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Abstract: This article presents the formulation of a novel self-adjusting model-reference-adaptive-control 

law to enhance the position-regulation and disturbance-rejection capability of Rotary-Inverted-Pendulum 

(RIP) systems. Initially, the baseline Linear-Quadratic-Regulator (LQR) is augmented with an online gain-

adjustment law that modifies the state-compensator gains via pre-calibrated state-error dependent 

dissipative and anti-dissipative functions to improve the system’s position-regulation capability. To further 

enhance the controller’s robustness against exogenous disturbances, the baseline LQR is instead retrofitted 

with the proposed self-adjusting model-reference-adaptive-system that employs Lyapunov function to 

formulate a stable online state-compensator gain-adjustment law. The adaptability of the model-reference 

gain-adjustment law is increased by dynamically modifying the adaptation-gain of self-tuning law via a 

pre-calibrated Gaussian scaling function that is driven by the system’s state-error variations. The hyper-

parameters associated with the aforementioned adaptive control systems variants are empirically tuned by 

minimizing an auxiliary quadratic cost function that captures the classical-state-error and control-input 

variations. The proposed adaptive control system variants are examined in the physical environment by 

conducting credible real-time hardware experiments on QNET Rotary Pendulum Board. The experimental 

outcomes validate the superior robustness of the self-adjusting model-reference-adaptive-control system 

against the bounded exogenous disturbances and modeling-errors. 

Keywords: Linear-quadratic-regulator, self-tuning control, model-reference-adaptive-controller, Lyapunov 

function, Gaussian scaling function, rotary pendulum.  

1. INTRODUCTION 

The Rotary-Inverted-Pendulum (RIP) system has garnered a 

lot of traction as a standard benchmark platform for the 

development and validation of advanced control systems for 

under-actuated mechatronic systems (Li et al., 2013; 

Boubaker, 2013). The theory of RIP stabilization is 

extensively used in the stabilization of humanoid robots, bio-

mechatronic systems, rockets, aircrafts, submarines, 

unmanned-air-vehicles, and satellites, etc (Zhang et al., 2014). 

The RIP is an inherently unstable, highly nonlinear, and under-

actuated system which makes it an ideal platform to emulate 

the behaviour of the aforementioned systems in real-time 

(Grilti et al., 2018). However, owing to its kinematic 

instability and nonlinear dynamics, synthesizing an agile 

regulatory control mechanism for such a system to enhance its 

robustness against bounded exogenous disturbances and 

parametric variations is a very challenging control problem 

(Yu et al., 2008). 

1.1. Related Work 

Rigorous research has been done to develop stable and agile 

stabilization controllers for the RIP systems (Mahmoud, 

2018). Despite their simplicity, the conventional PID 

controllers lack the degrees-of-freedom to efficiently regulate 

the system’s behaviour under abrupt parametric variations 

(Bhatti et al., 2015). The intelligent controllers also deliver a 

reliable and agile control effort. However, synthesizing a 

reliable set of rules or gathering large sets of training data is a 

laborious task (Szuster and Hendzel, 2017). Additionally, the 

neural controllers inevitably put an excessive computational 

burden on the embedded signal processor (Sefriti et al., 2012). 

The sliding-mode controllers are renowned for their robust 

control yield. However, they contribute discontinuous control 

activity and chattering in the system’s time-domain response 

(Ullah et al., 2019).The Linear-Quadratic-Regulator (LQR) is 

a state-feedback controller that utilizes the system’s nominal 

state-space model to minimize a quadratic performance index 

of the system’s state-trajectories and control-input to yield 

stable and optimal control decisions. However, the existence 

of identification errors and the lack of information regarding 

the un-modeled intrinsic nonlinearities in the nominal model 

prevents the generic LQR from effectively rejecting the 

external disturbances (Ghertemani et al., 2011). Consequently, 

the control effort is severely affected under parametric 

variations which cause the pendulum to collapse (Prasad et al., 

2014). The identification of time-varying nonlinearities is 

quite difficult due to the restraints imposed by the system’s 

complex dynamics. 

Stable adaptive control systems are widely favored because of 

their capability to efficiently mitigate the effects of 

disturbances caused by random faults without deteriorating the 

system’s performance during real-time or mission-critical 

applications (Bhatti et al., 2018). A well-postulated adaptive 

system automatically adjusts the critical controller parameters, 
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by using analytical or logical rules, to enhance the system’s 

robustness across a broad range of operating conditions 

(Szuster and Hendzel, 2017). The gradient-descent-based 

adaptation mechanisms, and their modified variants, have been 

frequently proposed in the open literature for the stable online 

dynamic adjustment of controller-gains, owing to their quick 

convergence to local minima (Hanwate et al., 2019). An 

innovative derivative-based online gain adaptation mechanism 

has been proposed in (Fisher et al., 2009) to robustify the ship 

cruise control systems. Fisher’s adaptation mechanism is 

composed of dissipative and anti-dissipative terms that 

significantly enhance the sensitivity of the parameter 

adjustment law which in turn strengthens the controller’s 

reference-tracking accuracy (Balestrino et al., 2011). 

However, ill-postulated iterative algorithms inevitably put a 

recursive computational burden on the embedded processor. 

The unbounded growth (or decay) of controller gains causes 

integral wind-up which leads to actuator saturation and 

possible system failure. The selection of the parameters 

associated with the gain-adjustment law is also quite hectic.  

The Model-Reference-Adaptive-Controller (MRAC) is a 

state-of-the-art adaptive control system that enhances the 

system’s reference-tracking accuracy and resilience against 

exogenous disturbance (Subramaniana and Elumalai, 2016). It 

employs Lyapunov theory to formulate a stable gain-

adaptation law that modifies the controller’s controller gains, 

after every sampling interval (Chen, 2017). The Lyapunov 

function minimizes the difference between the outputs of the 

reference closed-loop system (governed by the LQR) and the 

actual closed-loop system to synthesize an asymptotically-

stable online gain-adjustment law. The preset adaptation-gains 

of the Lyapunov gain-adjustment law must be carefully 

selected as they are responsible for driving the state-

compensator gains to their local-optimum values (Cuong et al., 

2013). Firstly, the selection of the adaptation-gains is an ill-

posed problem. Secondly, the fixed values of the adaptation-

gains fail to address the discontinuities associated with the 

behavior of the RIP system during its equilibrium-state and 

perturbed-state (Hassanzadeh et al., 2011). In the equilibrium-

state, the RIP encounters undesired limit cycles caused by the 

mechanical friction that severely affects its postural stability. 

In the perturbed-state, the intrinsic nonlinearities such as 

actuator’s backlash and force-ripple tend to deteriorate the 

system’s reference tracking performance.  

1.2. Proposed Methodology 

The main contribution of this article is the systematic 

formulation of a nonlinearly-scaled MRAC strategy for an 

under-actuated RIP system to enhance its position-regulation 

accuracy and disturbance-rejection capability. The generic 

LQR is used as the primary fixed-gain state-feedback control 

scheme. The LQR is augmented with a stable online gain-

adjustment law that uses pre-defined meta-rules, in 

conjunction with the state-error feedback, to vary the 

controller gains. The novel contributions of this article are 

postulated as follows: 

• Initially, the LQR gains are directly modified online by 

using Fisher’s adaptation mechanism with pre-configured 

dissipative and anti-dissipative functions (Balestrino et al., 

2011). This controller establishes a baseline for comparison 

with the proposed controller. 

• The architecture of the adaptive controller is evolved by 

retrofitting the ubiquitous state-space MRAC with the 

proposed nonlinearly-scaled self-adjusting adaptation-gain 

law. Where in, the constituent adaptation-gains of the 

MRAC are dynamically altered, after every sampling-

interval, via pre-configured nonlinear scaling functions. 

• The nonlinear scaling is done via pre-calibrated zero-mean 

Gaussian functions that are driven by the system’s classical 

state-error variations. This augmentation eliminates the 

performance limitations rendered by the fixed adaptation-

gains. It increases the controller’s degrees-of-freedom 

which enables the system to quickly transit from perturbed-

state to equilibrium-state with minimal fluctuations. 

• The aforementioned propositions are justified by 

benchmarking the performance of the proposed N-MRAC 

against the fixed-gain LQR and the “Fisher-adaptive” LQR 

equipped. The comparison is done by conducting credible 

hardware experiments on the QNET Rotary Pendulum. 

The development of the nonlinearly-scaled MRAC (N-

MRAC) is the original contributions of this article. The 

formulation, implementation, and experimental validation of 

the proposed N-MRAC to enhance the robustness of the RIP 

system’s stabilization controller has not been discussed in the 

available open literature. Hence, this idea is the main focus of 

this article. The proposed N-MRAC strategy offers several 

innovative traits. Firstly, it enhances the adaptability and 

convergence-rate of the adjusted state-compensator gains 

which enhances the stabilization controller’s robustness 

against bounded exogenous disturbances. Secondly, the 

Lyapunov criterion ensures the asymptotic stability of the N-

MRAC law (as discussed later in this article). Thirdly, the 

realization of the nonlinear scaling using the Gaussian function 

is yet another novel contribution of this article. Apart from 

being continuous and even-symmetric, this algebraic equation 

can be solved in a single step which reduces the recursive 

computational burden on the embedded processor. Hence, it 

can be easily programmed via modern-day digital computers. 

1.3. Previous Publications 

The preliminaries associated with the proposed system are 

acquired from the previous works (Saleem and Mahmood-ul-

Hasan, 2019; Saleem et al., 2020; Saleem and Mahmood-ul-

Hasan, 2021). 

The rest of the paper is organized as follows. The system’s 

description is presented in Section 2. The baseline LQR is 

synthesized in Section 3. The proposed adaptive controller is 

formulated in Section 4. The proposed control schemes are 

experimentally evaluated in Section 5. The article is concluded 

in Section 6. 

2. SYSTEM DESCRIPTION 

The details regarding the hardware setup and mathematical 

model of the system are presented as follows. 

2.1.  Experimental Setup 

The QNET Rotary Pendulum Board, shown in Figure 1, is 

used in this research to experimentally examine the efficacy of 



64                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

the proposed control strategies (Ashrafiuon and Whitman, 

2011). The system’s hardware schematic is shown in Figure 2. 

The pendulum rod rotates freely about the y-axis. The pivoted 

end of the rod is coupled to a rotary encoder that measures the 

rod’s pitch angle, denoted as θ. The rod’s free end is coupled 

with a 0.1 kg counter-mass. The angular motion of the rod 

depends on the rotation of the arm attached to it. The rod is 

rotated via a DC geared servo motor. The motor shaft is 

coupled to a encoder that measures the variations in the arm’s 

yaw-angle, denoted as α. The clockwise rotation of the rod and 

the arm is taken as the positive angular movement about their 

respective axes. The reference value of θ is fixed at -π radians. 

The initial angular position of the arm, α(0), is selected as its 

reference. The NI-ELVIS II Data-Acquisition (DAQ) board is 

used to serially communicate information between the control 

software and the hardware setup at 9600 bps.  

 

 Fig. 1. QNET Rotary Pendulum Board. 

 

Fig. 2. Simplified schematic of RIP. 

The ELVIS DAQ board acquires the sensor-readings related to 

the real-time state-variations at a sampling frequency of 1000 

Hz. This sampling frequency is chosen due to the small inertia 

and high agility of the RIP system. A higher frequency resulted 

in oversampling of the sensor data.The acquired data is serially 

transmitted to a LabVIEW-based control application (Saleem 

et al., 2020a). The software is operated on a 64-bit, 1.8 GHz 

embedded computer with 8.0 GB RAM. The control 

application’s front-end acts as a graphical-user-interface that 

aids in recording and visualizing the instantaneous variations 

in state and control-input variables. The back-end of the 

application provides a platform to run the custom-built 

software control application that receives the digitized sensor 

readings, generates appropriate control signals, and serially 

transmits the control signals to the hardware setup. The 

modulated control signals are transmitted to a driver circuit 

that amplifies them to drive the DC servo motor. The control 

application is digitally implemented by using the “Block 

Diagram” tool of the LabVIEW software. The adaptation laws 

are programmed via C-language in the Math-Script tool. 

2.2.  Mathematical Model 

The RIP system’s model is derived by using the Euler-

Lagrange technique (Jian and Yongpeng, 2011). The system’s 

Lagrangian is computed by evaluating the difference between 

the system’s total kinetic energy and total potential energy in 

terms of its state-variables (𝛼, 𝜃 , �̇�, and �̇�). The computed 

Lagrangian function is used to acquire the Euler-Lagrange 

equations. The DC motor's toque, 𝜏 , is taken as the input 

variable. The system's state-variables are taken as the outputs. 

The frictional forces are neglected due to their negligible 

contribution. The resulting nonlinear equations of motion are 

expressed below (Jian and Yongpeng, 2011). 

�̈� = −
1

𝑆
(𝑟𝑀𝑝

2𝑙𝑝
2𝑔(cos𝜃)𝜃 + 𝐽𝑝𝑀𝑝𝑟

2(cos𝜃)(sin𝜃)(�̇�)2 + (𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝜏) 

�̈� =
1

𝑆
(−𝑀𝑝𝑙𝑝(𝑀𝑝𝑟

2(sin2 𝜃)𝑔 − 𝐽𝑒𝑔 − 𝑀𝑝𝑟
2𝑔)𝜃

− 𝑀𝑝𝑙𝑝𝑟(sin 𝜃)𝐽𝑒(�̇�)2

+ 𝑀𝑝𝑙𝑝𝑟(cos 𝜃)𝜏)                                       (1) 

such that, 𝜏 =
𝐾𝑡(𝑉𝑚 − 𝐾𝑚�̇�)

𝑅𝑚
 

and, 𝑆 = 𝐽𝑝(𝑀𝑝𝑟
2(sin2 𝜃) − 𝐽𝑒 − 𝑀𝑝𝑟2) − 𝑀𝑝𝑙𝑝

2𝐽𝑒 

where, 𝑉𝑚  represents the DC motor's voltage signal. The other 

notations in (1) are described in Table 1. To acquire the linear 

state-space model, the aforementioned equations are linearized 

around the point; 𝜃 = −𝜋  rad., 𝛼 = 0 , �̇� = 0 , �̇� = 0 , and 

𝑉𝑚 = 0 V. The linear equations of motion are shown below. 

�̈� =
1

𝑊
(𝑟𝑀𝑝

2𝑙𝑝
2𝑔𝜃 −

(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝐾𝑡𝐾𝑚

𝑅𝑚
�̇� +

(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)𝐾𝑡

𝑅𝑚
𝑉𝑚) 

�̈� =
1

𝑊
(𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 + 𝑀𝑝𝑟2)𝜃 −

𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

𝑅𝑚
�̇� +

𝑟𝑀𝑝𝑙𝑝𝐾𝑡

𝑅𝑚
𝑉𝑚) (2) 

such that, 𝑊 = 𝐽𝑒𝐽𝑝 + 𝑀𝑝𝑟2𝐽𝑝𝑠 + 𝑀𝑝𝑙𝑝
2𝐽𝑒 

These linear equations are used to derive the system’s nominal 

state-space model. 

The general state-space representation of a linear system is 

expressed in (3) and (4). 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡)                                                               (3) 

𝑦(𝑡) = 𝑪𝑥(𝑡) + 𝑫𝑢(𝑡)                                                               (4) 

where, 𝑥(𝑡) is the state vector, 𝑦(𝑡) is the output vector, 𝑢(𝑡) 

is the control-input signal, 𝑨  is the state matrix, 𝑩  is the 

inputmatrix, 𝑪 is the outputmatrix, and 𝑫 is the feed-forward 

matrix. The state-variables of the RIP system are formally 

expressed in (5). 
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𝑥(𝑡) =

[
 
 
 
𝛼(𝑡)

𝜃(𝑡)

�̇�(𝑡)

�̇�(𝑡)]
 
 
 

                                                                               (5) 

Table 1. Identification of RIP system parameter 

Symbol Description Value 

Mp Mass of pendulum 0.027 kg 

lp 
Pendulum center of mass to pivot 

length 
0.153 m 

Lp Length of pendulum rod 0.191 m 

r Length of horizontal arm 0.083 m 

Jm Motor shaft moment of inertia 3×10-5 kgm2 

Marm Mass of arm 0.028 kg 

g Gravitational acceleration 9.810 m/s2 

Je 
Moment of inertia about motor shaft 

pivot 

1.23×10-4 

kg.m2 

Jp 
Moment of inertia about pendulum 

pivot 

1.1×10-4 

kgm2 

Rm Motor armature resistance 3.30 Ω 

Lm Motor armature inductance 47.0 mH 

Kt Motor torque constant 0.028 N.m 

Km 
Motor back-electromotive force 

constant 

0.028 

V/(rad/s) 

max Maximum torque 0.14 Nm 

Vrated Motor’s rated voltage ±24.0 V 

Irated Motor’s rated current 5.0 A 

The control-input variable of the system is expressed below. 

𝑢(𝑡) = 𝑉𝑚(𝑡)                                                                                 (6) 

The nominal state-space model of the QNET RIP system is 

expressed in (6). 

𝑨 = [

0 0 1   0
0 0 0   1
0
0

𝑚1

𝑚3

𝑚2 0
𝑚4 0

] , 𝑩 = [

0
0
𝑝1

𝑝2

],  

𝑪 = [

1 0 0 0
0 1 0 0
0
0

0
0

1 0
0 1

] , 𝑫 = 0                                               (7) 

where, 

𝑚1 =
𝑟𝑀𝑝

2𝑙𝑝
2𝑔

𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟

2
,𝑚2 =

−𝐾𝑡𝐾𝑚(𝐽𝑝 + 𝑀𝑝𝑙𝑝
2)

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟

2)𝑅𝑚

,  

𝑚3 =
𝑀𝑝𝑙𝑝𝑔(𝐽𝑒 + 𝑀𝑝𝑟

2)

𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟

2
, 𝑚4 =

−𝑟𝑀𝑝𝑙𝑝𝐾𝑡𝐾𝑚

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟

2)𝑅𝑚

, 

𝑝1 =
𝐾𝑡(𝐽𝑝 + 𝑀𝑝𝑙𝑝

2)

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟

2)𝑅𝑚

, 𝑝2 =
𝑟𝑀𝑝𝑙𝑝𝐾𝑡

(𝐽𝑝𝐽𝑒 + 𝐽𝑒𝑙𝑝
2𝑀𝑝 + 𝐽𝑝𝑀𝑝𝑟

2)𝑅𝑚

 

As mentioned earlier, the descriptions as well as the numerical 

values associated with the system’s modeling parameters are 

presented in Table 1 (Quanser, 2019). 

3. BASELINE LINEAR QUADRATIC REGULATOR 

The LQR is a model-based optimal state-space controller. It 

utilizes the system's linear state-space model to deliver optimal 

control decisions by minimizing the deviations in the state-

trajectories as well as the control input by using an energy-like 

quadratic performance index (Lewis et al., 2012). The 

quadratic performance index is given by (8). 

𝐽𝑙𝑞 = ∫ (𝑥(𝑡)𝑇𝑸𝑥(𝑡) + 𝑢(𝑡)𝑇𝑹𝑢(𝑡))𝑑𝑡
∞

0

                              (8) 

where, Q and R are the state and the control weighting 

matrices, respectively. The state-weighting matrix is positive 

semi-definite of the form Q = QT ≥ 0. The control-weighting 

matrix is positive definite of the form R = RT ˃  0. The resulting 

linear optimal control law derived is given by (9). 

𝑢(𝑡) = −𝐾𝑙𝑞𝑟𝑥(𝑡)                                                                        (9) 

such that, 𝐾𝑙𝑞𝑟 = [

𝑘𝛼

𝑘𝜃

𝑘�̇�

𝑘�̇�

]

𝑇

 

where, 𝐾𝑙𝑞𝑟  is the optimal state-compensator vector, 𝑘𝛼 is the 

proportional-gain associated with 𝛼 , 𝑘𝜃  is the proportional-

gain associated with 𝜃 , 𝑘�̇�  is the derivative-gain associated 

with �̇�, and 𝑘�̇�  is the derivative-gain associated with �̇�. The 

state-compensator gain-vector, 𝐾𝑙𝑞𝑟 , aids in the optimal 

placement of the system’s closed-loop poles on the left-half 

side of the complex plane to yield an optimal control effort. 

The state-compensator gains are calculated offline as shown 

below. 

𝐾𝑙𝑞𝑟 = 𝑹−1𝑩𝑇𝑷                                                                         (10) 

where, 𝑷 is a symmetric positive-definite co-state matrix. The 

co-state matrix 𝑷  is evaluated offline by solving the 

Algebraic-Riccati-Equation (ARE) expressed in (11). 

𝑨𝑻𝑷 + 𝑷𝑨 − 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 + 𝑸 = 0                                      (11) 

Selecting a unique set of state and control weighting-factors is 

an ill-posed problem (Okyere et al., 2019). The control 

weighting-factor 𝑹 of 𝐽𝑙𝑞  is selected as unity. The coefficients 

of the state-weighting-matrix 𝑸  are empirically selected by 

minimizing the auxiliary quadratic cost-function, shown in 

(12), to acquire a unique set of weighting-factors that deliver 

optimum position-regulation accuracy. 

𝐽2 = ∫ [(𝑒𝛼(𝑡))
2
+ (𝑒𝜃(𝑡))

2
+ (𝑉𝑚(𝑡))

2
]  𝑑𝑡

∞

0

                (12) 

where, 𝑒𝜃(𝑡) = 𝜃(𝑡) − 𝜃(0), 𝑒𝛼(𝑡) = 𝛼(𝑡) − 𝛼(0) 

The variables 𝑒𝜃(𝑡)  and 𝑒𝛼(𝑡)  are the classical state-error 

variables representing the difference between the actual and 

set-point positions of the pendulum’s rod and arm, 

respectively. The value of 𝜃(0) is preset at −𝜋 radians (or -

180 deg.) in this research. The weighting coefficients of 

(𝑒𝛼(𝑡))
2
, (𝑒𝜃(𝑡))

2
, and(𝑉𝑚(𝑡))

2
 are empirically adopted as 

unity in the integrand 𝐽2. The linearized model of the RIP is 

used for the offline calibration of the weighting-factors. The 

tuning is conducted empirically by moving in the direction of 

descending gradient of the cost function 𝐽2 until a unique set 

of weighting factors that yield the minimum cost is achieved. 

After every iteration, the cost is evaluated for the new set of 

coefficients of 𝑸 . The set of coefficients that yield the 
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minimum cost are selected. The weighting-coefficients 

adopted in this research are given in (13).  

𝑸 = [

38.2 0 0   0
0 52.6 0   0
0
0

0
0

5.3 0
0 2.1

] , 𝑹 = 1                             (13) 

The matrices 𝑸 and 𝑹, selected in (13), are used to solve the 

ARE expressed in (11). The solution of the LQR problem 

yields the following state-compensator gains.  

𝐾𝑙𝑞𝑟 = [

−6.21
130.56
−4.22
17.83

]

𝑇

                                                                     (14) 

The state variables related to the horizontal arm (𝛼 and �̇�) have 

negative gains. If all the states are zero, except for any one of 

the states having negative gains, then the control loop will 

enter positive feedback for a brief moment. Consequently, the 

control system will push the horizontal arm in same direction, 

tilting the pendulum’s rod backwards and then pushing the arm 

back to its original position. Pushing the horizontal arm to its 

original position, without tilting the rod back, will cause the 

rod to de-stabilize from its vertical position and collapse. 

4. SELF-ADAPTIVE CONTROL SYSTEM DESIGN 

The self-adaptive control system enhances the system’s 

immunity against bounded disturbances. This section presents 

the design procedure of two self-adaptive control strategies. 

4.1. Fisher-adaptive Self-tuning Regulator (F-STR) 

The process of online gain-adaptation is initiated by 

employing the “Fisher” adaptation mechanism with pre-

calibrated dissipative and anti-dissipative functions (Fisher et 

al., 2009). It flexibly modifies the controller’s state-

compensator gains online which enable the controller to 

respond to a wide range of operating conditions in under-

actuated systems (Balestrino et al., 2011). It does not require a 

priori knowledge of the system’s model. Instead, it initiates 

from the nominal preset values of state-compensator gains and 

then modifies them online, once after every sampling interval, 

on the basis of real-time state-error variations. The block 

diagram of the Fisher-adaptive Self-Tuning Regulator (F-

STR) is shown in Figure 3. The vector 𝑒(𝑡)  , depicted in 

Figure 3, is the state-error vector of order 4×1. It is evaluated 

as shown below.  

𝑒(𝑡) = 𝑥(𝑡) − 𝑥𝑠𝑝(𝑡)                                                                (15) 

such that, 𝑒(𝑡) =

[
 
 
 
𝑒𝛼(𝑡)

𝑒𝜃(𝑡)

�̇�𝛼(𝑡)

�̇�𝜃(𝑡)]
 
 
 

, 𝑥𝑠𝑝(𝑡) = [

𝛼(0)
−𝜋
0
0

]                       

where, 𝑥𝑠𝑝(𝑡) is the vector containing the set-point values of 

the state-variables. The adaptation procedure used in F-STR 

scheme is described as follows. At the beginning of a sampling 

instant, 𝑡 = 𝑇 , the proposed adaptation law acquires the 

updated values of state-error variables to re-compute the 

adjustable state-compensator gains, 𝐾𝑓(𝑡). Concurrently, the 

Zero-Order-Hold (ZOH) block shown on the channel 

represented by the dashed line in Figure 3 also closes 

momentarily, at the beginning of the sampling instant, and 

holds the new values of 𝐾𝑓(𝑡). The updated values of 𝐾𝑓(𝑡) 

are transmitted ahead and used by the control law during the 

entirety of the sampling interval. When the next sampling 

instant begins, 𝑡 = 𝑇 + 1, the same process is repeated. The 

proposed gain-adaptation law is expressed below. 

�̇�𝑓(𝑡) = −𝑭𝐾𝑓(𝑡) + 𝑮𝑣(𝑡)                                                     (16) 

such that, 𝐾𝑓(𝑡) =

[
 
 
 
𝑘𝛼(𝑡)

𝑘𝜃(𝑡)

𝑘�̇�(𝑡)

𝑘�̇�(𝑡)]
 
 
 

, 𝑭 = [

𝛾𝛼 0 0 0
0 𝛾𝜃 0 0

0
0

0
0

𝛾�̇� 0
0 𝛾�̇�

],  

                𝑮 = [

𝛽α 0 0 0
0 𝛽𝜃 0 0

0
0

0
0

𝛽α̇ 0
0 𝛽θ̇

] ,          𝑣(𝑡) =

[
 
 
 

|𝑒𝛼(𝑡)|2

|𝑒𝜃(𝑡)|
2

𝑒𝛼(𝑡). �̇�𝛼(𝑡)

𝑒𝜃(𝑡). �̇�𝜃(𝑡)]
 
 
 

 

 

Fig. 3. The block diagram of the F-STR scheme. 

where, 𝐾𝑓(𝑡)  is a 4×1 vector containing the time-varying 

state-compensator gains, 𝑣(𝑡)  is a vector containing the 

corresponding error-dependent terms used in each function. As 

shown in (16), the coefficients of the vector 𝑣(𝑡) are derived 

by appropriately combining the state-error variables provided 

by the vector 𝑒(𝑡). The matrix F is a pre-defined positive-

definite matrix whose coefficients are the decay-rates 𝛾𝑖 ; 

where, ' 𝑖 ' denotes the specific state-variable that is being 

referred to (𝛼, 𝜃, �̇�,  or �̇� ). The matrix G is a pre-defined 

positive-definite matrix whose coefficients are the gain-

adaptation rates 𝛽𝑖. The gain-decay rate 𝛾𝑖 decreases the rate-

of-change of the corresponding gain exponentially under low 

error conditions in order to damp the oscillations, minimize 

control energy consumption, and prevent wind-up. The gain-

adaptation rate 𝛽𝑖  enlarges the value of the corresponding 

gains as the state-error increases, and vice-versa. The F-STR 

mechanism captures the variations in the magnitude and 

direction of state-error variables to improve the system’s 

response-speed and strengthen its damping. This arrangement 

flexibly manipulates the stiffness or softness of control effort 

as the response diverges or converges towards the reference, 

respectively (Balestrino et al., 2011). The said adaptation law 

is implemented in the control software by solving the 

differential equation in (16) as shown below. 
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𝐾𝑓(𝑡) = 𝑒𝑥𝑝(−𝑭𝑡)𝐾𝑓(0) + ∫(𝑒𝑥𝑝(−𝑭(𝑡 − 𝑝))𝑮𝑣(𝑝))

𝑡

0

𝑑𝑝      (17) 

where, 𝑒𝑥𝑝(. ) is the notation of the exponential function. The 

expression in (17) is mathematically programmed in the 

LabVIEW software simply by using the built-in functions and 

the Math-Script feature available in its Block-Diagram tool. 

The control block diagram in Figure 3 clearly manifests the 

adaptation behavior depicted in (17). The preset state-

compensator vector 𝐾𝑙𝑞𝑟 , identified in (14), is utilized as the 

initial vector 𝐾𝑓(0)  in (17). The initial conditions of the 

adaptation law are shown below.  

𝐾𝑓(0) = [

−6.21
130.56
−4.22
17.83

] , 𝑣(𝑡) = [

0
0
0
0

]                                      (18) 

As discussed earlier, at the beginning of every sampling 

interval, the control system computes the instantaneous values 

of the classical state-error and state-error derivatives by using 

the updated state-variables provided to it by the DAQ board. 

The updated error-variables are used by the adaptation law to 

re-compute and modify the values of the state-compensator 

gains in real-time. This process is repeated after every 

sampling interval. Thus, the vector 𝐾𝑓(𝑡) yields the updated 

values of the state-compensator gains after every sampling-

interval. The coefficients of F and G, 𝛾𝑖  and 𝛽𝑖 , must be 

positive to achieve the desired disturbance-rejection behavior 

without imposing large control input requirements. These 

parameters are tuned empirically by minimizing 𝐽2 to yield the 

best position-regulation behavior. The selected values are 

shown in Table 2.  

Table 2. Tuned parameters of F-STR adaptation law. 

Parameter Range of selection Tuned value 

𝛾𝛼 [0, 1] 0.035 

𝛾𝜃 [0, 1] 0.043 

𝛾�̇� [0, 1] 0.013 

𝛾�̇� [0, 1] 0.021 

𝛽𝛼 [0, 100] 27.4 

𝛽𝜃  [0, 100] 52.5 

𝛽�̇� [0, 100] 12.6 

𝛽�̇� [0, 100] 22.8 

The F-STR control law is expressed as follows. 

𝑢(𝑡) = −𝐾𝑓(𝑡)
𝑇𝑥(𝑡)                                                                 (19) 

4.2. Nonlinearly-scaled MRAC (N-MRAC) 

This section presents the formulation of an original self-tuning 

LQR augmented with a modified MRAC (Szidarovszky and 

Bahill, 1997; Kavuran et al., 2017). The conventional Model-

Reference-Adaptive-System (MRAS) updates the gain vector 

online by minimizing the error between the outputs of the 

reference model, generated by the LQR, and the actual system 

(Ioannou and Fidan, 2006; Duka et al., 2007). The block 

diagram of the proposed Nonlinearly-scaled MRAC is shown 

in Figure 4. Consider the linear system expressed in (3). It is 

desired to construct an adaptive regulatory control law that 

manipulates the RIP system to imitate the response of the 

reference model expressed below (Chen, 2017). 

�̇�𝑟𝑒𝑓(𝑡) = 𝑨𝑟𝑒𝑓𝑥𝑟𝑒𝑓(𝑡)                                                              (20) 

The proposed adaptive regulatory control law is given by (21). 

𝑢(𝑡) = −𝐾𝑎(𝑡)𝑥(𝑡)                                                                   (21) 

where, 𝐾𝑎(𝑡) is the self-tuning gain vector that is dynamically 

updated via MRAS. The closed-loop representation of the 

actual system is given in (22). 

�̇�(𝑡) = (𝑨 − 𝑩𝐾𝑎) 𝑥(𝑡) = 𝑨𝑐(𝐾𝑎) 𝑥(𝑡)                               (22) 

where, the matrix 𝑨𝑐 depends on the vector 𝐾𝑎.  

 

Fig. 4. The block diagram of the N-MRAC scheme. 

Compatibility condition: Generally, it is not possible to acquire 

a vector 𝐾𝑎 such that the model described in (22) is equivalent 

to the reference model in (20). To establish a sufficient 

condition for tracking the reference-model, there exists a 

vector 𝐾𝑎  which is described as follows (Astrom and 

Wittenmark, 1995). 

𝑨𝑐(𝐾𝑎)  = 𝑨𝑟𝑒𝑓 = 𝑨 − 𝑩𝐾𝑎                                                    (23) 

This condition depicts that the columns of matrix 𝑨 − 𝑨𝑟𝑒𝑓 are 

linear combinations of the columns of the matrix 𝑩. In this 

research, the 𝑨𝑟𝑒𝑓  is identified by taking 𝐾𝑎 = 𝐾𝑙𝑞𝑟 . Hence, the 

matrix 𝑨𝑟𝑒𝑓  is numerically expressed as follows.  

𝑨𝑟𝑒𝑓 = [

0 0 1   0
0 0 0   1

55.63
14.27

−1147.18
−263.82

37.51 −159.72
9.62 −40.97

]            (24) 

The tracking-error-vector,  𝜀(𝑡) , computes the difference 

between the state-vectors of the actual system and the 

reference system. It is expressed as follows.  

𝜀(𝑡) = 𝑥(𝑡) − 𝑥𝑟𝑒𝑓(𝑡)                                                              (25) 

The model-tracking-error decides the convergence rate of the 

adaptation mechanism. The total time-derivative of the 

tracking-error vector is given by (26). 

�̇�(𝑡) = �̇�(𝑡) − �̇�𝑟𝑒𝑓(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡) − 𝑨𝑟𝑒𝑓𝑥𝑟𝑒𝑓(𝑡)       (26) 

By simultaneously adding and subtracting the term 𝑨𝑟𝑒𝑓𝑥(𝑡), 

on the right-hand side of equation (26), the expression of 

tracking-error-derivative is written as follows. 



68                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡) − 𝑨𝑟𝑒𝑓𝑥𝑟𝑒𝑓(𝑡) + 𝑨𝑟𝑒𝑓𝑥(𝑡)

− 𝑨𝑟𝑒𝑓𝑥(𝑡)                                                     (27) 

The variables on the left-hand side can be manipulated to yield 

the following expression. 

𝜀̇(𝑡) = 𝑨𝑟𝑒𝑓𝜀(𝑡) + (𝑨 − 𝑨𝑟𝑒𝑓 − 𝑩𝐾𝑎(𝑡)) 𝑥(𝑡)                  (28) 

By substituting the equation (23) in (28), the following 

expression is acquired. 

𝜀̇(𝑡) = 𝑨𝑟𝑒𝑓𝜀(𝑡) + (𝑩𝐾𝑎 − 𝑩𝐾𝑎(𝑡)) 𝑥(𝑡)         

         = 𝑨𝑟𝑒𝑓𝜀(𝑡) + 𝑩(𝐾𝑎 − 𝐾𝑎(𝑡)) 𝑥(𝑡)                             (29) 

The expression in (29) can also be expressed as follows. 

𝜀̇(𝑡) = 𝑨𝑟𝑒𝑓𝜀(𝑡) − 𝑩𝑥(𝑡)𝑇 (𝐾𝑎
𝑇(𝑡) − 𝐾𝑎

𝑇
)                      (30) 

The expression in (30) is simplified as shown below. 

𝜀̇(𝑡) = 𝑨𝒓𝒆𝒇𝜀(𝑡) + 𝜹 (𝐾𝑎
𝑇(𝑡) − 𝐾𝑎

𝑇
)                                 (31) 

such that, 𝜹 = −𝑩𝑥(𝑡)𝑇 

It is assumed that the conditions needed for precise model 

tracking have been completely fulfilled while simplifying the 

expression of the tracking-error-derivative. The Lyapunov 

function, expressed in (32), is used to develop a stable online 

gain-adaptation law that modifies the values of 𝐾𝑎(𝑡)  after 

every sampling interval. 

𝑉(𝜀, 𝐾𝑎) =
1

2
[𝜑𝜀(𝑡)𝑇�̅�𝜀(𝑡)

+ (𝐾𝑎
𝑇(𝑡) − 𝐾𝑎

𝑇
)

𝑇

(𝐾𝑎
𝑇(𝑡) − 𝐾𝑎

𝑇
)] (32) 

where, �̅� is a positive definite matrix and 𝑉(𝑒, 𝐾𝑎) is positive 

semi-definite matrix. The parameter 𝜑 is the preset positive 

adaptation-gain. The matrix �̅� is calculated as follows. 

𝑨𝒓𝒆𝒇
𝑇 �̅� + �̅�𝑨𝒓𝒆𝒇 = −𝑸                                                              (33) 

The Q matrix, identified in (13), is used to solve the equation 

(33). Following the mathematical property in (33), there would 

always exist a pair of positive definite matrices, �̅� and Q, if 

𝑨𝒓𝒆𝒇 is stable. The derivative of 𝑉(. ) is given in (34). 

�̇�(𝜀, 𝐾𝑎) = −
1

2
𝜑𝜀(𝑡)𝑇𝑸𝜀(𝑡) 

+(𝐾𝑎
𝑇(𝑡) − 𝐾𝑎

𝑇
)

𝑇

(�̇�𝑎
𝑇
(𝑡) + 𝜑𝜹𝑇�̅�𝜀(𝑡))  (34) 

For �̇�(𝜀, 𝐾𝑎) to be negative-definite, the expression in (35) is 

chosen as the online gain adjustment law. 

�̇�𝑎
𝑇
(𝑡) = −𝜑𝜹𝑇�̅�𝜀(𝑡)                                                              (35) 

This expression proves that 𝜀(𝑡) will eventually converge to 

zero. The simplified expression of the gain adjustment law is 

given in (36). 

�̇�𝑎(𝑡) = (𝜑𝑥(𝑡)𝑩𝑇�̅�𝜀(𝑡))
𝑇
                                                    (36) 

where, �̅� is a matrix of order 4×4, 𝑥(𝑡) and 𝜀(𝑡) are vectors 

of order 4×1, and 𝑩𝑇is a 1×4 order vector. The matrix �̅�  and 

vector 𝑩𝑇 are available a priori. Correspondingly, �̇�𝑎  is 

evaluated as a 1×4 order vector. The adaptation-gain, 𝜑 , 

directly influences the convergence-rate and sensitivity of the 

gain adjustment law. The dependence of gain-adjustment law 

on the adaptation-gain varies with respect to the changes in the 

system’s state-error, which enhances the adaptability of the 

control system. Under perturbed situations, a higher value of 

adaptation-gain is selected for quick convergence of 

adaptation-gains due to the rapid variations occurring in the 

system's states. During steady-state conditions, a lower 

adaptation-gain is required to render soft control effort due to 

the gentle state-variations. A larger adaptation-gain during 

disturbed conditions minimizes the transient recovery time, 

whereas a smaller adaptation-gain during steady-state 

conditions damps the steady-state fluctuations. The fixed value 

of adaptation-gain lacks the flexibility to efficiently 

manipulate the softness or stiffness of the control-input 

trajectory under the ever-changing state-variables.  

In this research, a smooth transitioning mechanism is 

employed that enables the MRAS to automatically commute 

between different linear controllers, after every sampling 

interval, to stabilize the RIP under steady-state as wells as the 

disturbed-state. For this purpose, a pre-calibrated state-error-

dependent nonlinear-scaling function is employed that 

smoothly increases the adaptation-gain for large magnitudes of 

state-error, and vice versa. The zero-mean Gaussian function 

is selected because it is symmetrical, continuous, and bounded. 

The proposed state-error-dependent Gaussian-Scaling-

Function (GSF) is formulated as shown below.  

𝜑(𝑡) = 𝜑𝑑𝑠 − (𝜑𝑑𝑠 − 𝜑𝑠𝑠) 𝑒𝑥𝑝(−𝜇 |𝑧(𝑡)|2)                      (37) 

where, 𝜇  is the preset variation-rate of the GSF. The 

parameters 𝜑𝑑𝑠  and 𝜑𝑠𝑠  are the adaptation-gains associated 

with the steady-state and the disturbed-state of RIP, 

respectively. The input of the GSF is the compound state-error 

variable, 𝑧(𝑡), which is computed as the linear weighted sum 

of the system's state-error variables, as shown below. 

𝑧(𝑡) = 𝜎1𝑒𝛼(𝑡) + 𝜎2𝑒𝜃(𝑡) + 𝜎3�̇�𝛼(𝑡) + 𝜎4�̇�𝜃(𝑡)               (38) 

where, 𝜎1 , 𝜎2 , 𝜎3 , and 𝜎4  are the predetermined weightages 

associated with each state-error variable. This expression 

unifies all the state-error variables of the RIP system into one 

equation and delivers a single variable, 𝑧(𝑡), that informs the 

control system regarding the overall impact of exogenous 

disturbance(s). The weightages are selected empirically such 

that a stiffer control effort is delivered when the time-domain 

response is diverging from the reference and a softer control 

effort is delivered when the response is converging. The 

waveform of the proposed GSF is shown in Figure 5. The 

hyper-parameters associated with the GSF are tuned 

empirically by minimizing the cost function 𝐽2 to deliver a 

time-optimal control effort. The range-space as well the 

optimized value of each parameter are provided in Table 3. 

The augmentation of the MRAC with a self-adjusting 

adaptation-gain allows it to efficiently compensate the state 

deviations as the system transits from steady-state to 

disturbed-state, and vice versa. The modified online gain 

adjustment law is presented in (39). 

𝐾𝑎
̇ (𝑡) = (𝜑(𝑡)𝑥(𝑡)𝑩𝑇�̅�𝜀(𝑡))

𝑇
                                               (39) 
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The gain adaptation law is implemented in the control software 

by programming the expression given in (40).  

𝐾𝑎(𝑡) = 𝐾𝑎(0) + ∫(𝜑(𝑡)𝑥(𝑡)𝑩𝑇�̅�𝜀(𝑡))
𝑇

𝑡

0

𝑑𝑡                     (40) 

The fixed-gain vector 𝐾𝑙𝑞𝑟 , identified in (14), is utilized as the 

𝐾𝑎(0) in (40). The Nonlinearly-scaled MRAC (N-MRAC) law 

is expressed in (41). 

𝑢(𝑡) = −𝐾𝑎(𝑡)𝑥(𝑡)                                                                   (41) 

 

Fig. 5. The waveform of the proposed GSF. 

Table 3. Parameter selection of the GSF. 

Parameter Range Tuned value 

𝜑𝑑𝑠 [0, 5] 2.04 

𝜑𝑠𝑠 [0, 5] 0.11 

𝜇 [0, 10] 7.85 

𝜎1 [-10, 10] -0.72 

𝜎2 [-10, 10] 2.25 

𝜎3 [-10, 10] -0.28 

𝜎4 [-10, 10] 0.78 

The flow chart of the algorithm used to realize the proposed 

N-MRAC scheme is illustrated in Figure 6. 

5. EXPERIMENTAL SETUP 

This section presents the experimental evaluation of the 

proposed adaptive control strategies via hardware-in-the-loop 

experiments conducted on the QNET RIP setup.  

 

Fig. 6. The flow-chart of the N-MRAC algorithm. 

5.1. Experimental Evaluation 

The hardware setup of the QNET RIP system is shown in 

Figure 7.  The performance of N-MRAC is compared with the 

LQR and F-STR via four unique test-cases that are designed 

to analyze the position-regulation and disturbance-rejection 

behavior of each controller in the physical environment. The 

following limitations associated with the interface signals of 

the QNET RIP system are considered during the experimental 

trials. 

• Rod displacement limit: |𝑒𝜃(𝑡)| < 0.07 rad.  

• Arm displacement limit: |𝑒𝛼(𝑡)| < 2.97 rad. 

• Control input limit: |𝑉𝑚(𝑡)| < 20.0 V. 
 

The limitations of 𝑒𝜃 , 𝑒𝛼 , and 𝑉𝑚 defined above are 

experimentally identified. Owing to the pendulum dynamics, 

the rod collapses if 𝑒𝜃 exceeds the defined range. Similarly, if 

𝑒𝛼 violates the defined range, the power-chord and data-cable 

of the rotary encoder coupled with the rod’s pivot obstruct the 

rotational movement of the arm causing the rod to collapse. 

The control input is kept within ±20.0 V to avoid over-heating 

or unnecessary wear-and-tear of the motor's winding. The 

pendulum rod is erected manually and stabilized at the 

beginning of every experimental trial. Approximately, the 

same initial condition are ensured at the beginning of every 

trial. The sampling-time of the zero-order-hold used in the F-

STR is set at 1.0 ms. In order to simplify the visualization, the 

angular responses are deliberately shown in degrees (deg.). 

The hardware-in-the-loop structure is shown in Figure 8. The 

control software block diagram is shown in Figure 9. The 

details of the four experimental tests are presented below. 

 

Fig. 7. The QNET RIP system used for experimentation. 
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Fig. 8. The hardware-in-the-loop structure of the RIP setup.  

 

Fig. 9. The LabVIEW control software block diagram. 

A. Position-regulation behavior: This test is conducted to 

observe the system's position-regulation behavior and control 

energy consumption under nominal conditions and in the 

absence of any bounded exogenous disturbances. The 

objective is to vertically stabilize the pendulum rod with 

minimum deviations while making sure that the arm tracks its 

initial position. The position-regulation response and the 

corresponding control input profile of each control system are 

graphically illustrated in Figures 10, 11, and 12, respectively. 

The state-compensator gain variations exhibited by F-STR and 

N-MRAC are shown in Figures 13 and 14, respectively. 

B. Impulsive-disturbance rejection: The robustness of each 

control system against the bounded exogenous disturbances is 

examined by injected a pulse in the control-input signal at t ≈ 

1.5 s. The magnitude and duration of the applied pulse are -

10.0 V and 0.1 s, respectively. The behavior of each control 

system is illustrated in Figures 15, 16, and 17, respectively. 

The state-compensator gain variations exhibited by F-STR and 

N-MRAC are shown in Figures 18 and 19, respectively. 

 

Fig. 10. Pendulum angle response under normal conditions. 

 

Fig. 11. Arm angle response under normal conditions. 

 

Fig. 12. Control voltage response under normal conditions. 

 

Fig. 13. F-STR gains under normal conditions. 

 

Fig. 14. N-MRAC gains under normal conditions. 
 

 

Fig. 15. Pendulum angle response under pulse disturbance. 
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Fig. 16. Arm angle response under pulse disturbance. 

 

Fig. 17. Control voltage response under pulse disturbance. 

 

Fig. 18. F-STR gains under pulse disturbance. 

 

Fig. 19. N-MRAC gains under pulse disturbance. 

C. Noise attenuation: The control system’s immunity against 

the detrimental effects of measurement noise (or mechanical 

vibrations) is evaluated by adding a band-limited white noise 

signal directly in the system’s control-input signal. The 

injected signal has a noise power of 0.5×10-3/(rad/s) and 

sampling time of 0.1 s. The resulting fluctuations observed in 

the time-domain response of each control system are depicted 

in Figures 20, 21, and 22, respectively. The state-compensator 

gain variations exhibited by F-STR and N-MRAC are shown 

in Figures 23 and 24, respectively. 
 

 

Fig. 20. Pendulum angle response under white noise. 

 

Fig. 21. Arm angle response under white noise. 

 

Fig. 22. Control voltage response under white noise. 

 

Fig. 23. F-STR gains under white noise. 

 

Fig. 24. N-MRAC gains under white noise. 
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D. Modeling-error compensation: The control system’s 

immunity against modeling-errors is assessed by introducing a 

step-increment in Rm via the mechanism shown in Figure 25. 

As shown in Table 1, the standard value of Rm is 3.30 Ω. 

Initially, the RIP is balanced under nominal conditions. At t ≈ 

1.5 s, a 1.0 Ω resistor is connected in series with the motor 

terminals by changing the position of the selector-switch, 

shown in Figure 25, from A to B. The value of the external 

resistance is approximately one-third that of the motor's 

armature resistance, Rm. This modification permanently alters 

the coefficients of the state-space matrices. This abrupt model 

variation introduces perturbations in the response. The 

interfacing of this circuit with the electronic motor-driver of 

the QNET RIP setup is shown in Figure 26. The resulting state 

and control-input variations of each control system are 

graphically illustrated in Figures 27, 28, and 29, respectively. 

The state-compensator gain variations exhibited by F-STR and 

N-MRAC are shown in Figures 30 and 31, respectively. 

 

Fig. 25. Schematic of the modified RIP setup. 

 

Fig. 26. Schematic of the modified RIP setup. 

 

Fig. 27. Pendulum angle response under modeling-error. 

 

Fig. 28. Arm angle response under modeling-error. 

 

Fig. 29. Control voltage response under modeling-error. 

 

Fig. 30. F-STR gains under modeling-error. 

 

Fig. 31. N-MRAC gains under modeling-error. 

5.2. Analysis and Discussions 

The performance analysis is done in terms of the standard 

performance indicators. These indicators include the root-

mean-squared value of state-error (RMSEx) in degrees, the 

absolute value of peak overshoot or undershoots (Mp,x) under 

transient disturbances, the time taken by the response to settle 

within ±2% of the reference value (ts,x), the average control 

power evaluated in terms of mean-squared-value of the motor 

control voltage (MSVm), and the peak control voltage (Vm,p) in 

the control profile under transient disturbances. The 

comparative performance assessment of the experimental 

results is summarized in Table 4. The results clearly validate 

the superior robustness of the N-MRAC against bounded 

exogenous disturbances and modeling errors. 

In Test-A, the angular responses of LQR exhibit persistent 

fluctuations around the reference angles. The angular 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                     73 

 
  

responses of F-STR converge relatively faster to reference 

than the LQR, with a relatively lesser amplitude of oscillations 

in the equilibrium position. The N-MRAC exhibits the most 

time-optimal control effort. The arm and rod-angle quickly 

converge to the reference angles and track them with minimal 

steady-state fluctuations. In Test-B, the N-MRAC response 

exhibits rapid transits with reasonable damping to compensate 

for the effects of impulsive disturbances. The N-MRAC 

demonstrates the minimum magnitude of Mp as well as trec 

after recovering from the transient disturbance. In Test-C, the 

arm and rod vibrate persistently throughout the trial when the 

system is equipped with LQR. The responses yielded by F-

STR also exhibit persistent oscillations throughout the time-

window with a relatively lesser magnitude of RMSE. The N-

MRAC effectively attenuates the influence of noise signal and 

manifests minimum RMSE magnitudes in the angular 

responses of arm and pendulum. In Test-D, the N-MRAC 

robustly compensates for the modeling-error. It overcomes the 

induced parametric variations in minimum time while 

effectively damping the fluctuations around the reference 

angle. The modification in the value of Rm reduces the time-

constant and the transfer coefficient of the motor’s coil circuit 

by approximately 23.3%. This leads to an abrupt increment in 

the electrical inertia which inevitably increases the control 

energy consumption. The control effort delivered by the 

control software, to reject the bounded exogenous 

disturbances, leads to abrupt changes in the direction of motor 

rotation which induces chattering in the arm and rod angle 

responses.  

Table 4. Summary of experimental results. 

Test Indicators 
Control system 

LQR F-STR N-MRAC 

A 

RMSEθ (deg.) 2.05 1.26 0.68 

RMSEα (deg.) 16.61 9.76 6.13 

MSVm (V2) 14.97 10.14 5.33 
 

B 

RMSEθ (deg.) 2.32 1.62 0.86 

|Mp,θ| (deg.) 3.66 2.46 1.75 

ts,θ (s) 1.55 1.26 1.21 

RMSEα (deg.) 20.84 16.68 11.87 

|Mp,α| (deg.) 75.86 53.66 38.02 

ts,α (s) 1.54 1.19 1.15 

MSVm (V2) 15.42 8.63 4.70 

Vm,p (V) -18.42 -12.61 -10.70 
 

C 

RMSEθ (deg.) 2.21 1.76 1.02 

RMSEα (deg.) 19.56 17.47 11.44 

MSVm (V2) 13.83 10.17 6.72 
 

D 

RMSEθ (deg.) 2.17 1.77 0.92 

RMSEα (deg.) 36.58 25.09 17.84 

MSVm (V2) 40.17 21.66 10.56 

Despite this inevitable behavior, the results show that the 

proposed control system effectively minimizes the ripple 

content in the time-domain responses. Furthermore, the on-

board DC motor-driver circuit is commercially designed, by 

QNET, with sufficient agility to safely handle and withstand 

the discontinuous control activity during the experiments. 

In Section 4.2, the stability of N-MRAC has been investigated 

in the simplified hypothesis of the continuous time system; 

although N-MRAC is a discrete time system. However, the 

result has been also valid in the experimental part, where the 

sampling time used to implement the compensator 𝐾𝑎(𝑡) was 

1.0 ms. Furthermore, the superior disturbance-rejection 

capability exhibited by N-MRAC is attributed to the enhanced 

adaptability of the state-compensator gains, rendered by the 

self-adjusting adaptation-gains in the MRAC law. This 

arrangement significantly improves the response-speed of the 

control system and efficiently compensates the detrimental 

effects of bounded exogenous disturbances.  

The performance of the proposed N-MRAC is compared with 

the results reported in previous works; where in, the QNET 

RIP system is stabilized via a self-tuning dual fractional-PD 

controller in (Saleem and Mahmood-ul-Hasan, 2019), an 

adaptive LQR with an adjustable control weighting-factor in 

(Saleem et. al., 2020), and an adaptive LQR with adjustable 

state and control weighting-factors in (Saleem and Mahmood-

ul-Hasan, 2021). These controllers are denoted as SDFPD, 

SRLQR, and H-STR in the literature, respectively. Only two 

testing scenarios are common among the prescribed control 

systems; namely, performance under normal conditions and 

impulsive disturbances. Hence, only these scenarios are 

discussed here. Under normal conditions, the arm position-

regulation accuracy exhibited by N-MRAC is better than that 

of SRLQR, consistent with that of H-STR, and poorer than that 

of SDFPD. Moreover, the control energy consumption of N-

MRAC is relatively lesser than that of both H-STR and 

SRLQR, but higher than that of SDFPD. Under impulsive 

disturbances, the N-MRAC shows an |Mp,θ| of only 1.75 deg. 

(See Table 4) for a -10.0 V pulse injected in the control signal, 

which is almost twice in magnitude than the pulse signals used 

to conduct the similar tests for SRLQR, H-STR, and SDFPD. 

Hence, the impulsive-disturbance-rejection capability of N-

MRAC is fairly consistent with the aforementioned strategies.  

6. CONCLUSION 

This paper presents the systematic formulation of an enhanced 

adaptive stabilization control strategy for the RIP systems by 

employing an innovative state-error-dependent self-tuning 

mechanism. Two online self-adaptive control strategies are 

comparatively analyzed; namely, the Fisher-adaptive gain-

adjustment law as well as nonlinearly-scaled MRAS. Each 

gain-adjustment mechanism is methodically synthesized. The 

F-STR reasonably mitigates the effects of external 

disturbances and modeling-errors encountered by the system. 

However, to further enhance the control system’s adaptability 

and robustness against nonlinear disturbances, a modified 

MRAC is employed. The adaptation-gain of the Lyapunov 

gain-adjustment law, associated with the MRAC, is 

dynamically adjusted online via a pre-configured state-error 

dependent Gaussian scaling function. The mutation of MRAS 

via the smooth nonlinear scaling function significantly 

improves the pendulum’s transient recovery speed and 

strengthens its damping against fluctuations. The superior 

robustness of N-MRAC is validated by conducting credible 

experiments on the QNET Rotary Pendulum Board and 

analyzing the corresponding results in comparison with other 

control system variants. The stability of the N-MRAC has been 

investigated in the simplified hypothesis of the continuous 

time system; although N-MRAC is a discrete time system. 
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However, the result has been also valid in the experimental 

analysis, where the sampling time used to implement the 

compensator 𝐾𝑎(𝑡) was 1.0 ms. There is plenty of room for 

future enhancements. The robustness of the proposed control 

strategy can be investigated by applying it to control other 

classes of under-actuated mechatronic systems. Moreover, the 

artificial-immune self-tuning strategy can also be examined 

for the online modification of the adaptation-gain of the 

MRAC system, to ensure a flexible state-compensator gain 

variation in stabilization control applications. Finally, in the 

future, the performance of N-MRAC must be assessed under 

sinusoidal disturbances and arm-mass variations in real-time. 

REFERENCES 

Ashrafiuon, H., and Whitman, A.M. (2011). Closed-loop 

dynamic analysis of a rotary inverted pendulum for 

control design. Journal of DynamicSystems, 

Measurement, and Control, 134(2), pp. 1-9.  

Astrom, K.J., and Wittenmark, B. (1995). Adaptive Control. 

2nd ed. Pearson Education, London, UK. 

Balamurugan, S., Venkatesh, P., and Varatharajan, M. (2017). 

Fuzzy sliding-mode control with low pass filter to reduce 

chattering effect: an experimental validation on Quanser 

SRIP. Sadhana, 42(10), pp. 1693–1703.  

Balestrino, A., Biagini, V., Bolognesi, P., and Crisostomi, E. 

(2009). Advanced Variable Structure PI controllers. In: 

Proceedings of IEEE Conference on Emerging 

Technologies & Factory Automation, Mallorca, Spain, 

22-25 September 2009, pp. 1-8.  

Balestrino, A., Caiti, A., Calabr, V., Crisostomi, E., and Landi, 

A. (2011). Chaper 5 - From Basic to Advanced PI 

Controllers: A Complexity vs. Performance Comparison 

In: Advances in PID Control, V.D. Yurkevich (Ed.), 

Intech, Rijeka, Croatia, pp. 85–100.  

Bhatti, O.S., Mehmood-ul-Hasan, K., and Imtiaz, M.A. 

(2015). Attitude Control and Stabilization of a Two-

Wheeled Self-Balancing Robot. Control Engineering and 

Applied Informatics, 17(3), pp. 98-104. 

Bhatti, O.S., Tariq, O.S., Manzar, A., and Khan, O.A. (2018). 

Adaptive intelligent cascade control of a ball-riding robot 

for optimal balancing and station-keeping. Advanced 

Robotics, 32(2), pp. 63-76 

Boubaker, O. (2013). The inverted pendulum benchmark in 

nonlinear control theory: a survey. International Journal 

of Advanced Robotic Systems, 10(5), pp. 233–242. 

Chen, K.Y. (2017). Model reference adaptive minimum-

energy control for a mechatronic elevator system. Optimal 

Control Applications and Methods, 38(1), pp. 3–18.  

Cuong, N.D., Lanh, N.V., and Huyen, D.V. (2013). Design of 

MRAS-based adaptive control systems, In: Proceedings 

of International Conference on Control, Automation and 

Information Sciences, Nha Trang, Vietnam, 25-28 Nov. 

2013, pp. 79-84.  

Duka, A.D., Oltean, S.E., and Dulău, M. (2007). Model 

reference adaptive vs. learning control for the inverted 

pendulum. A comparative case study. Control 

Engineering and Applied Informatics, 9(4), pp. 67-75. 

Fisher, A.D., VanZwieten, J.H., and VanZwieten, T.S. (2009). 

Adaptive Control of Small Outboard-Powered Boats for 

Survey Applications. In: OCEANS’09 Proceedings of the 

MTS/IEEE Marine Technology for Our Future: Global 

and Local Challenges, Biloxi, Mississippi, 26-29 October 

2009, pp. 1-9.  

Ghartemani, M.K., Khajehoddin, S.A., Jain, P., Bakhshai, A. 

(2011). Linear quadratic output tracking and disturbance 

rejection. International Journal of Control, 84(8), pp. 

1442-1449.  

Gritli, H., and Belghit, S. (2018). Robust feedback control of 

the underactuated Inertia Wheel Inverted Pendulum under 

parametric uncertainties and subject to external 

disturbances: LMI formulation. Journal of Franklin 

Institute,  355(18), pp. 9150-9191.  

Hanwate, S., Hote, Y.V., and Budhraja, A. (2019). Design and 

implementation of adaptive control logic for cart-inverted 

pendulum system. Proceedings of the Institute of 

Mechanical Engineers, Part I: Journal of Systems and 

Control Engineering, 233(2), pp. 164-178.  

Hassanzadeh, A., Nejadfard, A., and Zadi, M.(2011). A 

Multivariable Adaptive Control Approach for 

Stabilization of a Cart-Type Double Inverted Pendulum. 

Mathematical Problems in Engineering, 2011, Article ID 

970786.  

Ioannou, P.A., and Fidan, B. (2006). Adaptive Control 

Tutorial. In: Advances in Design and Control. SIAM, PA, 

USA. 

Jian, Z., and Yongpeng, Z. (2011). Optimal Linear Modeling 

and its Applications on Swing-up and Stabilization 

Control for Rotary Inverted Pendulum, Proceedings of the 

30th Chinese Control Conference, Yantai, China, July 22-

24, 2011; IEEE: pp. 493-500.  

Kavuran, G., Ates, A., Alagoz, B.B., and Yeroglu, C. (2017). 

An Experimental Study on Model Reference Adaptive 

Control of TRMS by Error-Modified Fractional Order 

MIT Rule. Control Engineering and Applied Informatics, 

19(4), pp. 101-111.  

Li, Z., Yang, C., and Fan, L. (2013). Advanced Control of 

Wheeled Inverted Pendulum Systems. Springer, London.  

Lewis, F.L., Vrabie, D., and Syrmos, V.L. (2012). Optimal 

Control. John Wiley and Sons, New Jersey. 

Mahmoud, M.S. (2018). Advanced Control Design with 

Application to Electromechanical Systems. 1st Ed., 

Elsevier Science, New York.  

Nguyen, N.P., Oh, H., Kim, Y., and Moon, J. (2021). A 

nonlinear hybrid controller for swinging-up and 

stabilizing the rotary inverted pendulum. Nonlinear 

Dynamics, pp. 1 - 21. https://doi.org/10.1007/s11071-

021-06317-2 

Okyere, E., Bousbaine, A., Poyi, G.T., Joseph, A.K., and 

Andrade, J.M. (2019). LQR controller design for quad-

rotor helicopters. The Journal of Engineering, 17(6), pp. 

4003 – 4007. 

Prasad, L.B., Tyagi, B., and Gupta, H.A. (2014). Optimal 

Control of Nonlinear Inverted Pendulum System Using 

PID Controller and LQR: Performance Analysis Without 

and With Disturbance Input. International Journal of 

Automation and Computing, 11(6), pp. 661–670.  

Quanser. (2009). QNET Rotary Pendulum Trainer – Student 

Manual. Quanser Inc,  

Saleem, O., and Mahmood-ul-Hasan, K. (2019). Robust 

stabilisation of rotary inverted pendulum using 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                                                     75 

 
  

intelligently optimised nonlinear self-adaptive dual 

fractional order PD controllers. International Journal of 

Systems Science, 50(7), pp. 1399-1414.  

Saleem, O., Mahmood-ul-Hasan, K., and Rizwan, M. (2020). 

Self-Tuning State-Feedback Control of Rotary Pendulum 

via Online Adaptive Reconfiguration of Control Penalty-

Factor. Control Engineering and Applied Informatics, 

22(4), pp. 23-33.  

Saleem, O., and Mahmood-ul-Hasan, K. (2021). Adaptive 

State-space Control of Under-actuated Systems Using 

Error-magnitude Dependent Self-tuning of Cost 

Weighting-factors. International Journal of Control, 

Automation and Systems, 19(2), pp. 931-941. 

Sefriti, S., Boumhidi, J., Naoual, R., and Boumhidi, I. (2012). 

Adaptive Neural Network Sliding Mode Control For 

Electrically-Driven Robot Manipulators. Control 

Engineering and Applied Informatics, 14(4), pp. 27-32.  

Subramaniana, R.G., and Elumalai, V.K. (2016). Robust 

MRAC augmented baseline LQR for tracking control of 2 

DoF helicopter. Robotics and Autonomous Systems, 86, 

pp. 70–77.  

Sukontanakarn, V., and Parnichkun, M.(2009). Real-Time 

Optimal Control for Rotary Inverted Pendulum, American 

Journal of Applied Sciences, 6(6), pp. 1106-1115.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Szidarovszky, F., and Bahill, A.T. (1997). Linear Systems 

Theory. 2nd ed. CRC Press, FL, USA.  

Szuster, M., and Hendzel, Z. (2017). Intelligent optimal 

adaptive control for mechatronic systems, Studies in 

Systems, Decision and Control. Springer, Berlin, 

Germany.  

Ullah, S., Khan, Q., Mehmood, A., and Akmeliawati, R. 

(2019). Integral backstepping based robust integral sliding 

mode control of underactuated nonlinear 

electromechanical systems. Control Engineering and 

Applied Informatics, 21(3), pp. 42-50. 

Yu, H. Liu, Y., and Yang, T.(2008). Closed-loop tracking 

control of a pendulum-driven cart-pole underactuated 

system. Proceedings of the Institute of Mechanical 

Engineers, Part I: Journal of Systems and Control 

Engineering, 222(2), pp. 109–125.  

Zhang, H., Wang, J.,and Lu, G. (2014). Self-organizing fuzzy 

optimal control for under-actuated systems. Proceedings 

of the Institute of Mechanical Engineers, Part I: Journal 

of Systems and Control Engineering, 228(8), pp. 578-590. 

 


