
CEAI, Vol.23, No.2, pp. 87-94, 2021 Printed in Romania

A Comparison of Motion Planners for Robotic Arms

M. Dobiš*, M. Dekan*, F. Duchoň*, P. Beňo**, M. Kohút*


*Institute of Robotics and Cybernetics, Slovak University of Technology in Bratislava, Slovakia (e-mail:
michal.dobis@stuba.sk, martin.dekan@stuba.sk, frantisek.duchon@stuba.sk, miroslav.kohut@stuba.sk)
**Department of Robot Applications, Photoneo s.r.o. company, Slovakia (e-mail: beno@photoneo.com)

Abstract: This paper presents a comparison of two motion planning approaches for industrial
manipulators. The first approach implements sampling-based methods and the second approach uses
optimization-based methods. Specific algorithms compared in this article are RRT, RRTConnect
(sampling-based motion planning) and STOMP (optimization-based motion planning). Both approaches
are able to find collision-free trajectory and are available for Robotic Operating System via MoveIt
package. In our experiments computation time, success rate and trajectory length are evaluated. Our
results show that RRT and RRTConnect are faster, but a risk exists, that the length of trajectory will be
extremely long. On the other hand, STOMP is slower, but the length of found trajectory depends on
parametrization.

Keywords: Path Planning, Collision Avoidance, Sampling-based Methods, Optimization-based Methods,
robotic arms.



1. INTRODUCTION

Industrial manipulators are often used for object handling and
manipulation in the manufacturing industry. Traditionally,
movements of the robot are taught by the programmer and
the motions are repeatedly executed for each object. The
robot programmer iteratively defines each movement from
source to destination, ensuring that defined trajectory is fast
to execute, collision-free and respects wear of mechanical
parts of the robot. This is possible when the picked object has
a fixed grasping position. This often requires the usage of
mechanical fixtures, human workers and specialized gripper
design.

Modern manufacturing lines are, however, optimized for
flexibility. It becomes increasingly important to create
manufacturing setups that can adapt to changes in production
faster, thus saving costs of manual reconfiguration.
Furthermore, more processing power and modern types of
sensors are available on the industrial market. New 3D vision
systems allow us to precisely recover object positions and
transform them into robot cartesian space. To move such a
dynamic object, the robot has to be able to compute its
motion to pick the object dynamically. Furthermore, robot
trajectories have to be collision-free, thus environment where
the motion takes place has to be known.

Algorithms, which solve this problem are called path
planners. The task of the path planner is to find a sequence of
valid configurations that moves the robot from source to
destination.

The configuration space of 6-DOF robotic arm is 6-
dimensional, which is too large for explicit calculation, and
usage of analytic and deterministic algorithms is very
difficult (Lindemann and LaValle, 2005). The configuration

space and disadvantage of explicit construction are simple
described in the next section.

The main goal of the article is to compare two approaches
commonly used by Robotic Operating System (ROS)
community. One of them are sampling-based motion
planners. These planners use and create topological trees and
graphs. Second presented type of motion planner are
optimization-based methods, which minimize cost function.
The Sampling-based motion planners from Open Motion
Planning Library (OMPL), and the optimization-based
planner, STOMP will be described and compared in this
article. For the comparison we devised two experimental
setups on an environment, which simulates a production cell.
The first experiment simulates pick of randomly placed parts
in the bin and the second simulates placing. The compared
algorithms are RRT and RRTConnect from the OMPL and
the STOMP with specific parameters. Both algorithms are
free available in ROS melodic MoveIt.

2. CONFIGURATION SPACE

The configuration space is a set of all possible states of the
robot. The set includes states, which are collision-free,
whether in self-collision or in collision with another obstacle.

The set of collision-free states is and the set of states

in collision is . (Lozano-Peréz, 1990)

The configuration space can be sampled into a grid map, and
then the solution can be found in the grid map by a
deterministic algorithm like Dijkstra or A*. The fig. 2
illustrates the 2-axis robotic arm and the orange circle
represents an obstacle. On the right the configuration space is
shown. The white space represents collision free states, and

88 CONTROL ENGINEERING AND APPLIED INFORMATICS

the orange space represents robot states, which are in
collision.

Fig. 1. Configuration space, and for an articulated
robot with two joints (Gasparetto et al., 2015).

Actually, the explicit definition of is a computationally
difficult problem, because computational complexity

increases exponentially with the dimension of . (Lindemann
and LaValle, 2005)

3.OPEN MOTION PLANNING LIBRARY

The OMPL library contains sampling-based motion planners,
which are divided into two basic groups of algorithms –
single-query and multi-query (Sucan et al., 2012).

Both groups of path planners need to define and implement
fundamental parts of the algorithm:

1. Sampling method (Normal distribution, Gauss
distribution, or other specified methods) (Booret al.,
1999)

2. Vertex selection method - Selection of nearest
neighborhoods (Especially important in multi-query,
if the graph too large) (LaValle, 2014, pp.153-206)

3. Local planning methods – Between two nodes
trajectory is created and collision is checked on this
trajectory. Most often a linear trajectory is used with
defined density of points. And in each point the
collision is checked. Collision detection is a very
important part of the path planning, takes the most
computation time. One of the collision detectors is a
library FCL, which is also used in MoveIt (Pan et
al., 2012).

A single-query algorithm is useful for a fast trajectory search.
The algorithm builds a tree in configuration space and tree is
being iteratively grown until the goal state is reached. The
base algorithm of this type is RRT – Rapidly-exploring
random tree (Bircher et al., 2016).

The Tree is grown from an initialized state , which is
the root of the tree. The first step of the algorithm, after

initialization, is to create a new random sample from
the configuration space of the robot. Then the nearest

neighborhood from the tree is searched. In the first

iteration, the nearest neighborhood is the start state .

States and are connected with a linear line, on

which new state x in the distance ε from is created. If

the state x and the connection between and is

collision-free, the state is added as new branch of the tree.
This one iteration is illustrated on the fig. 2. Contrariwise, the
fig. 3. demonstrates the example of fail when collision is
between these two states.

The algorithm continues to the next iteration and new states

are being randomly sampled, while the goal state is
not reached in the specified time. An example of the whole

the tree is displayed on fig. 4. Sometimes the , instead
of the random sample, may be chosen. By choice of the
growth in the direction towards the goal, the algorithm
converges faster. But if the goal state is too often chosen, the
algorithm can be trapped into a local minimum and may have
a problem with obstacle avoidance. (Rodriguez et al., 2019)

Fig. 2. Example of one iteration of RRT.

Fig. 3. Example of connection failure.

Fig. 4. Example of finding solution and growing a

topological tree from to by RRT.

CONTROL ENGINEERING AND APPLIED INFORMATICS 89

RRT is often useful for fast computation of a feasible plan,
but the path is not optimized. For this reason, modified
versions, that can smooth the trajectory further, like RRT*
exist (Karaman and Frazzoli, 2011). Another type of RRT is
a bidirectional version, which builds two trees one from the
start and second from the goal state. This strategy is used in
RRTConnect (Kuffner and Lavalle, 2000). Transition-based
RRT, which is inspired by molecular modeling with
Bolzmann probability, uses additional parameters for
avoiding local minimums in searched space (Jaillet et al.,
2008).

Another group of sampling-based methods are multi-query
methods. These algorithms are used for searching trajectories
from multiple start states to multiple goal states. The
Algorithms consist of two steps – built and query. In the first
step a space is randomly sampled and collision is checked in

each sample . Then the collision-free samples are tried

to connect with the nearest nodes from the graph. If

the connection between two states and is
collision-free, the connection is added into the graph. In the
second step, the solution in the graph is, by a simple
deterministic algorithm e.g. (Dijkstra, 1959), found. The
graph and solution is illustrated on fig. 5. The basic version
of a multi-query algorithm is called PRM – Probabilistic
roadmap (Kavraki et al., 1996).

Fig. 5. Example of creation of topological graph by PRM and
founding a solution from the graph.

4. STOCHASTICS TRAJECTORY OPTIMIZED MOTION
PLANNER

Another class of motion planners, which can be applied to
robotics manipulators, are optimization-based planners. In
(Ratliff et al., 2009) planner called CHOMP is described,
which formulates a trajectory optimization procedure based
on covariant gradient descent. This algorithm minimizes
a combination of smoothness and obstacle cost and to derive
the gradients from obstacle in environment distance field
representation of environment is used.

The planner called STOMP has similar approach and adopt
a similar cost function, but instead the covariant gradient
descent, generating of noisy trajectories is used and the best
trajectory is chosen by cost function (Kalakrishnan et al.,
2011).

First, the method creates a guess of a initialization trajectory,
which can be linear interpolation, cubic polynomial or
minimum control cost. STOMP considers trajectories of
a fixed duration and trajectories are discretized into N
waypoints, which is called num_timesteps in MoveIt
implementation. The number of generated noisy trajectories
is defined by parameter number of rollouts num_rollouts and
algorithm is executed until maximum number of iterations
num_iterations is reached. Important part of the algorithm is
noise generator and in experiments of this article normal
distribution sampling is used. The noise generator uses
parameter stddev – standard deviations of noise on each joint
of trajectory. Too low value of noise allows to explore
configuration space of manipulation only near to the initial
trajectory. In case of large obstacle on the path, the algorithm
may not find a collision free trajectory (Fig. 6). Contrariwise,
too high value of the noise can help to explore larger space of
manipulation, but the trajectory may not be optimized (Fig
7.). This behavior can be improved by higher number of
noisy trajectories, but it requires more time for computation.
(Ros.org, 2011)

Fig. 6. Trajectories are generated with too low values of noise
and STOMP is trapped in local minimum.

Fig. 7. Trajectories are generated with too high values of
noise and chosen trajectory is not optimal.

5. EXPERIMENT SETUPS

These two MoveIt plugins OMPL and STOMP are compared
on a simulation of a simplified working station with the robot
ABB IRB 2100, which is illustrated on fig. 8. Experiment
setups consist of two steps of production.

In the first experiment setup and in the first part of production
the robot is autonomously picking a part from a bin. The start
position is fixed, but positions and orientations of parts are
randomized, and an application of some vision system is
necessary for the part detection. Therefore, in this situation

90 CONTROL ENGINEERING AND APPLIED INFORMATICS

autonomous execution of trajectory, which cannot be taught
by programmer, is important to use.

Fig. 8. Working station, on which experiments are executed
and comparison of path planners is done.

In the simulation, where positions of parts are generated with
defined step, motion planners are being tried to find
trajectories. Joint values of start position are fixed: [-1.07, -
0.23, 0.62, -0.14, 1.18, 1.39]. This scenario is marked as
number 1 on Fig. 8. The example of one trajectory is
displayed on Fig. 9.

Fig. 9. Example of trajectory in first experiment.

In the second experiment setup the robot is moved to another
station, where the picked part is placed on a fixed position.
For simplification we imagine, that picked part is small (E.g.,
screw) and for the collision checking is insignificant.
Therefore, any model of the part is not considered. An
obstacle is located between the fixed start and the fixed goal
state and the collision free trajectory must be found. Fig. 10.
shows a example of trajectory, which is collision free.
Algorithms are based on randomized sampling, so the
trajectory is not the same in each attempt. The placing
position is fixed with joint values: [0.70, 0.45, -0.27, -0.26,
1.12, -1.08] and the fixed start state is same as in previous
operation from the first experiment.

After object handling in the station, the robot is returned to
pick next part from box and production continue in next
cycle.

Due to the fact, that the collision checking is a significant
part of the time spent motion planning, it is important to
define collision checking library. Both algorithms are using
mentioned FCL library (Pan et al., 2012), which is supported
in MoveIt. RRT and RRTConnect algorithm have no
configuration parameters. Contrariwise, STOMP uses

parameters, which has been described in STOMP chapter of
this article.

Fig. 10. Example of trajectory in second experiment.

In these experiments minimum control cost method as
initialization method is used. The noise generator uses the
normal distribution sampling and cost function is obstacle
distance gradient.

The comparison consists of watching computation time, rate
of success, and increase of tool point trajectory length with
respect to forward linear path between the start and the goal
states, what let us denote as Trajectory increase* in the
article. The Trajectory increase* TI is defined by:

 (1)

Where is Euclidean distance between tool point

position in the start state and tool point position in the goal

state . The sum of represents trajectory length

of tool point, where is number of waypoints and is tool

point position of waypoint on position. The Euclidean
distance is calculated by:

 (2)

6. RESULTS

The goal of the first experiment setup is finding of solution
from the start state to the different goal states in bin.

STOMP parameters (Table 1.) are chosen from Photoneo
Company experimental testing, which are optimized for
finding a trajectory in the bin with minimum computation
time.

Table 1. STOMP parameters from Photoneo Company
experimental testing.

Parameter Value

num_timesteps 5

num_iterations 5

num_rollouts 5

Standard deviations of noise
on each joint [rad]

[0.2, 0.4, 0.5, 0.1, 0.1, 0.1]

CONTROL ENGINEERING AND APPLIED INFORMATICS 91

In this case RRTConnect can find solution faster as simple
RRT. Also, RRTConnect has better success rate, because
RRT is failed, if timeout is reached. STOMP algorithm is the
slowest with 97.9% success rate, which can be seen in Table
2.

Table 2. Experiment setup 1 – duration and success rate
comparison.

Algorithm Duration [s] Success Rate [%]
RRT 0.15 91.5

RRTConnect 0.07 100
STOMP 0.2 97.9

Figures 11. – 13. show the trajectory increase in each attempt
of the first experiment. If RRT or RRTConnect is used,
significant deviations are seen on figures 11., 12. RRT had
887% maximal deviation from average trajectory increase
and RRTConnect had 362% (The standard deviation is about
15%). But maximal deviation is very random and theoretical
the maximal deviation can be infinity. This behavior is
typical for these sampling-based planners, because they are
not optimal and sometimes planner can create a rambling
trajectory. STOMP had maximal deviations 82% and
standard deviation 11%, which is depend on parameter
stddev.

The comparison of trajectory increase can be seen on Table 3.

Fig. 11. OMPL – RRT and trajectory increase on each
attempt.

Fig. 12. OMPL – RRTConnect and trajectory increase in each
attempt.

Fig. 13. STOMP and trajectory increase in each attempt.

Table 3. Experiment setup 1 – Comparison of average
trajectory increase, standard deviation and maximal

deviation of the trajectory increase.

Algorithm Average Standard
deviation

Max.
deviation

RRT 1.075 0.155 8.87
RRTConnect 1.064 0.155 3.62

STOMP 1.079 0.114 0.82

In this experimental setup case RRT and RRTConnect are
faster with a risk, that the trajectory can be rambling. Possible
solution, how to integrate this planner is usage of statistical
methods for filtering wrong trajectories. STOMP is slower,
but without risk for rambling trajectory. The final comparison
of trajectory increase for each planners is showed on
histogram Fig.14.

Fig. 14. Comparison STOMP (blue), RRTConnect (orange),
RRT (green) by histogram, which shows number of attempts
on intervals with different trajectory increase.

The second experiment setup consists of testing 10000
samples from the one start state to the one goal state. If
STOMP used the same parameters as in the previous
experiment, it would be impossible to find a solution,
because the noise parameter is too low, and the solver has
problems to find solution effectively (Fig. 15.).

92 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 15. Failure of STOMP, which used parameters from
previous experiment. Noise is too low, and solver cannot find
trajectory.

Thus, the parameters are changed to Table 4. and Fig. 16.
shows, that STOMP with new parameters is able to find
solution.

Table 4. STOMP parameters for the second experiment
setup.

Parameter Value
num_timesteps 10
num_iterations 10
num_rollouts 10

Standard deviations of noise on
each joint [rad]

[0.3, 0.4, 0.4, 0.6,
0.6, 0.6]

Fig. 16. STOMP trajectories from noise generator with
increased gained noise.

In this experiment setup only RRTConnect as sampling-
based planner is used, because it was better as RRT. Thus,
RRTConnect is compared with STOMP.

According to Tab. 5. RRTConnect is faster with better
success rate.

Table 5. Experiment setup 2 – duration and success rate
comparison.

Algorithm Duration [s] Success Rate [%]
RRTConnect 0.22 99.8

STOMP 1.14 95.7

But in comparison of trajectory increase STOMP is again
better, which has standard deviation 38.5%. RRTConnect has
more significant peaks (Fig. 17.) with 104.9% standard

deviation and the worst trajectory has 986% deviation. The
completed comparison of trajectory increase is in Tab. 6.

Fig. 17. OMPL RRTConnect and trajectory increase in each
attempt.

Fig. 18. STOMP and trajectory increase in each attempt.

Table 6. Experiment setup 2 – Comparison of average
trajectory increase, standard deviation and maximal

deviation.

Algorithm Average Standard
deviation

Max.
deviation

RRTConnect 2.24 1.049 9.86
STOMP 1.67 0.385 4.45

In this second experiment RRTConnect is faster again, but if
in case of obstacle in scene, the chance, that the trajectory
will be rambling, is increased. This can be seen in histogram
Fig. 19., where trajectories, which are generated by STOMP,
have nearer to average of trajectory increase.

Fig. 19. Comparison STOMP (blue), RRTConnect (orange)
by histogram, which shows number of attempts on intervals
with different trajectory increase.

CONTROL ENGINEERING AND APPLIED INFORMATICS 93

The recapitulation of results are show in Tab. 7., where
motion planners are finale compared.

Table 7. Summary of results.

 RRTConnect STOMP
Duration faster Slower

Parameters No parameters
required

Different cases of
movement

Success
rate

failures are only if
timeout is reached

Needs to define
different parameters in

different cases of
movement

Optimal
trajectory

Optimal and the
deviation in length
trajectory is lower

Optimal and the
deviation in length
trajectory is lower

Setup joint
limits

Setup joint limits is
recommended, but
if robot must work
in large volume of

his workspace,
limitation of joint

values can be
impossible

Not required

CONCLUSION

RRTConnect is faster than RRT, therefore in the first
experiment RRTConnect has better success rate than RRT,
which fails only on timeout. In case of STOMP algorithm
more timesteps and more rollouts causes longer computation
time. On the other hand, when values are too low, STOMP is
not be able to find a solution in a complicated environment
(The second experiment). In case of moving to a bin, (The
first experiment) lower values of the parameters are adequate,
because the environment is not complicated. Also, in a
production decreasing of cycle time is often required,
therefore the motion planner must find the solution
immediately. In this case RRTConnect is faster and has better
success rate than STOMP. Problem is that a quality of
trajectory is not guaranteed and sometimes the trajectory can
be rambling.

We propose some methods for avoidance or minimization of
this problem. One approach is reduction of a robot workspace
by setup of joint limits. If the workspace is reduced the
computed trajectory cannot contain any value outside of
limits and the rambling trajectory is minimized in limited
workspace. Also, the computation time is faster, because
algorithm is searching only in limited workspace. Another
possible approach is to use statistical methods for rejecting
the rambling trajectories. If the environment is defined, it is
possible to run a simulation and record lengths of trajectories
in lot of attempts. From this dataset is possible to compute a
standard deviation. A newly created trajectory will be
rejected, if length will be longer than a defined threshold.
This threshold can be derived as multiple of the standard
deviation from simulation.

ACKNOWLEDGEMENT

This research was partially sponsored by Photoneo company.
(http://photoneo.com). This work was supported by APVV-
16-0006, APVV-17-0214.

REFERENCES

Bircher, A., Alexis, K., Schwesinger, U., Omari, S., Burri, M.
and Siegwart, R. (2016). An incremental sampling-
based approach to inspection planning: the rapidly
exploring random tree of trees. Robotica, 35(6),
pp.1327–1340.

Boor, V., Overmars, M.H. and van der Stappen, A.F. (1999).
The Gaussian sampling strategy for probabilistic
roadmap planners. Proceedings 1999 IEEE
International Conference on Robotics and Automation
(Cat. No.99CH36288C), [online] 2, pp.1018–1023.
Available at:
https://ieeexplore.ieee.org/document/772447/ [Accessed
16 Oct. 2019].

Dijkstra, E.W. (1959). A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1), pp.269–271.

Gasparetto, A., Boscariol, P., Lanzutti, A. and Vidoni, R.
(2015). Path Planning and Trajectory Planning
Algorithms: A General Overview. Motion and
Operation Planning of Robotic Systems, [online] pp.3–
27. Available at:
https://link.springer.com/chapter/10.1007%2F978-3-
319-14705-5_1.

Jaillet, L., Cortes, J. and Simeon, T. (2008). Transition-based
RRT for path planning in continuous cost spaces. 2008
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp.2145–2150.

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P. and
Schaal, S. (2011). STOMP: Stochastic trajectory
optimization for motion planning. 2011 IEEE
International Conference on Robotics and Automation,
pp.4569–4574.

Karaman, S. and Frazzoli, E. (2011). Sampling-based
algorithms for optimal motion planning. The
International Journal of Robotics Research, [online]
30(7), pp.846–894. Available at:
http://roboticsproceedings.org/rss06/p34.pdf [Accessed
16 Oct. 2019].

Kavraki, L.E., Svestka, P., Latombe, J.-C. . and Overmars,
M.H. (1996). Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE
Transactions on Robotics and Automation, 12(4),
pp.566–580.

Kuffner, J.J. and LaValle, S.M. (2000). RRT-connect: An
efficient approach to single-query path planning.
Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), [online]
2, pp.995–1001. Available at:
https://ieeexplore.ieee.org/abstract/document/844730
[Accessed 16 Oct. 2019].

94 CONTROL ENGINEERING AND APPLIED INFORMATICS

Lindemann, S.R. and LaValle, S.M. (2005). Current Issues in
Sampling-Based Motion Planning. In: Robotics
Research. The Eleventh International Symposium.
Berlin, Heidelberg, New York: Springer, pp.36–54.

Lozano-Pérez, T. (1990). Spatial Planning: A Configuration
Space Approach. Autonomous Robot Vehicles, pp.259–
271.

Pan, J., Chitta, S. and Manocha, D. (2012). FCL: A general
purpose library for collision and proximity queries.
2012 IEEE International Conference on Robotics and
Automation, [online] pp.3859–3866. Available at:
https://ieeexplore.ieee.org/abstract/document/6225337/
[Accessed 16 Oct. 2019].

Ratliff, N., Zucker, M., Andrew, B.J. and Srinivasa, S.
(2009). CHOMP: Gradient Optimization Techniques for
Efficient Motion Planning. 2009 IEEE International
Conference on Robotics and Automation, [online]
pp.489–494. Available at:
https://kilthub.cmu.edu/articles/CHOMP_Gradient_Opti
mization_Techniques_for_Efficient_Motion_Planning/6
552254 [Accessed 16 Oct. 2019].

Rodriguez, S., Xinyu Tang, Jyh-Ming Lien and Amato, N.M.
(2019). An obstacle-based rapidly-exploring random
tree. Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA 2006. [online]
Available at:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnum
ber=1641823 [Accessed 16 Oct. 2019].

Ros.org. (2011). STOMP Planner — moveit_tutorials Kinetic
documentation. [online] Available at:
http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc
/stomp_planner/stomp_planner_tutorial.html [Accessed
16 Oct. 2019].

Steven Michael Lavalle (2014). Planning algorithms. New
York: Cambridge University Press, pp.153–206.

Sucan, I.A., Moll, M. and Kavraki, L.E. (2012). The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine, 19(4), pp.72–82.

