
CEAI, Vol.23, No.2, pp. 87-94, 2021                                                                                                                 Printed in Romania 

A Comparison of Motion Planners for Robotic Arms 
 

M. Dobiš*, M. Dekan*, F. Duchoň*, P. Beňo**, M. Kohút* 


*Institute of Robotics and Cybernetics, Slovak University of Technology in Bratislava, Slovakia (e-mail: 
michal.dobis@stuba.sk, martin.dekan@stuba.sk, frantisek.duchon@stuba.sk, miroslav.kohut@stuba.sk) 
**Department of Robot Applications, Photoneo s.r.o. company, Slovakia (e-mail: beno@photoneo.com)  

Abstract: This paper presents a comparison of two motion planning approaches for industrial 
manipulators. The first approach implements sampling-based methods and the second approach uses 
optimization-based methods. Specific algorithms compared in this article are RRT, RRTConnect 
(sampling-based motion planning) and STOMP (optimization-based motion planning). Both approaches 
are able to find collision-free trajectory and are available for Robotic Operating System via MoveIt 
package. In our experiments computation time, success rate and trajectory length are evaluated. Our 
results show that RRT and RRTConnect are faster, but a risk exists, that the length of trajectory will be 
extremely long. On the other hand, STOMP is slower, but the length of found trajectory depends on 
parametrization. 
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

1. INTRODUCTION 

Industrial manipulators are often used for object handling and 
manipulation in the manufacturing industry. Traditionally, 
movements of the robot are taught by the programmer and 
the motions are repeatedly executed for each object. The 
robot programmer iteratively defines each movement from 
source to destination, ensuring that defined trajectory is fast 
to execute, collision-free and respects wear of mechanical 
parts of the robot. This is possible when the picked object has 
a fixed grasping position. This often requires the usage of 
mechanical fixtures, human workers and specialized gripper 
design.  

Modern manufacturing lines are, however, optimized for 
flexibility. It becomes increasingly important to create 
manufacturing setups that can adapt to changes in production 
faster, thus saving costs of manual reconfiguration. 
Furthermore, more processing power and modern types of 
sensors are available on the industrial market. New 3D vision 
systems allow us to precisely recover object positions and 
transform them into robot cartesian space. To move such a 
dynamic object, the robot has to be able to compute its 
motion to pick the object dynamically. Furthermore, robot 
trajectories have to be collision-free, thus environment where 
the motion takes place has to be known. 

Algorithms, which solve this problem are called path 
planners. The task of the path planner is to find a sequence of 
valid configurations that moves the robot from source to 
destination.  

The configuration space of 6-DOF robotic arm is 6-
dimensional, which is too large for explicit calculation, and 
usage of analytic and deterministic algorithms is very 
difficult (Lindemann and LaValle, 2005). The configuration 

space and disadvantage of explicit construction are simple 
described in the next section. 

The main goal of the article is to compare two approaches 
commonly used by Robotic Operating System (ROS) 
community. One of them are sampling-based motion 
planners. These planners use and create topological trees and 
graphs. Second presented type of motion planner are 
optimization-based methods, which minimize cost function.  
The Sampling-based motion planners from Open Motion 
Planning Library (OMPL), and the optimization-based 
planner, STOMP will be described and compared in this 
article. For the comparison we devised two experimental 
setups on an environment, which simulates a production cell. 
The first experiment simulates pick of randomly placed parts 
in the bin and the second simulates placing. The compared 
algorithms are RRT and RRTConnect from the OMPL and 
the STOMP with specific parameters. Both algorithms are 
free available in ROS melodic MoveIt. 

2. CONFIGURATION SPACE 

The configuration space  is a set of all possible states of the 
robot. The set includes states, which are collision-free, 
whether in self-collision or in collision with another obstacle. 

The set of collision-free states is  and the set of states 

in collision is . (Lozano-Peréz, 1990) 

The configuration space can be sampled into a grid map, and 
then the solution can be found in the grid map by a 
deterministic algorithm like Dijkstra or A*. The fig. 2 
illustrates the 2-axis robotic arm and the orange circle 
represents an obstacle. On the right the configuration space is 
shown. The white space represents collision free states, and 
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the orange space represents robot states, which are in 
collision.  

 

Fig. 1. Configuration space,  and  for an articulated 
robot with two joints (Gasparetto et al., 2015). 

Actually, the explicit definition of  is a computationally 
difficult problem, because computational complexity 

increases exponentially with the dimension of . (Lindemann 
and LaValle, 2005) 

3.OPEN MOTION PLANNING LIBRARY 

The OMPL library contains sampling-based motion planners, 
which are divided into two basic groups of algorithms – 
single-query and multi-query (Sucan et al., 2012).  

Both groups of path planners need to define and implement 
fundamental parts of the algorithm:  

1. Sampling method (Normal distribution, Gauss 
distribution, or other specified methods) (Booret al., 
1999) 

2. Vertex selection method - Selection of nearest 
neighborhoods (Especially important in multi-query, 
if the graph too large) (LaValle, 2014, pp.153-206) 

3. Local planning methods – Between two nodes 
trajectory is created and collision is checked on this 
trajectory. Most often a linear trajectory is used with 
defined density of points. And in each point the 
collision is checked. Collision detection is a very 
important part of the path planning, takes the most 
computation time. One of the collision detectors is a 
library FCL, which is also used in MoveIt (Pan et 
al., 2012). 

A single-query algorithm is useful for a fast trajectory search. 
The algorithm builds a tree in configuration space and tree is 
being iteratively grown until the goal state is reached. The 
base algorithm of this type is RRT – Rapidly-exploring 
random tree (Bircher et al., 2016). 

The Tree is grown from an initialized state , which is 
the root of the tree. The first step of the algorithm, after 

initialization, is to create a new random sample  from 
the configuration space of the robot. Then the nearest 

neighborhood  from the tree is searched. In the first 

iteration, the nearest neighborhood is the start state . 

States  and  are connected with a linear line, on 

which new state x in the distance ε from  is created. If 

the state x and the connection between  and  is 

collision-free, the state  is added as new branch of the tree. 
This one iteration is illustrated on the fig. 2. Contrariwise, the 
fig. 3. demonstrates the example of fail when collision is 
between these two states. 

The algorithm continues to the next iteration and new states 

are being randomly sampled, while the goal state  is 
not reached in the specified time. An example of the whole 

the tree is displayed on fig. 4. Sometimes the , instead 
of the random sample, may be chosen. By choice of the 
growth in the direction towards the goal, the algorithm 
converges faster.  But if the goal state is too often chosen, the 
algorithm can be trapped into a local minimum and may have 
a problem with obstacle avoidance. (Rodriguez et al., 2019) 

 

Fig. 2. Example of one iteration of RRT. 

 

Fig. 3. Example of connection failure. 

 

Fig. 4. Example of finding solution and growing a 

topological tree from to  by RRT. 
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RRT is often useful for fast computation of a feasible plan, 
but the path is not optimized. For this reason, modified 
versions, that can smooth the trajectory further, like RRT* 
exist (Karaman and Frazzoli, 2011). Another type of RRT is 
a bidirectional version, which builds two trees one from the 
start and second from the goal state. This strategy is used in 
RRTConnect (Kuffner and Lavalle, 2000). Transition-based 
RRT, which is inspired by molecular modeling with 
Bolzmann probability, uses additional parameters for 
avoiding local minimums in searched space (Jaillet et al., 
2008). 

Another group of sampling-based methods are multi-query 
methods. These algorithms are used for searching trajectories 
from multiple start states to multiple goal states. The 
Algorithms consist of two steps – built and query. In the first 
step a space is randomly sampled and collision is checked in 

each sample . Then the collision-free samples are tried 

to connect with the nearest nodes  from the graph. If 

the connection between two states  and  is 
collision-free, the connection is added into the graph. In the 
second step, the solution in the graph is, by a simple 
deterministic algorithm e.g. (Dijkstra, 1959), found. The 
graph and solution is illustrated on fig. 5. The basic version 
of a multi-query algorithm is called PRM – Probabilistic 
roadmap (Kavraki et al., 1996). 

 

Fig. 5. Example of creation of topological graph by PRM and 
founding a solution from the graph. 

4. STOCHASTICS TRAJECTORY OPTIMIZED MOTION 
PLANNER  

Another class of motion planners, which can be applied to 
robotics manipulators, are optimization-based planners. In 
(Ratliff et al., 2009) planner called CHOMP is described, 
which formulates a trajectory optimization procedure based 
on covariant gradient descent. This algorithm minimizes 
a combination of smoothness and obstacle cost and to derive 
the gradients from obstacle in environment distance field 
representation of environment is used. 

The planner called STOMP has similar approach and adopt 
a similar cost function, but instead the covariant gradient 
descent, generating of noisy trajectories is used and the best 
trajectory is chosen by cost function (Kalakrishnan et al., 
2011).  

First, the method creates a guess of a initialization trajectory, 
which can be linear interpolation, cubic polynomial or 
minimum control cost. STOMP considers trajectories of 
a fixed duration and trajectories are discretized into N 
waypoints, which is called num_timesteps in MoveIt 
implementation. The number of generated noisy trajectories 
is defined by parameter number of rollouts num_rollouts and 
algorithm is executed until maximum number of iterations 
num_iterations is reached. Important part of the algorithm is 
noise generator and in experiments of this article normal 
distribution sampling is used. The noise generator uses 
parameter stddev – standard deviations of noise on each joint 
of trajectory. Too low value of noise allows to explore 
configuration space of manipulation only near to the initial 
trajectory.  In case of large obstacle on the path, the algorithm 
may not find a collision free trajectory (Fig. 6). Contrariwise, 
too high value of the noise can help to explore larger space of 
manipulation, but the trajectory may not be optimized (Fig 
7.). This behavior can be improved by higher number of 
noisy trajectories, but it requires more time for computation. 
(Ros.org, 2011) 

 

Fig. 6. Trajectories are generated with too low values of noise 
and STOMP is trapped in local minimum. 

 

Fig. 7. Trajectories are generated with too high values of 
noise and chosen trajectory is not optimal. 

5. EXPERIMENT SETUPS 

These two MoveIt plugins OMPL and STOMP are compared 
on a simulation of a simplified working station with the robot 
ABB IRB 2100, which is illustrated on fig. 8. Experiment 
setups consist of two steps of production. 

In the first experiment setup and in the first part of production 
the robot is autonomously picking a part from a bin. The start 
position is fixed, but positions and orientations of parts are 
randomized, and an application of some vision system is 
necessary for the part detection. Therefore, in this situation 
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autonomous execution of trajectory, which cannot be taught 
by programmer, is important to use. 

 

Fig. 8. Working station, on which experiments are executed 
and comparison of path planners is done. 

In the simulation, where positions of parts are generated with 
defined step, motion planners are being tried to find 
trajectories. Joint values of start position are fixed: [-1.07, -
0.23, 0.62, -0.14, 1.18, 1.39]. This scenario is marked as 
number 1 on Fig. 8. The example of one trajectory is 
displayed on Fig. 9. 

 

Fig. 9. Example of trajectory in first experiment. 

In the second experiment setup the robot is moved to another 
station, where the picked part is placed on a fixed position. 
For simplification we imagine, that picked part is small (E.g., 
screw) and for the collision checking is insignificant. 
Therefore, any model of the part is not considered. An 
obstacle is located between the fixed start and the fixed goal 
state and the collision free trajectory must be found. Fig. 10. 
shows a example of trajectory, which is collision free. 
Algorithms are based on randomized sampling, so the 
trajectory is not the same in each attempt. The placing 
position is fixed with joint values: [0.70, 0.45, -0.27, -0.26, 
1.12, -1.08] and the fixed start state is same as in previous 
operation from the first experiment. 

After object handling in the station, the robot is returned to 
pick next part from box and production continue in next 
cycle.  

Due to the fact, that the collision checking is a significant 
part of the time spent motion planning, it is important to 
define collision checking library. Both algorithms are using 
mentioned FCL library (Pan et al., 2012), which is supported 
in MoveIt. RRT and RRTConnect algorithm have no 
configuration parameters. Contrariwise, STOMP uses 

parameters, which has been described in STOMP chapter of 
this article. 

 

Fig. 10. Example of trajectory in second experiment. 

In these experiments minimum control cost method as 
initialization method is used. The noise generator uses the 
normal distribution sampling and cost function is obstacle 
distance gradient.  

The comparison consists of watching computation time, rate 
of success, and increase of tool point trajectory length with 
respect to forward linear path between the start and the goal 
states, what let us denote as Trajectory increase* in the 
article. The Trajectory increase* TI is defined by: 

  (1) 

Where  is Euclidean distance between tool point 

position in the start state  and tool point position in the goal 

state . The sum of  represents trajectory length 

of tool point, where  is number of waypoints and  is tool 

point position of waypoint on  position. The Euclidean 
distance is calculated by:  

 (2) 

6. RESULTS 

The goal of the first experiment setup is finding of solution 
from the start state to the different goal states in bin. 

STOMP parameters (Table 1.) are chosen from Photoneo 
Company experimental testing, which are optimized for 
finding a trajectory in the bin with minimum computation 
time. 

Table 1.  STOMP parameters from Photoneo Company 
experimental testing. 

Parameter Value

num_timesteps 5

num_iterations 5

num_rollouts 5

Standard deviations of noise 
on each joint [rad]

[0.2, 0.4, 0.5, 0.1, 0.1, 0.1] 
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In this case RRTConnect can find solution faster as simple 
RRT. Also, RRTConnect has better success rate, because 
RRT is failed, if timeout is reached. STOMP algorithm is the 
slowest with 97.9% success rate, which can be seen in Table 
2. 

Table 2. Experiment setup 1 – duration and success rate 
comparison. 

Algorithm Duration [s] Success Rate [%]
RRT 0.15 91.5

RRTConnect 0.07 100
STOMP 0.2 97.9

Figures 11. – 13. show the trajectory increase in each attempt 
of the first experiment. If RRT or RRTConnect is used, 
significant deviations are seen on figures 11., 12. RRT had 
887% maximal deviation from average trajectory increase 
and RRTConnect had 362% (The standard deviation is about 
15%). But maximal deviation is very random and theoretical 
the maximal deviation can be infinity. This behavior is 
typical for these sampling-based planners, because they are 
not optimal and sometimes planner can create a rambling 
trajectory. STOMP had maximal deviations 82% and 
standard deviation 11%, which is depend on parameter 
stddev. 

The comparison of trajectory increase can be seen on Table 3. 

 

Fig. 11. OMPL – RRT and trajectory increase on each 
attempt. 

 

Fig. 12. OMPL – RRTConnect and trajectory increase in each 
attempt. 

 

Fig. 13. STOMP and trajectory increase in each attempt. 

Table 3. Experiment setup 1 – Comparison of average 
trajectory increase, standard deviation and maximal 

deviation of the trajectory increase. 

Algorithm Average Standard 
deviation 

Max. 
deviation 

RRT 1.075 0.155 8.87
RRTConnect 1.064 0.155 3.62

STOMP 1.079 0.114 0.82

In this experimental setup case RRT and RRTConnect are 
faster with a risk, that the trajectory can be rambling. Possible 
solution, how to integrate this planner is usage of statistical 
methods for filtering wrong trajectories. STOMP is slower, 
but without risk for rambling trajectory. The final comparison 
of trajectory increase for each planners is showed on 
histogram Fig.14. 

 

Fig. 14. Comparison STOMP (blue), RRTConnect (orange), 
RRT (green) by histogram, which shows number of attempts 
on intervals with different trajectory increase. 

The second experiment setup consists of testing 10000 
samples from the one start state to the one goal state. If 
STOMP used the same parameters as in the previous 
experiment, it would be impossible to find a solution, 
because the noise parameter is too low, and the solver has 
problems to find solution effectively (Fig. 15.). 
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Fig. 15. Failure of STOMP, which used parameters from 
previous experiment. Noise is too low, and solver cannot find 
trajectory. 

Thus, the parameters are changed to Table 4. and Fig. 16. 
shows, that STOMP with new parameters is able to find 
solution. 

Table 4. STOMP parameters for the second experiment 
setup. 

Parameter Value
num_timesteps 10 
num_iterations 10 
num_rollouts 10 

Standard deviations of noise on 
each joint [rad] 

[0.3, 0.4, 0.4, 0.6, 
0.6, 0.6]

 

Fig. 16. STOMP trajectories from noise generator with 
increased gained noise. 

In this experiment setup only RRTConnect as sampling-
based planner is used, because it was better as RRT. Thus, 
RRTConnect is compared with STOMP.  

According to Tab. 5.  RRTConnect is faster with better 
success rate. 

Table 5. Experiment setup 2 – duration and success rate 
comparison. 

Algorithm Duration [s] Success Rate [%]
RRTConnect 0.22 99.8

STOMP 1.14 95.7

But in comparison of trajectory increase STOMP is again 
better, which has standard deviation 38.5%. RRTConnect has 
more significant peaks (Fig. 17.) with 104.9% standard 

deviation and the worst trajectory has 986% deviation. The 
completed comparison of trajectory increase is in Tab. 6. 

 

Fig. 17. OMPL RRTConnect and trajectory increase in each 
attempt. 

 

Fig. 18. STOMP and trajectory increase in each attempt. 

Table 6. Experiment setup 2 – Comparison of average 
trajectory increase, standard deviation and maximal 

deviation. 

Algorithm Average Standard 
deviation 

Max. 
deviation

RRTConnect 2.24 1.049 9.86
STOMP 1.67 0.385 4.45

In this second experiment RRTConnect is faster again, but if 
in case of obstacle in scene, the chance, that the trajectory 
will be rambling, is increased. This can be seen in histogram 
Fig. 19., where trajectories, which are generated by STOMP, 
have nearer to average of trajectory increase. 

 

Fig. 19. Comparison STOMP (blue), RRTConnect (orange) 
by histogram, which shows number of attempts on intervals 
with different trajectory increase. 
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The recapitulation of results are show in Tab. 7., where 
motion planners are finale compared. 

Table 7. Summary of results. 

 RRTConnect STOMP
Duration faster Slower

Parameters No parameters 
required 

Different cases of 
movement

Success 
rate 

failures are only if 
timeout is reached 

Needs to define 
different parameters in 

different cases of 
movement

Optimal 
trajectory 

Optimal and the 
deviation in length 
trajectory is lower

Optimal and the 
deviation in length 
trajectory is lower

Setup joint 
limits 

Setup joint limits is 
recommended, but 
if robot must work 
in large volume of 

his workspace, 
limitation of joint 

values can be 
impossible 

Not required 

CONCLUSION 

RRTConnect is faster than RRT, therefore in the first 
experiment RRTConnect has better success rate than RRT, 
which fails only on timeout. In case of STOMP algorithm 
more timesteps and more rollouts causes longer computation 
time. On the other hand, when values are too low, STOMP is 
not be able to find a solution in a complicated environment 
(The second experiment). In case of moving to a bin, (The 
first experiment) lower values of the parameters are adequate, 
because the environment is not complicated. Also, in a 
production decreasing of cycle time is often required, 
therefore the motion planner must find the solution 
immediately. In this case RRTConnect is faster and has better 
success rate than STOMP. Problem is that a quality of 
trajectory is not guaranteed and sometimes the trajectory can 
be rambling.  

We propose some methods for avoidance or minimization of 
this problem. One approach is reduction of a robot workspace 
by setup of joint limits. If the workspace is reduced the 
computed trajectory cannot contain any value outside of 
limits and the rambling trajectory is minimized in limited 
workspace. Also, the computation time is faster, because 
algorithm is searching only in limited workspace. Another 
possible approach is to use statistical methods for rejecting 
the rambling trajectories. If the environment is defined, it is 
possible to run a simulation and record lengths of trajectories 
in lot of attempts. From this dataset is possible to compute a 
standard deviation. A newly created trajectory will be 
rejected, if length will be longer than a defined threshold. 
This threshold can be derived as multiple of the standard 
deviation from simulation.  
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