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Abstract:
Tuning of physical plant models is considered in the context of monitoring and control of
industrial processes. The problem of calibrating physical models is discussed. A method is
proposed, consisting of extending the physical model with finite impulse response (FIR) filters at
the output. The approach is illustrated in extensive simulations and applied in state estimation
using a nonlinear chemical continuous stirred tank reactor benchmark.
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1. INTRODUCTION

Modern design of process control and monitoring relies
heavily on dynamic simulation models. On-line simula-
tions can be necessary for evaluating model predictive
controllers, model-based state-estimators, or in model-
based fault detection and isolation. Optimization of plant
short term dynamic operation or integrated plant and
control design are other examples of applications requiring
a proper dynamic process simulator. A modern digital twin
gets is essential behavioral contents from a plant model,
linking simulations with on-line data and various services
such as data validation, visualization, process analytics,
what-if analysis and 3D plant animations, for example. In
this paper, the focus is on process monitoring and control.

In the era of IoT (Internet of Things) and ML/AI (machine
learning / artificial intelligence), the role of data-driven
modeling has been emphasized. A vast literature exists
on proposed data-driven approaches to process modeling
as well as experiences on their application to simulated
and/or real-life plants (Sjoberg et al. (1995); Hastie et al.
(2017); Ikonen and Najim (2002)). The approaches include
various basis-function constructions proposed suitable for
process modelling tasks, statistical analytics on conclu-
sions that can be drawn from data, and algorithms provid-
ing optimal active exploration, just to mention few. Data-
driven modeling is plagued by the bias-variance dilemma,
related to supression of noise in measurements and extract-
ing a proper representation of the underlying nonlinear
mapping. Both problems are impossible to solve using
data alone. The impact of noise can be reduced by taking
repeated samples, but the uncertainty will remain. If only
sampled data is availabe, there is no information about
the mapping between samples, in time nor space. Conse-
quently, interpolation/extrapolation, i.e. generalization, is
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always based on some additional assumptions outside of
the data.

The application of physical models is widespread in many
fields of engineering (Skogestad (2009)). Physical models
provide justified and transparent predictions and explana-
tions for the outcomes, based on mass, momentum and
energy balances, laws of mechanics, chemistry, etc. The
role of physical models is pronounced in the heavy process
industry, where models are extensively used in plant design
and experimentation and exploration with plants is severly
complicated in the industrial practice, due to costs, slow-
ness of processes and safety issues. However, construction
of physical models may also require significant resources
and some tuning of such models to local site conditions is
always necessary.

The essential component of ML/AI is that of learning from
examples, such as process measurement data. Therefore,
the topics of model tuning and learning are closely en-
twined. A recent trend in process control literature is to
fuse machine learning with physical models (Bikmukhame-
tov and Jächke (2020); Qin and Chiang (2019)), with a
recognized aim to simultaneously improve the automatic
adaptation of physical process models to local conditions
and the explainability of data-driven models. This is also
the topic of this paper. Compared to existing works, our fo-
cus is in this paper to maximally exploit the knowledge in
physical models/simulators, and to emphasize the impor-
tance of system dynamics. Less weight is put on validating
new inventive ML/AI-driven methodologies, as simplicity
often comes with robustness and ease of implementation.

This paper considers the problem of identifying an I/O
model for a MIMO system, such as

x (k + 1) = f (x (k) ,u (k) ,w (k))
y (k) = g (x (k) ,v (k))

(1)

where f : Rnx×Rnu×Rnw → Rnx is the state propagation
function and g : Rnx × Rnv → Rny the measurement
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function. For brevity, the sampling time is assumed to
be a constant and the important topics of input/output
selection and design of sampling are not considered here.
The inputs u are assumed to be known and measured,
possible uncertainties in inputs can be included in the
random state noise w. States x need not be known,
measured or estimated. The plant outputs are measured,
corrupted by random noise v. Noise is assumed to have
finite variance, smoothness or existance of derivatives of
f or g is not assumed. It is assumed that the system is
time-invariant, or that it varies with time very slowly so
that (some kind of) ergodic assumptions hold.

This paper proposes an approach based on the use of
physical modeling and finite impulse response (FIR) filters.
The main benefits are in that the plant models (simu-
lators) can be incorporated into the proposed structure
and that the parameter estimation in the data-driven
components is particularily simple and robust, enabling
automatic procedures. The few parameters to be set by
the user are very transparent and their tuning does not
require an experienced process control engineer. Section 2
considers calibration of physical plant models and leads
to propose a PMFIR structure for model calibaration in
Section 3. Applications in state estimation and control
are briefly discussed in Section 4. Section 5 illustrates an
approach using the well known van der Vusse continuous
stirred tank reactor (CSTR) benchmark. Discussion and
conclusions end the paper.

2. CALIBRATION OF PHYSICAL MODELS

Suppose that a given plant has a dynamic I/O model, such
as a state space model:

x (k + 1) = fPM (x (k) ,u (k))
yPM (k) = gPM (x (k))

(2)

fPM : Rnx × Rnu → Rnx and gPM : Rnx → Rny .
This model, called a “physical model”, PM, is likely to
have been derived based on first principles or detailed
engineering knowledge. It may be complex, e.g., due to size
or amount of detail, and nothing can be assumed about
its internal structure or parameters. It is convenient to
simulate the propagation of yPM in real time in parallel
with the plant, or using historical data. The plant model is
assumed to have been calibrated as found appropriate and
feasible given the constraints on knowledge and resources.
It is provided “as is”. This kind of models commonly
emerge in industrial plant and/or control design.

Suppose also, that corresponding I/O measurements from
a real plant are available: u (i) and y (i), i = 1, 2, ..., k.
This data is to be used to calibrate the process model, so
that the predictions would be consistent with the data.
The need for tuning may be due to various reasons, such
as correction of simplifications/idealisations made during
modeling or adaptation to systematic errors in plant
measurements. The purpose of adjustments is to match
the physical model and measurements from the local site,
in this sense the true state of the plant is irrelevant.

This wish to calibrate the physical model is constrained
by a number of engineering requirements. i) Very often
it is not desired to tune the parameters inside fPM or
gPM , in order to preserve the original model. This is

due to various reasons: these parameters may appear in
a complex manner, the plant model is trusted/accepted
by the users, or the users are familiar with the model with
its defects. ii) The calibration must be automatic from
data and should scale well. This requires needing minimal
insight to the physical model, and robustness vs. mea-
surement noise and structural errors. iii) The algorithm
should be simple to implement and execute on-line in a
distributed control system (DCS) environment or alike.
iv) The approach should support the a priori assumption
that industrial process models are often more accurate
in their steady-state description, typically in the focus
of plant design. v) The purpose of calibration is not to
model phenomena/behaviour that is not described by the
physical model. A more detailed plant modeling (of any
unmodelled behaviour) is almost surely a project requiring
an approach different from an automated procedure. How-
ever, it is clear that the borderline between modeling and
tuning is somewhat vague. Therefore, vi) the procedure
should give some means to analyze the adjustments made
to the physical model mapping due to calibration.

Joint physical/data-driven structures (see also Bikmukhame-
tov and Jächke (2020)) for modeling dynamic processes
can be roughly categorized into the following:

(1) A data-driven model (DM) is placed in parallel with
the physical model (PM). The outcomes of the two
models can be compared by running models in like
situations, and the multimodel information then pre-
sented to the end-users. Typically, data-driven ap-
proaches can provide an estimate of the prediction
uncertainty. If such uncertainty estimate is available
also for the PM (e.g., via Monte Carlo), some sort of
bayesian reasoning can be conducted to devise a more
likely estimate.

(2) A DM is trained to minimize the residual between
measurements and the PM output. The overall out-
come is a superposition of the PM and DM. This
approach is appealing in that the DM is used to
compensate for the defects in PM predictions, the be-
haviour already modeled by PM need not be identified
by DM.

(3) The PM is placed in series with the DM. The DM
can precede or follow the PM. DM optimization
aims at tuning both static and dynamic behaviour of
the PM input/output signals, minimizing the resid-
ual between the final prediction and output data.
In the linear case this leads to the well known
Wiener/Hammerstein stuctures, common in the in-
dustry due to their robustness (Lawrynczuk (2016);
Ikonen and Najim (2001)).

A basic analysis of some of the differences of the structures
is simple to derive in the linear case (Ikonen and Selek
(2020)). Suppose that the physical model dynamics are
given by numPM

denPM
and the plant data is obtained from

numD

denD
. Let the DM minimize the difference between DM

output and measured plant D output. The first approach
leads to estimate numDM

denDM
≈ numD

denD
, while the second

and third lead to estimate more complicated dynam-
ics: numDM

denDM
≈ numDdenPM−numPMdenD

denDdenPM
and numDM

denDM
≈

numD

denD

denPM

numPM
, respectively. However, the first approach
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Fig. 1. PMFIR structure for physical model calibration
using FIR filters.

provides no remedy for the PM calibration problem, it
merely provides a data-driven alternative DM.

An alternative to the above ARX numDM

denDM
(autoregressive

exogeneous) is to estimate only the numDM (finite impulse
response, FIR) (Ljung (1997), p. 11; Ikonen and Najim
(2002), p. 47):

y (k) = b0u (k) + b1u (k − 1) + ...bn−1u (k − n− 1) (3)

The FIR parameters can be estimated using the least
squares method (LS), a number of extensions have been
proposed to handle the nonparsimonious nature of FIR
(Nikolaou and Vuthandam (1998)). The FIR filters are
known to be able to model complex dynamics. However,
this comes at the price of a large number of parameters
to estimate: for FIR the dim(num) easily becomes much
larger than dim(num) + dim(den) for ARX. However, the
number of parameters in ARX modeling can also be higher
than expected at first glance, as was illustrated above. If,
in addition, the models are to be used for predicting to the
future, the ARX modeling is not feasible, but one needs to
turn to output error (OE) modeling. Unfortunately, OE
models can not be solved with LS, but require iterative
approaches (RPEM, or alike) (Ikonen and Najim (2002),
Ch. 3.3).

In conclusion, FIR modeling can be seen as an attrac-
tive structure for the problem at hand. This is further
confirmed by the fact that a number of model-predictive
control approaches use the FIR or finite step response
descriptions for the plant (Richalet et al. (1978); Cutler
and Ramaker (1979); Garcia and Morshedi (1986)).

Many algorithms have been proposed for data-driven mod-
eling of nonlinear dynamic processes (Sjoberg et al. (1995);
Ikonen and Najim (2002); Hastie et al. (2017)). Most -if not
all- model structures can be interpreted as basis-function
approaches. A physical model provides one possible way
to generate basis functions (e.g., in PM followed by DM
structure). In fact, since the PM states x are often ac-
cessible as well, they could be used as a more extensive
set of basis functions. This is likely to lead to collinearity
problems, but they are routinely solved in machine learn-
ing (Hastie et al. (2017)). However, this line of thinking
is now not pursued further here. A simpler approach is
proposed instead, where the PM is expected to provide
the essential nonlinear gains/dynamics of the plant via its
output predictions. This basic behaviour is then tuned by
adjusting the parameters of additional linear FIR filters.

3. PMFIR APPROACH

The above discussion leads to consider the two-phase
structure depicted in Fig. 1. The PMFIR model is eval-
uated in three phases. First, the physical model PM is

simulated using the given input data (either on-line or a
series of batch data), providing the PM predictions yPM.
In a second phase the calibration FIR (CFIR) filters, zi,
are evaluated, and the exteded FIR (EFIR) filters, zu,i, are
evaluated in parallel. Finally, the outputs of the two filters
are summed, for each output, to provide the calibrated
predictions, ŷi.

The parameters for the CFIR and EFIR need to be deter-
mined by the proposed method. The parameter estimation
starts by first evaluating the PM predictions yPM for the
training data. Using these as inputs to the CFIR, the
optimal CFIR parameters are solved by minimizing the
sum of squared residuals between training data and CFIR
predictions. The EFIR parameters are then solved by
minimizing the sum of squares of the remaining residuals.

Next subsections detail the parameter estimation algo-
rithm for batch data using LS. Algorithms for recursive
LS with various forgetting schemes are well known and
straightforward to devise.

3.1 Calibration FIR - CFIR

Since the physical model (fPM , gPM ) is to be evaluated
“as is” using the known inputs u (k), the physical model
is evaluated first. The physical model outputs yPM are
calibrated by single-input single-output (SISO) FIR filters
at each output of the PM

z (k) = b0 + b1yPM (k) + ...+ bnyPM (k − n+ 1) (4)

where yPM (k) is one of the ny outputs in the vector yPM

(subscripting is omitted for simplicity). Note that the filter
includes a bias term b0. This, together with the fact the
FIR gain is not constrained, implies that the output can
be scaled and shifted in an affine manner.

Each filter has n + 1 coefficients to estimate. Since
FIR parameter estimation is parsimonious (Nikolaou and
Vuthandam (1998)), it can be justified to consider regu-
larized approaches when n is considerably large. Repre-
sent each SISO FIR model (4) by z(k) = θ′ϕ(k), where
the parameter vector θ consists of the unknown coeffi-
cients b0, b1, ...bn and the regression vector ϕ(k) of the
corresponding physical model outputs yPM (k), yPM (k −
1), ..., yPM (k − n). Collect the regression vectors into ma-
trix Φ and corresponding measured outputs to a vector Y.
The goal, for each SISO FIR filter, is then to minimize

(Y − Φθ)
′
(Y − Φθ) + rθ′Qθ (5)

where r ≥ 0 and Q is a positive definite matrix. The
solution is given by

θ̂ = [Φ′
0Φ0 + rQ]

−1
Φ′

0Y0 (6)

where the subscript 0 in Φ and Y is used to specify the
data set used for parameter estimation (training data). A
separate estimation is conducted for each output filter.
A solution to the parameter estimation problem exists
and is unique provided that the input data is persistently
exiting. An increasing weighing for deviations from zero for
increasingly delayed elements is obtained e.g. by choosing
Q = Ñdiag ([1, 2, ..., n]) (in the SISO case with no b0)
and r is some small number (e.g., r = 0.1). If the
physical model static performance is fully trusted (not
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to be calibrated), the steady state gain of the FIR can
be constrained to 1. A recursive parameter estimation
algorithm can be devised, e.g., from the Kalman filter.

3.2 Extended FIR - EFIR

The CFIR-calibrated PM can be further extended with
a linear FIR model for the remaining residuals (EFIR).
Consider the following multiple-input MISO FIR structure
with filter length n for each considered input u1, u2, ..., up:

zu (k) = bu,0 + bu,1u1 (k − 1) + ...+ bu,nu1 (k − n)+
...+ bu,npup (k − n) .

(7)

Note that the model causality is preserved by the one
sample delay in the inputs. The batch and recursive pa-
rameter estimation can be conducted as discussed above,
with the exception that the targeted output is the residual
error y (k) − z (k), instead of the measured output y (k)
(multiple-output indexes omitted for brevity).

3.3 Physical model FIR - PMFIR

The final calibrated PM outputs are then given by

ŷi (k) = zi (k) + zu,i (k) (8)

i = 1, 2, ...,m, where m is the number of calibrated
outputs.

The length of FIR filters n is to be chosen by the modeller.
This parameter can be set based on knowledge of plant set-
tling time (e.g., from plant step responses), or optimized,
e.g. by minimizing the Akaike Information Criterion (AIC)
−2ln(L) + 2n′, where L is the maximum value for the
likelihood of the model and n′ is the number of parameters
to estimate. In a variant (Gatti (2005), p. 301; Das (2016))
applicable for least squares regression with normally dis-

tributed residuals,
∑K

k=1(y(k) − ŷ(k))2 + 2n′ + 2n′(n′+1)
K−n′−1 ,

the last term is a modification for small sample sizes.

The two-phase estimation emphasizes the PM-calibration
aspect of the approach. All nonlinearities in PMFIR orig-
inate from the physical model PM. The CFIR provides
a linear dynamic adjustment for the PM outputs. The
EFIR extends the tuning by a linear dynamic mapping
from past PM inputs, thereby enabling identification of
linear components not modelled by the PM. If necessary
for increased numerical precision, it would seem natural to
devise further versions by replacing the EFIR (or CFIR) by
a nonlinear time-series estimator. However, as discussed in
previous Sections, the interpretability of the adjustements
in such approaches may easily suffer.

4. PROCESS STATE ESTIMATION AND CONTROL

Model-based state estimation and control is regularily used
in the advanced industrial practice. While it is not reason-
able to discuss process control in detail in the context of
this paper, it suffices to note that state estimation is an
essential part of state feedback control, whether linear or
nonlinear. Of course, monitoring applications are justified
by their own right in the industrial practice, and can make
great use of state estimation techniques.

Bayesian state estimation is a commonly used tool for
estimating system states, for fusion of dynamic plant mod-
els and noisy measurements. The famous Kalman filter
(Simon (2006)) assumes a linear plant desciption. The
extended Kalman filter (EKF) (Simon (2006)) is based on
on-line linearization via computation of Jacobians. The
outcomes are optimal in an environment corrupted by
Gaussian noise, but the Kalman filter provides the optimal
linear filter also in a non-Gaussian context (see Simon
(2006), p. 130). Recent advances in state estimation can
make a more direct use of nonlinear physical models.
Despite of the advantages of particle filter (PF) (Gordon
et al. (1993); Simon (2006), Ch. 15), such as the ability
to deal with complex multimodal densities, the computa-
tional load associated with PF can make it infeasible in
practice. The unscented Kalman filter (UKF) (Julier et al.
(1995); Simon (2006), Ch. 14) provides an approximation
of the mean and covariance for nonlinear systems which is
often sufficient and reasonable for practical purposes. The
estimation can also be constrained so as to ensure feasible
estimates at all times (Spivey (2010)).

The UKF is particularily useful in the PMFIR setup where
the PM is given in a state space form, eq. (2), as estimation
of unknown states in PM is feasible. As one of the options,
the calibrated model provides a means to back-calculate
the equivalent measurements at the PM level. For the
measurement correponding to yPM it is straightforward
to derive

qPM (k) =
1

b1
[y (k)− zu (k)− z (k)] + yPM (k) (9)

for the SISO case (indexes omitted for brevity). Note that
this simple method requires that b1 ̸= 0, which may not
always be the case. This approach aims at removing the
impact of the calibration of the the PMFIR innovation
signal. A Kalman filter (extended, unscented, or particle
filter) type of estimator can be constructed on the basis
of predictions by the process model yPM and the back-
calculated measurement qPM . An estimate of the states of
PM will then be adjusted with the available measurement,
consistent with both the calibrated simulation and the
physical model internal construction.

The UKF algorithm is well known, and it is not repeated
here (see e.g. Simon (2006), Ch. 14.3). It is worthwhile to
point out, however, that the one-step ahead simulations
from given initial states (determined by the UKF sigma
points) are straightforward to propagate and measure,
given access to (fPM , gPM ). The number of model eval-
uations required by UKF is relative to the number of
states nx (not exponential) and the 2nx one-step ahead
simulations can be expected to remain feasible in many
cases of industrial size.

5. NUMERICAL CSTR BENCHMARK EXAMPLE

The PMFIR approach was tested using the well known
process control design benchmark of a highly nonlin-
ear continuous stirred tank reactor (CSTR) with a cool-
ing jacket (Engel and Klatt (1993); Chen et al. (1995);
Kravaris et al. (1998); Gatzke and Doyle (1999); Perez
et al. (2002); Garcia-Gabin et al. (2006); Ikonen et al.
(2016); Marusak (2020)). The system, see Fig. 2, exhibits
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Fig. 2. Van der Vusse CSTR with a cooling jacket.

characteristics such as change of sign of gain in steady
state behaviour and changes in zero dynamics.

The main reaction scheme is the van der Vusse reaction
A → B → C, 2A → D. The control inputs are the nor-
malized flow to the reactor V̇ /VR and heat Q̇K withdrawn
from the coolant by an external heat exhanger.

System dynamics are given by nonlinear ordinary differ-
ential equations (Chen et al. (1995); Ikonen et al. (2016))
obtained from component balances for the substances A
and B, concentrations cA and cB [mol/l]

ċA =
V̇

VR

(
cA0 − cA

)
− k1cA − k3c

2
A

ċB =
V̇

VR
cB + k1cA − k2cB

(10)

and energy balances for the reactor and cooling jacket in
temperatures ν and νK [oC]

v̇ =
V̇

VR
(v0 − v)− 1

ρCp
×(

k1cA△HRAB
+ k2cB△HRBC

+ k3c
2
A△HRAD

)
+

kwAR
ρCpVR

(
vK − v

)
v̇K =

1

mKCPK

(
Q̇K + kwAR

(
v − vK

))
(11)

Many of the system physical parameters, such as reaction
velocities ki, reaction enthalpies ∆HR, heat capacity Cp,
heat transfer coefficient kw, coolant heat capacity CPK
and density ρ are known only within bounds. Fixed pa-
rameters include reactor massmK, volume VR and cooling
surface AR. A complete description of the equations and
parameters can be found from Chen et al. (1995). The
product concentration cB and reactor temperature ν are
measured as outputs. The benchmark uses a sampling
interval of 20 seconds.

All plant measurement data was generated using the basic
parameter values (see Chen et al. (1995), Table 1). The
simulation inputs consisted of random ramps with random
set point changes at random times at both control inputs.
The start of a ramp was a random event taking place

with a probabilty of 20 seconds/5 hours. The length of the
ramp ranged from 20 seconds to 20 minutes; the amplitude
of the ramps ranged between minimum and maximum
values, U(3,35) for V̇ /VR and U(-9000,0) for Q̇K . The feed
temperature was considered to be a constant at ν0 = 104.9
[oC]. Data sets of length two days, two months and one
year were considered for parameter estimation. A separate
data set of 1 year was generated for testing purposes.
In most of the experiments, the data was resampled
to a sampling time of 2 min, with no averaging. Both
output measurements were corrupted by additive zero
mean normal noise with standard deviation corresponding
to approximately 1% of the range of the signal, σcB = 0.01
and σν = 1, respectively. In all, the input data sequence
can be considered as rich for an industrial plant, but does
represent a possible scenario.

The physical model PM was taken to be the worst case
scenario 1 (see Chen et al. (1995), Table 2), significantly
different from the basic values. In some of the experiments
the scenario 2 was considered (see Chen et al. (1995), Table
2). These two scenarios were considered as the physical
extreme cases in Chen et al. (1995), representing the worst-
case deviations from the basic model. The steady-state
solution for the worst case 1 was considered as the PM in
one setup. A FIR filter length of 20 min for cB and 2 hours
for ν samples was used for all filters, leading to FIR orders
n = (10, 60) for cB and ν, respectively. In some of the
experiments the AIC optima were used, n = (1, 38) for the
2 month data set and 2 min sampling time. With steady
state PM, slightly longer windows n = (30, 90) were used.
The setup with PM equal to 2 month data from the plant
sampled every 2 min, PM as the model for the worst case
scenario 1, and filter orders n = (10, 60) will be referred
to as the ‘nominal case’.

The number of PMFIR parameters to estimate is 1+np+
(1+n), for each output. In the nominal set up, this results
in 32 parameters for cB and 182 for ν. All estimations
were conducted by first normalizing the data to be zero
mean with unit variance and using then a regularized LS
with r = 0.1 and weight equal to the delay in input (in
samples). This choice of algorithm, hinted in Nikolaou and
Vuthandam (1998), together with the resampling from 20
sec to 2 min, resulted in a relatively smooth step responses
in the estimates and very feasible computing times. Robust
estimation of FIR/FSR models in the context of industrial
procesesses is a rich topic in itself but not the content of
this paper.

5.1 Nominal case

The nominal data consisted of 43200 sampled (u,y) pairs

of inputs V̇ /VR and Q̇K and outputs cB and ν, simulated
with parameters from the nominal scenario. The plant
model was taken to be the worst case scenario 1, and
used for simulating the same input sequence, resulting in
the PM prediction. The CFIR and EFIR parameters were
then estimated using the data set. The Bode diagram (gain
and phase) for the CFIR filters is shown in Fig 3. The
correction of PM for cB involves a very slight lead, while
for ν the filter is a low pass. The evaluation of the impact of
CFIR tuning is immediate and precise via a Bode diagram.
Similar plots can be drawn for EFIR’s.
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Fig. 3. Bode diagrams for estimated CFIR filters.

Figures 4–5 illustrate an alternative view, by showing the
unit step responses for the filters. For CFIR (top plots
in Figs. 4–5), a unit step would imply that the tuning
has not modified the output of the physical model. It is
clear that some dynamics are introduced, as already visible
from the Bode (Fig. 3). Especially the CFIR response for
ν (Fig. 5) resembles that of a low pass filter. One can
analyze the static behaviour of the estimated filters by
approximate affine mappings, by extracting b0’s (shift)
and summing the FIR coefficients. In the nominal case
CFIR’s, y = 0.032 + 0.99yp was obtained for cB and
y = −1.191 + 1.035yp for ν. Hence, the static gains were
close to 1, as was already visible from the Bode (Fig. 3).
However, these corrections were significant, as these shifts
account for over 0.03 mol/l in product concentration and
one degree Celsius in reactor temperature.

Similar dynamic and static summary info can be obtained
for EFIR’s. For EFIR’s, a zero step indicates no impact.
Looking at Figs. 4–5 (middle and bottom plots), the
absolute values of the estimated step responses remain
very close to zero at all times. The response in ν contains
some variation difficult to explain (see Fig. 5 bottom plot),
potentially indicating problems in reliably estimating such
a large number of parameters from data. However, the
scales are of the order 10−4 and 10−6. Again, the analysis
of tuning outcomes is straightforward, albeit with EFIR
the impact of the scales of the input signals needs to be
taken into account when assessing the unit steps.

Figure 6 illustrates the predictions for ν in a simulation
over the test set. The measured data is noisy (standard
deviation 1 oC). The shift error in PM is clearly visible,
and it is corrected by the PMFIR. Corrections in the
dynamic response are not visible by eye in the one-day
simulation interval, these are better quantified from the
Bode, Fig. 3.

5.2 Further analysis

A series of tests was conducted to better illustrate and
quantify the impact of various components in the PMFIR
approach and to compare it with alternative approaches.
Starting from the nominal case, changes were made in
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the amount of data samples, sampling rate, PM and filter
orders. The approach was also compared with a standard
sigmoid neural network (SNN) in a similar FIR time series
setup. As a main metric, RMSE (root mean squared errors)
were computed both on training and test data.

The test series consisted of 8 variations to the nominal
setup, and three SNN topologies:

• nominal case: parameter estimation was conducted
based on a 2 month data set with 2 min sampling
interval. Physical model corresponds to scenario 1
(PM1).

• nominal case, but using a model corresponding to
scenario 2 as a physical model (PM2)

• nominal case, but using a short data set of 2 days,
only.

• nominal case, but using a short data set and physical
model of scenario 2.

• nominal case, but using a long data set of 1 year data.
• nominal case, but using a long data set and physical
model of scenario 2.

• nominal case, but using the AIC-optimal orders for
the FIR-filters n = (1, 38)

• nominal case, but using a samping time of 20 sec and
AIC optimal order for FIR-filters n = (1, 59)

• nominal case, but using an approximate static physi-
cal model for scenario 1 (PM3) and a higher order of
filters n = (30, 90)

• sigmoid neural network (SNN) with {3, 8, 15} nodes
in the hidden layer, trained using 2 day data

• SNN with {3, 8, 15} nodes in the hidden layer, trained
using 2 month data

• SNN with {3, 8, 15} nodes in the hidden layer, trained
using 1 year data

For each of the above PMFIR setups, four RMSE were
computed:

• RMSE between measured data and the physical
model, PM∈{PM1,PM2,PM3}

• RMSE between measured data and a static affine
model from the PM output: ŷ = ayp + b with
coefficients a and b.

• RMSE between measured data and the CFIR predic-
tion

• RMSE between measured data and the PMFIR pre-
diction, i.e., CFIR + EFIR.

For SNN setups, only the RMSE between measured data
and the SNN prediction was computed.

The test series allows to assess the impact of the amount of
data, sampling, model order and modeling type. Looking
at Figs. 7–8 it can be seen that on a short data set the
CFIR and PMFIR can closely mimick the training set, on
ν the RMSE on training data is even smaller than the
noise component N(0,1). The RMSE increases on test set,
however, indicating mild overlearning. This is not observed
with 2 month or 1 year data sets, the RMSE of which
are in many cases not distinguishable. There is a clear
difference between the two extreme scenarios PM1 and
PM2, which is visible in particular with cB . A better PM
results also to a better PMFIR RMSE. The RMSE are
insensitive to differences in nominal case order and AIC-
optimal orders. This is significant especially with cB where

the AIC-optimized order was one. Hence, the FIR-window
was not beneficial from the point of view of improving the
prediction RMSE. The result is confirmed by the small
differences between the affine static modeling and CFIR
modeling with both cB and ν. This observation indicates
that the dynamics of the worst case scenarios (used as
plant models) are in fact not so far from the true ones.

A completely different result is depicted by observing the
RMSE for the case of static PM (PM3). A steady state PM
is a special case of process models. In PM3, the physical
model of the van der Vusse CSTR plant was replaced by
its approximate steady state description, i.e.

x (k + 1) = fPM−ss (u (k))
yPM (k) = gPM (x (k))

(12)

where fPM−ss is the steady state solution of the van
der Vusse CSTR model. In series with CFIR, it leads to
Hammerstein structures, commonly used in the industry.
Due to lack of dynamics in the PM, larger filter orders
were chosen: n′ = (30, 90) corresponding to 1 and 3 hour
windows (the AIC optimized orders were n∗ = (9, 705)).
Observing Figs. 7–8, while static affine mapping of the PM
does reduce the RMSE from approximately 0.85 to 0.75 for
cB (4.5 to 3.5 for ν), the addition of FIR dynamics to the
static mapping reduces it further to 0.5 (below 2). The
overall RMSE’s on the PMFIR based on steady state PM
still remain rather unsatisfactory, however, as the van der
Vusse dynamics are strongly nonlinear.

The static affine mapping can be considered as an alterna-
tive to PMFIR, with the advantages of being particularily
robust to estimate and simple to implement. Clearly, it is
very useful if the plant dynamics are well modelled by the
physical model, and only a static adjustment is needed.

An alternative to nonlinear dynamic modeling is a stan-
dard feedforward sigmoid neural network (Ikonen and
Najim (2002), Sec 4.2.2; Hastie et al. (2017), Sec. 11.3;
Shoukens and Ljung (2019)). It is a well known repre-
sentative of the long list of approaches for data-driven
modeling. The nonlinear dynamic modeling problem is
a typical area of application for SNN, used in various
NARX, NOE, NFIR, etc., time-series structures (N refers
to nonlinear). For comparison, FIR SNN time-series model
structures were constructed. The inputs consisted of the
delayed n = (10, 60) inputs (normalized flows and heat
withdrawn from the coolant), sampled at 2 min. The one-
hidden layer (NFIR) structure consisted of h hidden nodes,
h = {3, 8, 15} with a bias term, and a linear output node
with bias term. The SNN were trained using the default
setup of Matlab Deep Learning Toolbox feedforwardnet
and train functions, using Levenberg–Marquardt for pa-
rameter estimation and reservation of 15 % of training data
for early stopping based on performance on validation set.
The best-performing SNN structure (in terms of perfor-
mance on test set) is reported for each data set (see legends
in Figs. 7–8). Also alternative FIR SNN structures were
experimented, where inputs consisted of smaller subsets of
the full window, but the conclusions remained the same.

In general, the data-driven modelling easily suffers from
lack of data when system dimensions increase. Looking at
Figs. 7–8, the training on short data set seems to provide
promising results, but the trained SNN perform poorly
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Fig. 7. RMSE between measured cB and predictions by
various appoaches.

PM ay
p
+b CFIR PMFIR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
M

S
E

 o
n 

tr
ai

ni
ng

 d
at

a

PM ay
p
+b CFIR PMFIR

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
M

S
E

 o
n 

te
st

 d
at

a

2mth/2min/PM1
-"-/-"-/PM2
2d/-"-/PM1
-"-/-"-/PM2
1y/-"-/PM1
-"-/-"-/PM2
2m/-"-/PM1 - n*
-"-/20sec/-"- - n*
-"-/2min/PM3 - n'
2d/SNN h=8
2m/SNN h=15
1y/SNN h=15

Fig. 8. RMSE between measured ν and predictions by
various appoaches.

on test data. For two day data SNN case, the RMSE on
test set is so high it goes outside the window (RMSE 0.26
and 7.7 for cB and ν, respectively). Figure 6 shows also a
prediction given by the SNN. The figure seems to indicate
that the static behaviour has been captured somewhat
but that the combination of a large dimension of the
delayed inputs and sparsity of the data did not lead to
meaninful learning outcomes of system dynamics. These
results are in line with those obtained using the finite
state FIR (FFIR) (Ikonen and Selek (2020)). This could be
remedied to some extent by replacing the (nonlinear) FIR
by an alternative time series approach. For example, the
NOE is known to perform well (Ikonen and Najim (2002);
Castro et al. (2010)) but is complicated by the need to
compute the impact of model dynamics to gradients, and
the requirements it poses on data and system stability.

5.3 State estimation

In the plant data used in the above simulations, the feed
temperature v0 was constant at 104.9 ◦C. As there is
no information (measured data) of the impact of feed
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Fig. 9. Estimation of feed temperature ν0 using UKF.

temperature to system outputs, any data-driven approach
based on the above data sets would fail in estimating the
effect of a change in this temperature. Since this variable
is available in the plant physical model (fPM , gPM ), it is
straightforward to extrapolate the impact of v0 in a PM
based approach. The extrapolations also carry to the cali-
brated model. The same applies to all variables/constants
in the PM model. This simple case example again moti-
vates taking full advantage of available physical models,
as supported by the PMFIR approach.

An unscented Kalman filter (UKF) was constructed to
illustrate the state estimation in the van der Vusse CSTR
example. The unmeasured feed temperature was changed
between {99.9, 104.9, 109.9} oC. An augmented state space
was defined by x = [cA, cB , ν, νK , ν0]

′ and an UKF set to
estimate all the states using the PMFIR estimated model
for the nominal case. The simulations were started with
an incorrect initial mean ([2, 1, 100, 100, 100]′) [mol/l and
oC] with covariance (diag[.1, .1, 1, 1, 1]2). The covariances
of the zero-mean noise components were picked as Q =
1

100diag[0.01, 0.01, 2, 2, 1]
2 for system state propagation,

measurement noise characteristics were assumed to be
correctly known, R = diag[0.01, 1]2.

The estimated feed temperatures are show in Fig. 9. Three
stepwise disturbances impacted to v0 during the simula-
tion (see top plot). The estimation is started at 2 hours
from initialization (a sufficient input history is required
by PMFIR). All states were correctly estimated by UKF,
Fig. 9 top plot shows the estimated feed temperature v0.
The innovation signal (yPM − qPM ) for both outputs is
illustrated in the other plots, together with the PMFIR
prediction and measured data.

6. DISCUSSION AND CONCLUSIONS

The application of physical models is widespread in many
fields of engineering. These models need to be tuned
due to various reasons, such as correction of simplifica-
tions/idealisations made during modeling or adaptation
to systematic errors in plant measurements. Calibration
of physical models is constrained by several engineering
requirements, such as emphasizing a clear distinction be-
tween the original physical model and its tuning, auto-
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maticity from data, and simplicity in implementation. In
process control and state estimation, system dynamics are
of particular interest.

The proposed approach can be seen as a machine learning
tool fusing process models with measured data (Qin and
Chiang (2019); Bikmukhametov and Jächke (2020)). The
requirements for such methods in industrial process engi-
neering were widely discussed in the paper, emphasizing
the aspect of physical model tuning and that a model
structure founded on a physical model can be expected to
extrapolate much better to operation regions not visited
in real life, i.e., for which no data is available. These are
typically of interest when optimizing for improved plant
performance or describing faulty or abnormal situations.

This work proposed a method for calibrating an existing
physical simulation model. In the suggested PMFIR tool,
the main characterics of the mapping originate from the
physical model. The CFIR provides a linear dynamic ad-
justment for the physical model outputs, the EFIR extends
the tuning by a linear dynamic mapping from past inputs,
thereby enabling identification of linear components not
modelled by the physical model. The approach can be
automatized with high robustness, and recursive imple-
mentations of the algorithms are readily available.

A typical problem with physical models of industrial pro-
cesses is that they corrupt over time. Consequently, the
models eventually become useless unless updated by a
specialized process modeling expert. A priori, identifica-
tion / machine learning techniques can be readily used
for adaptive data-driven modeling. However, it is rare
that re-identification of such models could be constructed
automatically, but a data scientist is required. If the plant
varies (slowy) with time, the linear PMFIR corrections
(given some forgetting scheme is used) can make global
corrections to the response. It can be expected that such
procedure could be automated in a robust fashion.

The suggested PMFIR approach was illustrated and exper-
imented with using a well known process control design
benchmark of a highly nonlinear CSTR with a cooling
jacket. The incorrect (worst-case) models were successfully
calibrated using nominal plant data and even a steady-
state PM could be succesfully applied. The approach was
compared with alternative data-driven methods, including
static affine correction at the physical model output, and
purely data-driven modeling of the dynamic process. The
proposed approach provided improved performance and
was shown to be much less sensitive to the amount of
data than corresponding data-driven approaches. Finally,
the application of the calibrated model in state estimation
using UKF was succesfully demonstrated.

On-going work focuses at robust estimation of linear
dynamics and approaches for merging predictions from
several plant models. In applied work, the focus is in
gaining experiences on the potential in applications in the
heavy process industry.
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tive control of a benchmark CSTR. European Control
Conference 1995, pp. 3247–3252.

C. Cutler and B.L. Ramaker. Dynamic matrix control
- A computer control algorithm. National meeting of
AIChE, April 1979.

R. Das. Mathematical Cell Biology Graduate Summer
Course (Week 4, Lecture 3). University of British
Columbia, Vancouver, May 1-31, 2012.

S. Engel and K.-U. Klatt. Nonlinear control of a non-
minimum-phase CSTR. Proceedings of the American
Control Conference, San Francisco, pp. 2941–2945, 1993

C. Garcia and A. Morshedi. Quadratic progreamming
solution of dynamic matrix control (QDMC). Chemical
Engineering Communications, vol. 46, pp. 73–87, 1986.

W. Garcia-Gabin, J. Normey-Rico and E. Camacho. Slid-
ing mode predictive control of a dlayed CSTR 6th IFAC
Workshop on time-delay systems, IFAC Proceedings,
vol. 39 Issue 10, pp. 246–251, 2006.

P. Gatti. Probability theory and mathematical statistics
for engineers. London: Spon Press, 2005.

E. Gatzke and F. Doyle III. Multiple model approach for
CSTR control. newblock IFAC Proceedings, vol 32, pp.
6950–6955, 1999.

N. Gordon, D. Salmond, and A. Smith. Novel appoach
to nonlinear/non-Gaussian Bayesian state estimation.
IEEE Proceedings-F, vol. 140, no 2, pp. 107–113, 1993.

T. Hastie, R Thibshirani, and J Friedman. The elements
of statistical learning - Data mining, inference and
prediction. 2nd ed, Springer, 2017.

E. Ikonen, and K. Najim. Nonlinear process modeling
based on a Wiener approach. Proceedings of the Insti-
tute of Mechanical Engineers, Part I: Journal of Systems
and Control Engineering, vol. 215, no 1, 15–27, 2001.

E. Ikonen, and K. Najim. Advanced Process Identification
and Control. New York: Marcel Dekker, 2002.

E. Ikonen, I. Selek and K. Najim. Process control using fi-
nite Markov chains with iterative clustering. Computers
and Chemical Engineering, vol. 93, pp. 293–308, 2016.

E. Ikonen and I. Selek. Calibration of physical models
with process data using FIR filtering. Australian and
New Zealand Control Conference, 2020.

S. Julier, J. Uhlmann, and H. Durrant-Whyte. A new
approach for filtering nonlinear systems. American
Control Conference, 1620–1632, 1995.

C. Kravaris, M. Nuenuec, R. Berber and C. Brosilov.
Nonlinear model-based control of nonminumum phase
processes. In: R. Berber and C. Kravaris (eds.) Non-
linear Model Based Process Control, 115–142, Kluwer
Academic Publishers, 1998.

M. Lawrynczuk. Nonlinear predictive control of dynamic
systems represented by Wiener–Hammerstein models.
Nonlinear Dynamics, vol. 86, pp. 1193–1214, 2016.

L. Ljung. System Identification. Technical Report from
Automatic Control LiTH-ISY-R-2809, 1997.

P. Marusak. Numerically efficient fuzzy MPC algorithm
with advanced generation of prediction – Application to
a chemical reactor. Algorithms, vol. 13, issue 6, 2020.



76 Control Engineering and Applied Informatics

M. Nikolaou and P. Vuthandam. FIR model identification:
Parsimony through Kernel compression with Wavelets.
AIChE Journa,l vol. 44, pp. 141–150, 1998.

H. Perez, B. Ogunnaike and S. Devasia. Output tracking
between operating points for nonlinear processes: Van
der Vusse example. IEEE Transaction on Control
System Technology, vol 10, pp. 611–617, 2002.

S. J. Qin and L. H. Chiang. Advances and opportunities in
machine learning for process data analytics. Computers
and Chemical Engineering, vol. 126, pp. 465–473.

J. Richalet, A. Rault, J. Testud and J. Papon. Model
predictive heuristic control: Applications to industrial
processes. Automatica, vol. 14, pp. 413–428.

J. Shoukens and L. Ljung. Nonlinear system identification:
a user oriented road map. Control Systems Magazine,
vol. 39, pp. 28–99, 2019.

D. Simon. Optimal State Estimation - Kalman, Hinf and
nonlinear approaches. John Wiley, 2006.
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