R2

L3 R3

empty list

E = 3
r2 r1 r0

r0

L1 R1

L2 R2

L3 R3

L4 R15

L16 R16

empty list
E = 15

r15 r14 r13 r1 r0

Fig. 5. An example showing how the entries of the HB queue
are reduced based on the the tolerance ε2 and sensors type
φ = 2.
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3.5 Sink node operations

As aforementioned, the goal of the proposed EEBM-IMR is to
lower the number of transmissions from the cluster heads to the
sink node, and at the same time save the buffer space at the
cluster heads and decrease the power consumption. We assume
that the transmission from the CHi to the sink node can be either
normal mode or reduction mode.

In normal mode, the CHi transmit data from the HB to the
sink node without reduction while in reduction mode the CHi
transmits the measured data from the RB to the sink node after
executing the reduction process. Initially, the CHi transmits the
measured data to the sink node in normal mode until make sure
that all its CMs have history data stored at the sink node. Next,
the CHi switch to reduction mode and starts to transmit the data
packets residing in the RB to sink node.

The sink node has a buffer space named Sink Buffer (SB) with
enough size to host the data packets received from all clusters
(i.e., each sensor has a history measured data stored at the
sink node). Let H j, j = 1,2,3, . . . ,M×N denotes the history
measured data of a sensor j. Upon arrival of a data packet rk at
the sink node, it stats to update the history data H j based on the
values rk.εk, rk.ID and rk.φ as shown in algorithm 3.

Algorithm 3 Sink (receiver) Algorithm

1: Input: Reduction value rk
2: Output: Updated value H j
3: for all j ∈M×N do
4: if rk.ID = H j.ID AND rk.φ = H j.φ then
5: if

∣∣rk.data−H j.data
∣∣< rk.εk then

6: Hk.data = rk.data
7: end if
8: end if
9: end for

4. PERFORMANCE EVALUATION

This section aims to evaluate and validate the proposed EEBM-
IMR scheme. Using the Python programming language, simu-
lation is carried out because it is flexible and scalable.

We evaluate the performance of our EEBM-IMR scheme
against the data reduction scheme (LEERT) in (Mohamed et al.,
2019). LEERT, as reported in (Mohamed et al., 2019), applies
the same prediction model independently on both sensors and
sink nodes. In the LEERT scheme, on the other hand, data
integrity is not taken into consideration.

The operational parameters, performance metrics and simula-
tion results are discussed in this section. For fair investiga-
tions, the EEBM-IMR and LEERT schemes are simulated using
the same real world Intel Lab dataset collected by the Intel
Berkeley Research Lab (IBRL) (Madden, 2018). This dataset
contains about 2.3 million measures collected from 54 sensors
with identifiers range from 1-54. Each sensor can measure
temperature, humidity, light and voltage. In this paper, we only
concentrate on the temperature and humidity readings from
IBRL dataset.

The sensors arranged into two clusters (i.e. M = 2) C1 and
C2. The number of CMs N within each cluster ranges from
5 to 50 sensors. The maximum residual energy criteria is

used to select cluster heads as in (Zainalie and Yaghmaee,
2008). The CMs and CHs within the network are deployed
randomly in 450×450m2 simulation area. All sensors are static,
homogenous and with same battery resource. The sink node
(SB) is operated by a permanent power supply and located
outside of the network area. The simulations were made based
on many parameters as shown in table 1. The proposed EEBM-

Table 1. Simulation parameters.

Parameter Value
Number of Sensor Nodes 5-50 sensors
Range of Transmission 30m

Dimensions of Work Area 450×450 m2

Transmission Power 0.650, 0. 125 mw
Preliminary Energy 7.2 J

Simulation Time 106 msec.
Buffer size N 10,20,30,50 packets
Arriavl rate vary

Hacking rate Ph 0.1, 0.2 packets

IMR is evaluated in terms of the metrics: transmission ratio,
dropping probability, waiting time and throughput.

4.1 Transmission Ratio

In this subsection, we evaluate the proposed EEBM-IMR
scheme in terms of the transmission ratio (TR) metric which
given in (Zainalie and Yaghmaee, 2008) as T R = dtr

dor
where

dtr denotes the number of packets transmitted between cluster
head and sink node, and dor denote the size of original data
aggregated at sink node. It is clear that, less TR means fewer
data transfers between the cluster head and the sink node, and
thus less energy consumption.

scenario 1: For Scenario 1, the number of CMs N is set to
30 and 50 sensors. The buffer size is fixed to 100 packets. For a
fair comparison, the hacking rate Ph is set to 0. This ensures that
the integrity check module (ICM) will not detect any malicious
packets.

As in Figure 6, We assume that, all CMs from the same type
and the simulation run is conducted based on the extracted
temperature measurements over a period of 10 days from IBRL
dataset. Figure 6 illustrates the transmission ratio, TR, versus
tolerance ε for the EEBM-IMR and LEERT reduction schemes,
where ε ranges from 0.1oC to 4oC.

Note that, ε in LEERT used as forecasting tolerance while ε in
EEBM-IMR is used to construct the reduction binary tree data
structure. The Figure indicates that when ε gets larger, TRs of
the two schemes get smaller.This intuitively clear, because as
ε gets larger, the CH will find more forecasted values in the
case of LEERT scheme and the CH will find fewer elements in
the binary tree in the case of EEBM-IMR scheme. Moreover,
the proposed EEBM-IMR scheme outperforms LEERT when
N is large. This implies that, EEBM-IMR is better than LEERT
when WSN contain an enormous number of sensors.

Figure 7, on the other hand, demonstrates the TR of both
schemes when N ≤ 10. The Figure indicates that LEERT
scheme achieve high data reduction than EEBM-IMR when a
cluster has small number of sensors. However, problems arise
with LEERT when trying to deploy it to support an application
with high number of sensors.
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Fig. 7. Transmission ratio versus tolerance ε low number of
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Scenario 2: In this scenario, we first examine the impact
of dataset size on the cumulative data reduction. To do this,
we will use N = 40 sensors, tolerance ε = 0.1◦C and number
of cluster M = 2. Figure 8 shows the transmission ratio, T R
versus the IBRL dataset samples range from 2000 to 14000
measures. The Figure indicates that the proposed EEBM-IMR
outperforms the LEERT scheme.

Second, we examine the impact of CMs size (i.e., number of
sensors) on the transmission ratio, TR. The simulation is carried
out for schemes using 15,000 temperature measures from the
IBRL dataset. Figure 9 illustrates that:

(1) For lower number of sensors within a cluster (i.e. N <
10), the TR decreases for both schemes. In addition, the
LEERT outperforms our proposed scheme.

(2) For a higher number of sensors within a cluster (i.e. N >
10), our EEBM-IMR scheme performs well with more
sensors pervasive in a cluster than the LEERT scheme. We
have observed from Figure 9 that as N > 10, the LEERT
increases TR while the EEBM-IMR decreases TR. This
enhancement is attributable to the fact that in the reduction
process, our proposed EEBM-IMR uses a multivariate
dataset while LEERT independently applies its prediction
model on each sensor.

.
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4.2 Dropping Probability

In this section, the proposed EEBM-IMR scheme is evaluated
in terms of dropping probability. The buffer size is set to 50
packets. By turning off the ICM module, more malicious pack-
ets are accepted, leaving less room for verified packets. Further-
more, when ICM module is enabled, all malicious packets are
rejected, making more room for verified packets.

Two simulation runs are used to investigate the effect of ICM
module on dropping probability. We disable the ICM module
for the first run and enable it in the second run with hacking
rates of Ph= 0.1 and Ph= 0.3 packets/second. Figure 10 shows
that, when ICM module is enabled the dropping probability of
the verified packets decreases. Figure 11 illustrates the buffer
occupancy when ICM module is disabled.

Figures 10 and 11 show that, as the dataset sample size expands,
the number of malicious packets increases. The data reduction
algorithms of EEBM-IMR and LEERT are negatively affected
by this number.This is because these algorithms will run on
false data as the buffer fills up with more malicious packets.
As a result, total throughput will decrease, while power con-
sumption at cluster heads will increase.

5. CONCLUSION

In this paper, an integrity based buffer management and mul-
tivariate data reduction scheme (EEBM-IMR) for WSN are
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suggested. A lightweight encryption algorithm is introduced at
both the sensors and cluster heads. The collected data at cluster
heads are filtered using ICM module based on the data integrity.
To minimize the number of transmissions between cluster heads
and sink node, a multivariate data reduction algorithm is intro-
duced. The proposed EEBM-IMR has two key goals: it saves
buffer space by rejecting all tampered data and it decreases
power consumption at cluster heads by using a multivariate
data reduction scheme. The Python framework and a real-time
dataset are used to test and validate the performance of EEBM-
IMR against the LEERT data reduction algorithm. The simu-
lation results show that our proposed EEBM-IMR outperforms
LEERT data reduction algorithm in terms of transmission ratio,
power consumption and number of sensors. Also, the dropping
probability of untampered data was reduced. In addition, the
EEBM-IMR is well-suited to applications involving a large
number of sensors. In the future, it is intended to modify the
proposed EEBM-IMR scheme to address the issue of excessive
delay in the real-time applications and implement the buffer
scheme based on a more general service time distribution.
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H. (2019). A survey on lorawan architecture, protocol and
technologies. Future Internet, 11(10), 216.

Ghazi, M.U., Naqvi, S.S.H., Yamin, K., and Humayun, O.
(2018). Congestion-aware routing algorithm based on traffic
priority in wireless sensor networks. In 2018 15th Interna-
tional Conference on Smart Cities: Improving Quality of Life
Using ICT & IoT (HONET-ICT), 112–116. IEEE.

Heinzelman, W.B., Chandrakasan, A.P., and Balakrishnan, H.
(2002). An application-specific protocol architecture for
wireless microsensor networks. IEEE Transactions on wire-
less communications, 1(4), 660–670.

Idrees, A.K., Abou Jaoude, C., and Al-Qurabat, A.K.M. (2020).
Data reduction and cleaning approach for energy-saving in
wireless sensors networks of iot. In 2020 16th International
Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob)(50308), 1–6. IEEE.

Jain, A. and Reddy, B. (2014). Sink as cluster head: An energy
efficient clustering method for wireless sensor networks. In
2014 International Conference on Data Mining and Intelli-
gent Computing (ICDMIC), 1–6. IEEE.

Jain, K. and Kumar, A. (2020). An energy-efficient prediction
model for data aggregation in sensor network. Journal of
Ambient Intelligence and Humanized Computing, 11(11),
5205–5216.

Jang, Y., Shin, A., and Ryoo, I. (2019). Energy efficiency
improvement based on optimal buffer thresholds model for
wireless sensor devices. In 2019 Eleventh International
Conference on Ubiquitous and Future Networks (ICUFN),
182–187. IEEE.

Jayarajan, P., Kanagachidambaresan, G., Sundararajan, T., Sak-
thipandi, K., Maheswar, R., and Karthikeyan, A. (2020). An
energy-aware buffer management (eabm) routing protocol
for wsn. The Journal of Supercomputing, 76(6), 4543–4555.

Kavitha, K. and Suseendran, G. (2019). Priority based adaptive
scheduling algorithm for iot sensor systems. In 2019 In-
ternational Conference on Automation, Computational and
Technology Management (ICACTM), 361–366. IEEE.

Lodhi, A.K., Rukmini, M., Abdulsattar, S., and Tabassum,
S.Z. (2020). Performance improvement in wireless sensor
networks by removing the packet drop from the node buffer.
Materials Today: Proceedings, 26, 2226–2230.

Madden, S. (2018). Intel berkeley research lab data.
http://db.csail.mit.edu/labdata/labdata.html.

Mohamed, M.F., Ahmed, M.A., and Nassar, H. (2019).
Lightweight energy-efficient framework for sensor real-time
communications. IET Communications, 13(15), 2362–2368.



CONTROL ENGINEERING AND APPLIED INFORMATICS 61

Mohamed, M.F., El-Gayyar, M., Shabayek, A.E.R., and Nassar,
H. (2018). Data reduction in a cloud-based ami framework
with service-replication. Computers & Electrical Engineer-
ing, 69, 212–223.

Rabileh, A.A., Bakar, K.A.A., Mohamed, R., and Mohamad,
M. (2018). Enhanced buffer management policy and packet
prioritization for wireless sensor network. International
Journal on Advanced Science, Engineering and Information
Technology, 8(4), 1770–1776.

Sah, D.K. and Amgoth, T. (2020). A novel efficient clustering
protocol for energy harvesting in wireless sensor networks.
Wireless Networks, 26, 4723–4737.

Shwe, H.Y., Gacanin, H., and Adachi, F. (2010). Multi-layer
wsn with power efficient buffer management policy. In 2010
IEEE International Conference on Communication Systems,
36–40. IEEE.

Ullah, I. and Youn, H.Y. (2019). A novel data aggregation
scheme based on self-organized map for wsn. The Journal of
Supercomputing, 75(7), 3975–3996.

Ullah, I. and Youn, H.Y. (2020). Efficient data aggregation with
node clustering and extreme learning machine for wsn. The
Journal of Supercomputing, 1–27.

Xu, X. and Zhang, G. (2017). A hybrid model for data
prediction in real-world wireless sensor networks. IEEE
Communications Letters.

Zainalie, S. and Yaghmaee, M.H. (2008). Cfl: A clustering al-
gorithm for localization in wireless sensor networks. In 2008
International Symposium on Telecommunications, 435–439.
IEEE.


