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Abstract: In this paper, a novel active fault tolerant tracking control is proposed for nonlinear systems
described by Takagi-Sugeno model. The considered systems are affected by simultaneous actuator and
sensor faults and have unmeasurable premise variables and depending on the acting faults. Firstly, a
mathematical transformation is used to transform the faulty system to an augmented system where all
the faults appear as actuator faults. Secondly, an H-infinity control is conceived to ensure the trajectory
tracking in the fault free situation. The system state and the faults are estimated from a proportional
integral unknown input (PIUI) observer or a proportional multiple integral unknown input (PMIUI)
observer. The proposed fault tolerant control law is based on the use of the robust tracking control
developed for the system in fault-free case and an additional term related to the estimated faults. The
objective is to minimize the deviation of the faulty system compared to the healthy one, even in the
presence of actuator and sensor faults. Thus, sufficient conditions are studied with the Lyapunov theory
and L2 optimization, and presented in terms of LMIs. Finally, three case studies are provided to show the
advantages of the proposed approach. The numerical simulation is carried out on a Continuous Stirred
Tank Reactor (CSTR), and a comparison with the existing results is made.
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1. INTRODUCTION

In many industrial applications, processes are usually subject to
different faults or loss of effectiveness in actuators and sensors.
Hence, if a fault occurs, it can interrupt the normal behavior of
systems, which leads to deteriorating process performance and
providing harmful effects in the closed loop stability. Indeed,
the performances and the stability of the process cannot be
ensured with classical control. This problem has motivated
a strategy commonly called fault tolerant control (FTC). It
consists in preserving the system’s stability and maintaining
the current performance even if the various faults occurs. This
technique computes a new control law by taking into account
the faults affecting the system.

In general, FTCs are divided into two classes: passive and active
methods. The first one is based on robust controller design
technique. This class is designed to be sufficiently reliable for
a predefined fault, so that no modification in the control law is
needed. This technique requires no online faults detection that
makes it very restricted due to its disadvantages. This kind of
control is studied in (Z Qu et al (2003); F Liao et al (2002);
X Yu and Y Zhang (2015); M Blanke et al (2003); H Tohidi
et al (2017)). As opposed by the passive approach, the active
methods consist of redesigning controllers online or selecting
predesigned controllers. This strategy is more interesting due
to its variable structure. It requires a fault detection and diag-

nosis (FDD) scheme in order to provide online information on
faults that eventually occurs in the system. So the reliability
and acceptable fault-tolerant performance of the process could
be ensured. Many ideas of active fault tolerant control (AFTC)
are developed essentially for linear systems (?; M Staroswiecki
(2005); M Mufeed et al (2003); B Marx et al (2004); S de
Oca et al (2012); X J Li and G H Yang (2012)) and descriptor
systems (B Marx et al (2004)). However, most physical systems
have nonlinear behaviors. Nevertheless, from the mathematical
point of view, a control based on nonlinear models is very
complex. An efficient way to deal with the complex nonlinear
behaviors is the Takagi-Sugeno (TS) approach (T Takagi and
M Sugeno (1985)). The idea is to rewrite the nonlinear model
as an interpolation of linear sub-models using nonlinear func-
tions satisfying the convex sum property, which can describe
the global behavior of the system in a large operating zone.
Accordingly, different ideas of control approach are developed
based on TS representation, in (M Bouakou and R Channa
(2018)) a stabilization of a TS system based parallel distributed
compensation controller (PDC) in fault free case is presented,
with application to fault detection using a Luenberger observer.
In (S Bzioui and R Channa (2017)) an observer based tracking
control is constructed for a TS system without faults. In FTC
framework, a passive FTC based H-infinity control for TS sys-
tem is presented in (S Bzioui and R Channa (2020);S Bzioui
and R Channa (2018)). An interesting works in active FTC for
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TS multimodel have been addressed in (Ali Bakhshi and Prof
Alireza Alfi (2020); M Bouattour et al (2011); A Chamsedine
et al (2015); M Sami Shaker and R J Patton (2014); Tong et al
(2008); Zhang et al (2017)).

The FTC law requires the knowledge of system states and
faults affecting it. For that purpose, an observer is necessary
to estimate simultaneously these signals. In the observer design
framework, several studies tried to reconstruct the system states
with unknown input. This technique consists on the elimina-
tion of the unknown inputs (Jian Han et al (2015)). On the
other hand, some works choose to estimate the system states
and the unknown input simultaneously (Guan and Saif (1991);
Akhenak et al (2009); Khedher et al (2010)). Consequently,
unknown input observers can be implemented in FTC strategy
to estimate the actuator fault by considering it as an unknown
input. Many researchers have used this kind of observer to
develop a FTC controller for nonlinear systems described by
Takagi-Sugeno fuzzy models and affected by actuator fault
(Samir Abdelmalek et al (2018); Dalil ichalal et al (2012);
Abdelmalek et al (2017)) or to develop a FTC coped with
sensor faults without reference to actuator faults (Ben Zina et al
(2016); Wafa Jamel et al (2017); Boukhari et al (2016)). In
practice, actuator and sensor faults may occur simultaneously.
Indeed, if a fault affect a sensor, it can lead to a damaged in
the actuator due to the wrong measurement. For that, there are
urgent needs of FTC for system with actuator and sensor faults
simultaneously. However, a few works have interested to this
problem. In (Atef Khedher et al (2011)) a proportional integral
observer has been designed to estimate system states, actuator
and sensor faults simultaneously in order to develop a FTC
for TS fuzzy systems with weighting functions depending on
the FTC, but the trajectory tracking is not considered in this
work. In (Li et al (2018)) a sliding mode observer is designed
to construct a FTC for TS system against simultaneous actuator
and sensor faults, however, the premise variables are assumed
measurable in this work, so this method are less applicable. In
( Samira Asadi et al (2020)) a robust sliding mode observer de-
sign for simultaneous fault reconstruction in perturbed Takagi-
Sugeno fuzzy systems using non-quadratic stability analysis,
but the trajectory tracking is not considered. In (Aouaoudaa
et al (2012)) a proportional integral observer based FTC is syn-
thesized for TS models with unmeasurable premise variables.
However, this work based on the assumption that actuator fault
and sensor fault are of the same form.

In this article, motivated by the adaptive observer constructed
in (Habib Hamdi et al (2012)) for descriptor system and pro-
posed recently in (S Bzioui and R Channa (2021)) for a TS
system affected by constant faults and disturbances in order
to estimate states and faults, a proportional integral unknown
inputs (PIUI) observer is introduced to estimate simultaneously
states, actuator and sensor faults. Once the fault is estimated,
an active FTC based on H-infinity controller is implemented as
a state feedback controller in order to guarantee a satisfactory
performance and preserve stability conditions in the presence
of actuator and sensor faults. In this paper, the PIUI observer
and the controller are designed independently in order to avoid
the coupling problem, and their gains are calculated separately
by a set of Linear Matrix Inequalities (LMIs). Finally, based
on state and fault estimation errors and the error between the
faulty system state and a reference system state, stability and
tracking analysis properties are analyzed with Lyapunov theory
and L2 optimization, which are formulated in terms of LMIs.

The PIUI observer gains are computed by solving the proposed
LMIs stability conditions.

The objective of this paper is to present a new approach of
trajectory tracking AFTC for nonlinear systems described by
Takagi-Sugeno models with simultaneously acting actuator and
sensor faults. The weighting functions of the considered system
are unmeasurable and affected by faults. First, a mathematical
transformation is introduced to transform the considered system
to an augmented one where all faults occurs appear as actua-
tor faults. Then, an H-infinity controller is constructed for the
augmented system in fault-free case to ensure the trajectory
tracking. The idea is to reuse this controller to conceive an
active fault tolerant control by taking into account the faults
affecting the system in order to maintain the system stability
and to provide an acceptable system trajectory in the faulty sit-
uations. Finally, three case studies are provided to illustrate the
effectiveness of the proposed FTC in the presence of different
types of acting faults and disturbance. An application to a Con-
tinuous Stirred Tank Reactor (CSTR) and a comparison with
the existing results is made in order to improve the efficiency of
the proposed strategy.

The main contributions of this work consist on extending the
adaptive observer proposed by (Habib Hamdi et al (2012)) to
construct a tracking AFTC for TS systems with faulty and
unmeasurable premise variables. The considered system is af-
fected by simultaneous actuator and sensor faults and the tra-
jectory tracking is ensured even in the presence of actuator
and sensor faults. The major difference between this method
and the existing approaches, where the proposed observer and
the controller are synthesized separately which can avoid the
coupling problem and simplify the design. The proposed FTC
strategy can improve efficiently performances in presence of
constant and slowly time-varying faults. The applicability of
the method is extended to the case which the nonlinear system
is affected by both actuator and sensor time-varying faults and
exposed to unknown disturbance and measurement noise. A
new stability conditions are expressed in terms of LMIs which
can be solved easily with Matlab. Finally, a comparative study
with the existing results is made.

The remainder of this paper is organized as follows: Section 2
presents a short introduction to the Takagi-Sugeno approach.
Section 3 focuses on the design of the proposed strategy. In
section 4, the application to a CSTR is given in order to show
the effectiveness of the suggested method. Finally, conclusions
are drawn in section 5.

2. TAKAGI-SUGENO APPROACH

The objective of TS multi-model approach is to represent the
nonlinear system as an interpolation of simple linear models.
Each sub model represents the behavior of the system on a lim-
ited part of the operating space. The validity of each local model
is defined via a weighting function which provides a smooth
transition between the sub models. The TS approach has been
largely popularized in the modeling framework, and it is able
to approximate a large class of complex nonlinear systems to a
high degree of accuracy (Tanaka and Wang (2001)).

We assume that the local models are defined by their state space
representation and the global system behavior is inferred as
follows:
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ẋ(t) =

N

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) =
N

∑
i=1

µi(ξ (t))Cix(t)
(1)

with u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp. Ai ∈ Rn×n is the state
matrix, Bi ∈ Rn×m is the input matrix and Ci ∈ Rp×n is the
matrix the output. µi(ξ (t)) are the activation functions which
define the activation degree of a local model, and ξ (t) is
the premise variable. These functions satisfy the following
convexity property:

N

∑
i=1

µi(ξ (t)) = 1

0 ≤ µi(ξ (t))≤ 1, ∀i = 1, ...N
(2)

3. ACTIVE FAULT TOLERANT CONTROL DESIGN

3.1 Problem statement

The objective is to design an active fault tolerant tracking
control for TS systems with simultaneous acting actuator and
sensor faults.

The Takagi-Sugeno model without faults is described as fol-
lows:  ẋ(t) =

N

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) =Cx(t)
(3)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rp is the output,
u(t) ∈Rm is the control input. N is the number of local models,
Ai ∈ Rn×n, Bi ∈ Rn×m and C ∈ Rp×n are constant matrices of
appropriate dimensions.
Let us consider the following TS model with actuator and
sensor faults: ẋ f (t) =

N

∑
i=1

µi(ξ f (t))(Aix f (t)+Biu f (t)+Ei fa(t))

y f (t) =Cx f (t)+S fs(t)
(4)

u f (t) ∈ Rm is the active fault tolerant control which will be
conceived, x f (t) and y f (t) are respectively the state vector and
the output of the faulty system. fa(t) and fs(t) are respectively
the actuator and sensor faults. Ei and S are the faults distribution
matrices which are supposed to be known.

A system transformation is considered in order to rewrite sensor
faults as actuator faults. Let us define the new following states
which present the filtered versions of the outputs y(t) and y f (t):

q̇(t) =
N

∑
i=1

µi(ξ (t))(−Dq(t)+Dy(t)) (5)

q̇ f (t) =
N

∑
i=1

µi(ξ f (t))(−Dq f (t)+Dy f (t)) (6)

where −D is an arbitrary matrix with stable eigenvalues.
We consider the integral of the tracking error for ensuring the
trajectory tracking.

eT I =
∫
(yr(t)− y(t))dt (7)

where yr(t) is the reference signal of the system. Let us consider
the augmented states Xr(t) and X f (t):

Xr(t) =

[ x(t)
q(t)

eT I(t)

]
; X f (t) =

[ x f (t)
q f (t)
eT I(t)

]
The augmented systems can be modeled as: Ẋr(t) =

N

∑
i=1

µi(ξ (t))(ĀiXr(t)+ B̄iu(t)+ D̄yr(t))

Y (t) = C̄Xr(t)
(8)

 Ẋ f (t) =
N

∑
i=1

µi(ξ f (t))(ĀiX f (t)+ B̄iu f (t)+ Ēi f (t)+ D̄yr(t))

Yf (t) = C̄X f (t)
(9)

with: Āi =

[ Ai 0 0
DC −D 0
−C 0 0

]
; B̄i =

[Bi
0
0

]
; D̄ =

[0
0
I

]
;

C̄ =

[
C 0 0
0 I 0

]
; f (t) =

[
fa(t)
fs(t)

]
; Ēi(t) =

[Ei 0
0 DS
0 0

]
The proposed FTC has the following structure for the control
law:

u f (t) = u(t)−θ f̂ (t) (10)
where u(t) is an H-infinity controller and f̂ (t) represents the
estimated faults.

The matrix θ is chosen so that B̄iθ = Ēi. The matrix θ permits
to the FTC to compensate both actuator and sensor faults.

To conceive the proposed FTC control law, an H-infinity con-
troller will be firstly designed for the healthy augmented system
to ensure tracking trajectory. Secondly, an adaptive observer
based FTC will be introduced to stabilize the faulty augmented
system.

3.2 Synthesis of the tracking H-infinity controller

The goal of this part is to design an H-infinity controller u(t) in
order to ensure stability and trajectory tracking of the system
in fault-free case represented by (8). This robust controller
is carried out via the parallel distributed compensation PDC
controller (Benzaouia and El Hajjaji (2014)) with H∞ criteria
optimization to guarantee good performance requirements and
high robustness (Wang L et al (2018)).

The H-infinity controller law is defined as follows:

u(t) =
N

∑
i=1

µi(ξ (t))KiXr(t) (11)

where Ki are the gain matrices with appropriate dimension.

By combining the control law (11) and the system (8), the
closed-loop system becomes: Ẋr(t) =

N

∑
i=1

N

∑
j=1

µi(ξ (t))µ j(ξ (t))Gi jXr(t)+ D̄yr(t)

Y (t) = C̄Xr(t)
(12)

where Gi j = Āi + B̄iK j

In order to calculate the gain matrices K j that ensure the asymp-
totic stability of the closed-loop system (12) and guarantee
the H-infinity tracking performance, the following H-infinity
criterion is used.
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∫
∞

0
XT

r (t)QXr(t)dt < ρ
2
∫

∞

0
Φ̄

T (t)Φ̄(t)dt (13)

with Q is a positive definite matrix, ρ is a scalar performance
level to be minimized and Φ̄ = yr(t).

We consider the following Lyapunov function:

V (t) = XT
r (t)PXr(t) (14)

with P = P−1 > 0

The exponential convergence of the system (12) is verified if:
∃α such that V̇ (t)+2αV (t)< 0 (15)

By replacing V(t) by its definition, the inequality (15) becomes:
N

∑
i=1

N

∑
j=1

µi(ξ (t))µ j(ξ (t))(XT
r (t)P(Āi + B̄iK j)+

(Āi + B̄iK j)
T PXr(t)+XT

r (t)PD̄Φ̄+ Φ̄
T D̄T PXr(t)

+XT
r (t)2αPXr(t))< 0

(16)

Lemma 1. (Zhou K and Khargonedkar P (1988)) For real matri-
ces R̄ and S̄ with appropriate dimensions and a positive constant
η , the following inequalities hold:

R̄T S̄+ S̄T R̄ ≤ ηR̄T R̄+η
−1S̄T S̄ (17)

By applying the Lemma 1 for the inequality (16) we obtain:
N

∑
i=1

N

∑
j=1

µi(ξ (t))µ j(ξ (t))XT
r (t)(Ψi j +η

−1PD̄D̄T P+2αP)Xr(t)

+ηΦ̄
T

Φ̄ < 0
(18)

where Ψi j = (Āi + B̄iK j)
T P+P(Āi + B̄iK j)

By considering the H-infinity criterion (13), the stability condi-
tions are verified if:

N

∑
i=1

N

∑
j=1

µi(ξ (t))µ j(ξ (t))XT
r (t)(Ψi j +η

−1PD̄D̄T P+2αP

+Q)Xr(t)< 0
(19)

with η = ρ2

The inequality (19) can be rewritten as:
N

∑
i=1

N

∑
j=1

µ
2
i (ξ (t))(Ψii +η

−1PD̄D̄T P+2αP+Q)+

N

∑
i=1

N

∑
j=1

µi(ξ (t))µ j(ξ (t))(
Ψi j +Ψ ji

2
+η

−1PD̄D̄T P+2αP

+Q)< 0
(20)

Therefore, the stability conditions become:

Ψii +η
−1PD̄D̄T P+2αP+Q < 0, i = 1,2..N (21)

Ψi j +Ψ ji +2η
−1P(D̄D̄T )P+4αP+2Q < 0, i < j (22)

The obtained solutions are not LMIs. In order to resolve this
problem, some transformations are necessary. For this purpose,
we consider a new variable P̄ = P−1 and using the convenient
bijective change of variable Mi = KiP̄. Then, the above inequal-
ities can be rewritten as an LMIs feasibility problem in the
following theorem.

Theorem 1. The exponential convergence of (12) is verified if
there exist a positive definite symmetric matrix P̄, a positive

constant η , a positive matrices Mi and Q that satisfy the follow-
ing conditions:[

Ψ̄ii +η
−1D̄D̄T +2αP̄ P̄

P̄ −Q−1

]
< 0,

i = 1,2..N
(23)

[
Ψ̄i j + Ψ̄ ji +2η

−1D̄D̄T +4αP̄ P̄

P̄ −1
2

Q−1

]
< 0, i < j (24)

where Ψ̄i j = PĀT
i + ĀiP+MT

j B̄T
i + B̄iM j

The scalar α is called the decay rate, and Ki = MiP̄−1

3.3 The proportional integral unknown input observer

In this section, a proportional integral observer with unknown
inputs (PIUI) is proposed to estimate simultaneously the states
of the faulty augmented system (9) and the faults affecting
the system. The proposed (PIUI) is implemented to design
an active fault tolerant tracking control for a TS system with
simultaneously acting actuator and sensor faults. This observer
has the following structure:

˙̂Z f (t) =
N

∑
i=1

µi(ξ̂ f (t))(RiZ f (t)+T B̄iu f (t)+T Ēi f̂ (t)+KPiYf (t)

X̂ f (t) = Z f (t)+HYf (t)

˙̂f (t) =
N

∑
i=1

µi(ξ̂ f (t))KIi(Yf (t)−C̄X̂ f (t))

(25)
where X̂ f (t) is the estimated system state, Z f (t) is the interme-
diate variable and f̂ (t) the estimated faults. The variables Ri, T ,
KPi, KIi and H are the observer gains.

3.4 Method of resolution

Let us define the error er(t) between the healthy system state
Xr(t) and the faulty system state X f (t), the state estimation error
ex f (t) and the faults estimation error e f (t) .

er(t) = Xr(t)−X f (t) (26)

ex f (t) = X f (t)− X̂ f (t) (27)
e f (t) = f (t)− f̂ (t) (28)

If we assume that: ḟ (t) = 0, the dynamics of er(t) and ex f (t)
are respectively given by:

ėr(t) =
N

∑
i=1

µi(ξ f (t))(Āier(t)− Ēie f (t))+∆1(t) (29)

with ∆1(t) = ∑
N
i=1(µi(ξ (t))−µi(ξ f (t)))(ĀiXr(t)+ B̄iu(t))

The dynamic of ex f (t) is written by:

ėx f (t) = ΩẊ f − Ż f (t) =
N

∑
i=1

µi(ξ̂ f (t))((ΩĀi −Ri − F̄iC̄)X f (t)+(ΩB̄i −T B̄i)u f (t)

+(ΩĒi −T Ēi) f (t)+T Ēie f (t)+ΩD̄yr(t)+Riex f (t))+∆2(t)
(30)

where ∆2(t) =
∑

N
i=1(µi(ξ f (t))−µi(ξ̂ f (t)))Ω(ĀiX f (t)+ B̄iu f (t)+ Ēi f (t))

Ω = I −HC̄ (31)
F̄i = KPi −RiH (32)

If the following conditions are verified
Ω = T (33)
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Ri = ΩĀi − F̄iC̄ (34)
The estimation error of state can be reduced to:

ėx f (t) =
N

∑
i=1

µi(ξ̂ f (t))(Riex f (t)+T Ēie f (t)+ΩD̄yr(t)+∆2(t))

(35)
The dynamics of the fault estimation error is expressed as:

ė f (t) =−
N

∑
i=1

µi(ξ̂ f (t))KIi(Yf (t)−C̄X̂ f (t))

=−
N

∑
i=1

µi(ξ̂ f (t))KIiC̄ex f (t)
(36)

The estimation errors ex f (t) and e f (t) can be rewritten in
augmented form:

ėa(t) =
N

∑
i=1

µi(ξ̂ f (t))(Āai − K̄iC̄a)ea(t)+ωφ(t) (37)

where: ea(t) =
[

ex f (t)
e f (t)

]
; Āai =

[
ΩĀi T Ēi

0 0

]
; K̄i =

[
F̄i
KIi

]
;

C̄a =
[
C̄ 0

]
; ω =

[
ΩD̄ I
0 0

]
φ(t) =

[
yr(t)
∆2(t)

]
Therefore, the errors er(t), ex f (t) and e f (t) evolves according
to the following equation:

˙̄e(t) =
N

∑
i=1

N

∑
j=1

µi(ξ f (t))µ j(ξ̂ f (t))Ãi j ē(t)+ψφ̃(t) (38)

where: ē(t)=
[

er(t)
ea(t)

]
; Ãi j =

[
Āi Ẽi
0 Āa j − K̄ jC̄a

]
; ψ =

[
I 0
0 ω

]
; φ̃(t) =

[
∆1(t)
φ(t)

]
with Ẽi =

[
0 −Ēi

]
The gains of the proposed (PIUI) observer are computed by
solving a minimization problem under LMIs constraints, pre-
sented by the following theorem.

Theorem 2. The exponential convergence of the generated error
ē(t) describing the evolution of the errors er(t), ex f (t) and e f (t)
is verified and the L2-gain of the transfer from φ̃(t) to the error
ē(t) is bounded if there exist symmetric and positive definite
matrices X1 and X2, matrix V̄j and positive scalars γ̄ solution to
the following optimization problem:

minγ̄

X1,X2,V̄j, γ̄

for a prescribed scalar α > 0, the following conditions hold:
Ξi X1Ẽi X1 0

ẼT
i X1 ϒ j 0 X2ω

X1 0 −γ̄I1 0
0 ω

T X2 0 −γ̄I3

< 0 i, j = 1, ...,N (39)

Ξi = ĀT
i X1 +X1Āi + I1 +2αX1 (40)

ϒ j = X2Āa j −V̄jC̄a + ĀT
a jX2 −C̄T

a V̄ T
j + I2 +2αX2 (41)

The PIUI observer gains are computed from:

K̄ j =

[
F̄j
KI j

]
= X−1

2 V̄j (42)

R j = ΩĀ j − F̄jC̄ (43)
KP j = F̄j +R jH (44)

where [Ω H] =

[
In
C̄

]+
and T = Ω

and the L2-gain of the transfer from φ̃ to the error ē(t) is given
by: γ =

√
γ̄

Proof. According to (31) and (33), we can write:

I = T +HC̄ = [T H]

[
In
C̄

]
(45)

Then, the matrices T and H are obtained by the following
expression:

[T H] =

[
In
C̄

]+
(46)

where
[

In
C̄

]+
presents the pseudo-inverse of

[
In
C̄

]
Consider the following quadratic Lyapunov function:

V (t) = ˙̄eT (t)X ˙̄e(t) (47)
X is defined as : [

X1 0
0 X2

]
(48)

The generalized error vector ē(t) converge to zero if:

∃X = XT > 0, α > 0 : V̇ (t)+2αV (t)< 0 (49)
Assume that φ̃(t) is bounded, the objective is to minimize the
L2-gain of the transfer from φ̃(t) to the error ē(t), this is given
by:

∥ē(t)∥2

∥φ̃(t)∥2
< γ, ∥φ̃(t)∥2 ̸= 0 (50)

Then, the goal is to guarantee an asymptotic convergence
toward zero if φ̃(t) = 0 and to ensure a bounded L2-gain if
φ̃(t) ̸= 0. This is formulated by:

V̇ (t)+ ēT (t)ē(t)− γ
2
φ̃(t)T

φ̃(t)+2αV (t)< 0 (51)
By replacing the expression of V (t) we obtain the following
inequality:

N

∑
i=1

N

∑
j=1

µi(ξ f (t))µ j(ξ̂ f (t))(ēT (t)(ÃT
i jX +XÃi j)ē(t)

+ēT (t)Xψφ̃(t)+ φ̃
T (t)ψT Xē(t)+ ēT (t)2αXē(t)

+ēT (t)ē(t)− γ
2
φ̃(t)T

φ̃(t))< 0

(52)

That can be rewritten by the following way:[
ÃT

i jX +XÃi j + I +2αX Xψ

ψ
T X −γ

2I

]
< 0 ∀i, j = 1, ...N (53)

By replacing Ãi j, ψ and X by their definitions, and after some
calculations, the exponential stability conditions satisfying the
attenuation level of the L2-gain are given in the theorem 2.

3.5 The proportional multiple integral unknown input observer

A. Time varying faults

The assumption that the faults are constant or slowly variable
over the time is restrictive, but in many practical situations,
the faults are time-varying signals. In this problem, the PIUI
observer can be replaced by a proportional multiple integral
unknown input (PMIUI) observer. Such an observer is used to
estimate a large class of time-varying signals which have the
following assumption:

f (k) = 0 (54)
The (PMIUI) observer is based on the estimation of the (k−1)th

first derivative of the fault f (t), and can be extended to the case
where f (k) is bounded. Its structure is described as follows:
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˙̂Z f (t) =
N

∑
i=1

µi(ξ̂ f (t))(RiZ f (t)+T B̄iu f (t)+T Ēi f̂ (t)+KPiYf (t)

X̂ f (t) = Z f (t)+HYf (t)

˙̂f (t) =
N

∑
i=1

µi(ξ̂ f (t))K0
Ii(Yf (t)−C̄X̂ f (t))+ f̂1(t)

...

˙̂fk−2(t) =
N

∑
i=1

µi(ξ̂ f (t))Kk−2
Ii (Yf (t)−C̄X̂ f (t))+ f̂k−1(t)

˙̂fk−1(t) =
N

∑
i=1

µi(ξ̂ f (t))Kk−1
Ii (Yf (t)−C̄X̂ f (t))

(55)

where ḟ (t) = f1(t); ḟ1(t) = f2(t); ...; ḟk−1(t) = fk(t) and fk(t) =
0. Ri,T ,KPi,H and K j

Ii( j = 1, ...,k − 1) are the gains of the
PMIUI observer.

Therefore, The dynamics of the faults estimation errors be-
come:

ė0(t) =−
N

∑
i=1

µi(ξ̂ f (t))K0
IiC̄ex f + e1(t)

...

ėk−2(t) =−
N

∑
i=1

µi(ξ̂ f (t))Kk−2
Ii C̄ex f + ek−1(t)

ėk−1(t) =−
N

∑
i=1

µi(ξ̂ f (t))Kk−1
Ii C̄ex f

(56)

and the augmented form of the states and faults errors is
rewritten as:

˙̃ea(t) =
N

∑
i=1

µi(ξ̂ f (t))(Ãai − K̃iC̃a)ẽa(t)+ ω̃φ(t) (57)

where: ẽa(t) =


ex f (t)
e0(t)

...
ek−2(t)
ek−1(t)

 ; Ãai =


ΩĀi T Ēi 0 ... 0

0 0 I ... 0
...

...
...

. . .
...

0 0 0 0 I
0 0 0 0 0

 ;

K̃i =


F̄i
K0

Ii
...

Kk−2
Ii

Kk−1
Ii

 ; C̃a =
[
C̄ 0 ... 0 0

]
; ω̃ =


ΩD̄ I
0 0
...

...
0 0
0 0


Therefore, the augmented form of the errors er(t) and ẽa(t)
becomes:

˙̄̃e(t) =
N

∑
i=1

N

∑
j=1

µi(ξ f (t))µ j(ξ̂ f (t))Λi j ˜̄e(t)+Ψφ̃(t) (58)

where: ˜̄e(t) =

[
er(t)
ẽa(t)

]
; Λi j =

[
Āi

˜̄Ei
0 Ãa j − K̃ jC̃a

]
; Ψ =[

I 0
0 ω̃

]
with ˜̄Ei =

[
0 −Ēi 0 ... 0 0

]
Thus, the structure of equations (58) is similar to that presented
in the equations (38). Therefore, the synthesis of the gains can
be obtained by solving the LMIs given in the theorem 2.

B. Time varying faults with unknown disturbance and measure-
ment noise

The considered system in this situation is affected by simulta-
neous actuator and sensor time-varying faults, and exposed to
unknown disturbance and measurement noise. It is described by
the following equations. ẋ f (t) =

N

∑
i=1

µi(ξ f (t))(Aix f (t)+Biu f (t)+Ei fa(t)+Wiν(t))

y f (t) =Cx f (t)+S fs(t)+Gς(t)
(59)

where Wi and G are respectively the distribution matrices of the
unknown disturbance ν(t) and the measurement noise ς(t).

After the system transformation, equations described in (8) and
(9) become: Ẋr(t) =

N

∑
i=1

µi(ξ (t))(ĀiXr(t)+ B̄iu(t)+DiΦ̃(t))

Y (t) = C̄Xr(t)
(60)

 Ẋ f (t) =
N

∑
i=1

µi(ξ f (t))(ĀiX f (t)+ B̄iu f (t)+ Ēi f (t)+DiΦ̃(t))

Yf (t) = C̄X f (t)
(61)

where Di =

[Wi 0 0
0 DG 0
0 0 I

]
and Φ̃(t) =

[
ν(t)
ς(t)
yr

]
In order to ensure the trajectory tracking despite the presence
of unknown disturbance and noise, Φ̃(t) is minimized using the
H∞ criterion and the stability condition given in the theorem 1
by replacing D̄D̄T in (23) by DiDT

i and in (24) by (DiDT
j +

D jDT
i /2)

Then, the PMIUI observer can estimate the acting faults against
the unknown disturbance and the measurement noise by replac-
ing D̄ by Di and φ(t) by Φ̃(t) in (57). Therefore, the augmented
form of the states and the faults errors become:

˙̃Ea(t) =
N

∑
i=1

N

∑
j=1

µi(ξ f (t))µ j(ξ̂ f (t))(Λi jẼa(t)+WiΦ̃(t)) (62)

where: Wi =


ΩDi I

0 0
...

...
0 0
0 0


Thus, the augmented form of the errors er(t) and Ẽa can be
rewritten as follows:

˙̄̃
E (t) =

N

∑
i=1

N

∑
j=1

µi(ξ f (t))µ j(ξ̂ f (t))Λi j
˜̄E (t)+ Ψ̃i

˜̄
φ(t) (63)

where: ˜̄E (t) =
[

er(t)
Ẽa(t)

]
; Ψ̃i =

[
I 0
0 Wi

]
; ˜̄

φ(t) =
[

∆1(t)
Φ̃(t)

]
Finally, the gains of the PMIUI observer can be calculated using
theorem 2.

4. APPLICATION TO THE CSTR

Continuous stirred tank reactor (CSTR) plays a vital role in
chemical and pharmaceutical industry due to their appropriate
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mixing property. In practice, chemical systems are exposed to
several faults such as failures or changes in actuators/sensors
operations, providing an undesirable control performances and
so deteriorating process behavior. The objective of this section
is the application of the proposed FTC to a CSTR in order
to ensure good output reference tracking in the presence of
actuator and sensor faults.

4.1 CSTR system description

A continuous stirred tank reactor is represented in Fig. 1. Her
isothermal series-parallel reaction (Van der Vusse reaction) is
given by the following reactions (M Nagarajan et al (2016)):

A k1→ B k2→C

2A k3→ D

Fig. 1. Schematic diagram of continuous stirred tank reactor.

The mathematical model of this reactor is described by the
following differential equations:

ĊA =
F
V
(CA f −CA)− k1CA − k3C2

A

ĊB =−F
V

CB − k1CA − k2CB

(64)

where F is the flow rate, V is the volume, k1, k2 and k3 are the
reaction rate constants, CA f is the inlet concentration of com-
ponent A, CA is the concentration of component A. The control
input is represented by the dilution rate F

V , and the controlled
output is the product concentration CB. The equations for CC
and CD are neglected because CB is independent of them. The
numerical values of the parameters model are:

k1 =
5
6

min−1; k2 =
5
3

min−1; k3 =
1
6

mol/l.min ;

CA f = 10 mol/l; V = 1l.

4.2 Takagi-Sugeno model design

The CSTR is a chemical system with complex nonlinear
dynamic characteristics. To deal with this non-linearity, the
Takagi-Sugeno approach is introduced to represent the nonlin-
ear model of the CSTR by an interpolation of simple linear sub-
models. In the considered system, we have two nonlinear terms
or premise variables: ξ1(t) =CA,ξ2(t) =CB.

with
min(ξi(t))< ξi(t)< max(ξi(t)) ∀i = 1,2 (65)

The premise variables can be represented by the membership
functions Fi, fi:
ξi(t) = Fi(ξi(t)).max(ξi(t))+ fi(ξi(t)).min(ξi(t)) ∀i = 1,2

(66)
According to (2), the membership functions can be given as
follows:

Fi(ξi(t)) =
ξi(t)−min(ξi(t))

max(ξi(t))−min(ξi(t))

fi(ξi(t)) =
max(ξi(t))−ξi(t)

max(ξi(t))−min(ξi(t))

∀i = 1,2 (67)

The activation functions are obtained by:
µ1(ξ (t)) = F1(ξ1(t))F2(ξ2(t))
µ2(ξ (t)) = f1(ξ1(t))F2(ξ2(t))
µ3(ξ (t)) = F1(ξ1(t)) f2(ξ2(t))
µ4(ξ (t)) = f1(ξ1(t)) f2(ξ2(t))

(68)

Then, the aggregated TS model of the CSTR can be described
by the following structure: ẋ(t) =

4

∑
i=1

µi(ξ (t))(Aix(t)+Biu(t))

y(t) =Cx(t)
(69)

where: C = [0 1]; A1 = A3 =

[
−1.3500 0
0.8333 −1.6667

]
;

A2 = A4 =

[
−1.2500 0
0.8333 −1.6667

]
; B1 =

[
6.9000
−1.3000

]
B2 =

[
7.5000
−1.3000

]
; B3 =

[
6.9000

0

]
; B4 =

[
7.5000

0

]
.

4.3 Simulations results and remarks

Considering a CSTR affected by actuator and sensor faults: ẋ f (t) =
4

∑
i=1

µi(ξ f (t))(Aix f (t)+Biu f (t)+Ei fa(t))

y f (t) =Cx f (t)+S fs(t)
(70)

Three case studies are considered in this work.

Case 1: in this case the acting faults are chosen as bias which
appears and disappears during an time interval as follows:

fa(t) =
{

0,11 312.5 < t < 800
0 elsewhere

fs(t) =
{

0,165 625 < t < 937.5
0 elsewhere

The objective is to show the effectiveness of the proposed FTC.
For that purpose, the LMIs elaborated in section 3 are solved
using Matlab’s Yalmip toolbox. Then, several simulations are
implemented on the CSTR.

The actuator and sensor faults with their estimations are de-
picted in Fig. 2. In Fig. 3, we present a comparison between the
reference model output (without faults), the output of the faulty
system without FTC, and the output of the faulty system with
the proposed FTC. Fig. 4 compares the nominal control input
and the proposed FTC.

From the simulations in Fig. 2, we can notice that the proposed
PIUI observer provides the estimation of simultaneous actuator
and sensor faults and the system state. In Fig. 3, one can
see that in the presence of the actuator and sensor faults, the
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Fig. 2. Actuator and sensor faults with their estimates (Case 1).
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Fig. 3. Reference model, system output without FTC, system
output with FTC (Case 1).
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Fig. 4. Nominal control and FTC control (Case 1).

output of the faulty system without the proposed FTC lost
its performance and diverge from the output of the reference
healthy system. On the other hand, Fig. 4 shows that the faulty

system output with the proposed FTC law converge from the
reference trajectory even in the presence of the acting faults.

Case 2: in this case, the considered faults are slowly time-
varying signals and modeled as follows:

fa(t) =
{

0.07sin(0.05πt) 150 < t < 400
0 elsewhere

fs(t) =
{

0,0002t 300 < t < 700
0 elsewhere

The simulation results are illustrated in the following figures.
According to the Fig. 5 we note that the proposed observer
is able to reconstruct time-varying signals with slow variation.
Fig. 6 shows a comparison between reference model, the output
of the system without FTC and the output with FTC in the
presence of slowly time-varying faults. We can remark that the
output with the proposed FTC converges to the reference trajec-
tory even in the presence of both slowly time-varying actuator
and sensor faults. From Fig. 7, we can see that the proposed
FTC compensates the fault and allows normal functioning of
the system in spite of the occurrence of time-varying faults with
a bounded norm of first time derivative.
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Fig. 5. Actuator and sensor faults with their estimates (Case 2).
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Fig. 6. Reference model, system output without FTC, system
output with FTC (Case 2).
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Fig. 7. Nominal control and FTC control (Case 2).

Case 3: the system is exposed to actuator and sensor time-
varying faults with unknown disturbance and measurement
noise: ẋ f (t) =

4

∑
i=1

µi(ξ f (t))(Aix f (t)+Biu f (t)+Ei fa(t)+Wiν(t))

y f (t) =Cx f (t)+S fs(t)+Gξ (t)
(71)

The actuator and the sensor faults are time-varying as follows:

fa(t) =

 2.10−4sin(0.08πt)× t 200 < t < 500
0.19sin(0.15πt) 500 < t < 700
0 elsewhere

fs(t)=


−3.10−4(t −200)2 +6.10−8(t −200)3 100 < t < 400
2.10−5(t −400)−2.10−5(t −400)2 400 < t < 500
0.08sin(0.08πt) 500 < t < 620
0 elsewhere

The unknown disturbance is presented by a Sawtooth signal
of period 30 and amplitude 0.03, the measurement noise is
presented by zero mean noise with standard deviations equal to
0.05. The simulation results are given in the following figures.
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Fig. 8. Unknown disturbance and measurement noise signals.

Fig.9 shows that the proposed PMIUI observer estimate si-
multaneously the actuator and the sensor varying faults under
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Fig. 9. Actuator and sensor faults with their estimates (Case 3).
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Fig. 10. Reference model, system output without FTC, system
output with FTC (Case 3).
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Fig. 11. Nominal control and FTC control (Case 3).

unknown disturbance and measurement noise. In Fig.10, the
system output with the proposed FCT track asymptotically the
reference trajectory even in the case of time-varying faults, and
the effect of the measurement noise and the unknown distur-
bance is minimized. In Fig.11, one can also see that the pro-
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posed FTC strategy accommodate effectively the time-varying
actuator and sensor faults.

4.4 Comparison

In order to compare the proposed FTC strategy with the existing
methods, we choose the technique used in (Ichalal et al (2010);
El Youssfi et al (2019)) which based on the same objective,
the authors present the synthesis of an active fault tolerant
control for nonlinear Takagi-Sugeno fuzzy systems in order to
guarantee the convergence of the system to the reference model
even the presence of faults. The control law uses the nominal
control input of the fault-free case and two additional terms
related to the trajectory tracking error and the estimated fault.
The estimation is based on a proportional integral observer and
the stability is studied with L2 optimization and the Lyapunov
function.

Remark 1. In our work, the observer and the controller are de-
signed independently, and their gains are calculated separately,
which permits to avoid the coupling problem. As opposed by
(Ichalal et al (2010); El Youssfi et al (2019)) the control and the
observer gains are calculated simultaneously. In addition, the
H∞ controller used in our strategy permits to the faulty system
output to track a desired trajectory.

A comparative study is provided to show that our result lead to
less conservative LMIs in comparison with the method given
in (Ichalal et al (2010); El Youssfi et al (2019)). The result of
comparison is depicted in Fig. 12.
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Fig. 12. Feasibility of LMIs in theorem 2 indicated with o and
in (Ichalal et al (2010); El Youssfi et al (2019)) with +.

The considered system in (70) is slightly modified in order to
test the feasibility of the LMIs in the proposed strategy and the
reference methods for several system models. The matrices Ai
and C are modified by two free parameters a and b because
the LMIs of theorem 2 and the one described in the reference
methods depend on Ai and C.

A1 = A3 =

[
−1.3500 a
0.8333 −1.6667

]
;

A2 = A4 =

[
−1.2500 a
0.8333 −1.6667

]
; C = [0 b];

The feasibility of LMIs in theorem 2 and (Ichalal et al (2010);
El Youssfi et al (2019)) is tested for several values of pairs (a,b),
a ∈ [−5,5] and b ∈ [−1,3] by a step of 0.1.

Remark 2. We can clearly see that the feasibility of the pro-
posed LMIs are more expanded than the one obtained in (Icha-
lal et al (2010); El Youssfi et al (2019)). This result shows that
the proposed strategy provides a larger stabilization regions and
a much feasible set of solutions than the method in (Ichalal et al
(2010); El Youssfi et al (2019)).

Remark 3. The attenuation level of the L2-gain obtained by the
proposed method in this result is 0.3 < γ < 0.5, it is less than
the one obtained in the reference methods which have a value
greater than 0.9. Therefore, the proposed method provides a
better performance of disturbance rejection.

4.5 Computer process interfacing

The proposed strategy can be implemented in real-time using
Matlab/Simulink. After solving the LMIs of theorem 1 and 2
by LMIs toolbox in Matlab, the FTC gains can be obtained and
the controller application procedure is shown in Fig. 13.

Fig. 13. Sheme of FTC application procedure

The FTC program is written by a Matlab Script on a digital
computer, this latter can be connected to the CSTR system us-
ing an interface which is a collection of hardware and software
modules. The following figure shows the parts of a real time
implementation.

Fig. 14. Parts of a real time implementation

As shown in Fig.13, the proposed FTC is performed without
a fault detection and identification (FDI) because it is able to
estimate directely the fault value, which reduce the time of com-
puting and avoid the false alarms, non-detection and delay due
to FDI. Moreover, this approach consider several types of faults
and disturbances in the system in addition to normal modes of
operation. In real-time, this strategy can provide a robust per-
formance to engineering systems, especially embedded control



CONTROL ENGINEERING AND APPLIED INFORMATICS 67

systems which requires good reliability and high security such
that they can operate in safety-critical applications.

5. CONCLUSION

The main contribution of this work is the design of a trajectory
tracking fault tolerant control for nonlinear systems described
by TS models. The considered systems are affected by si-
multaneous actuator and sensor faults and have unmeasurable
premise variables and depending on the faults occur. The first
time, a mathematical transformation is introduced to construct
an augmented system in which all the faults affecting the initial
system appear as actuator faults. Secondly, a nominal control
based on H∞ strategy is developed for the augmented system
in fault-free case in order to ensure trajectory tracking. The
objective is to minimize the deviation between the healthy ref-
erence system and the eventually faulty system, and to track a
reference trajectory. This scheme requires the knowledge of the
system states and the simultaneous acting actuator and sensor
faults. These signals are estimated from a PIUI observer in the
cases of constant and slowly time-varying faults, or a PMIUI
observer in the case of time varying faults. The stability condi-
tions are studied with Lyapunov theory and L2 optimization,
and formulated in terms of LMIs. The performances of the
proposed method are illustrated through the application to a
CSTR. The results clearly show that the proposed FTC guar-
antee a good tracking performances despite on the occurrence
of actuator and sensor faults simultaneously, and attenuate the
unknown disturbance and the measurement noise.
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