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Abstract: This paper deals with a design a robust multi-variable control technique based on a multi-model 

(MM) Linear Parameter Varying (LPV) approach coupled with «H∞ » synthesis. The developed technique 

is applied to a three-tank non linear system (NL). The first part concerns the modeling of the three-tank 

system by using two approaches (MM based on linearization (MM-L) around several equilibrium points 

and MM quasi Linear Parameters Varying (MM-qLPV) polytopic approach. The second part is devoted to 

the design of two control laws: a multivariable polytopic state feedback control and a robust multivariable 

MM-H∞ control by dynamic output feedback (using MM polytopic formulation and Linear Matrix 

Inequalities (LMI)). Indeed, these control laws are based on the development of several local controllers 

(one controller per local model). Then, with a convex polytopic formulation, the MM approach combines 

these controllers to form a global controller that stabilizes the complete non linear system. Besides, a multi-

observer (MM based observer) is used to estimate the immeasurable states. Finally, the two synthesized 

global controllers are applied to the water level regulation of the previously modelled three-tank system. 

Furthermore, a comparison between the robust performances of these two controllers is made in nominal 

and disturbed modes. 

Keywords: Robust control, Multi model-H∞ synthesis, LMI, quasi-LPV modeling, Multi-observers, state 

feedback.

1. INTRODUCTION 

In automatic control the synthesis of a control law is generally 

based on a simplified nominal model that does not take into 

account the complexity of the system. In reality all systems and 

physical phenomena have non-linear or time-varying behaviors. 

To study these systems in different contexts (identification, 

control and diagnosis) the use of a non-linear model is more 

difficult and more delicate than the linear one. Several 

researchers have therefore adapted some linear techniques to 

apply them to non-linear systems. Among the modeling 

techniques allowing the representation of a non-linear system 

with the use of techniques adapted to linear models one can cite 

the multi-model (MM) approach, which is based on multiple 

Linear Time Invariants (LTI) models. This approach has been 

developed for several years as stated in (Murray et al., 1997). It 

is a convex polytopic representation that can be obtained either 

directly by a transformation of the non-linear mathematical 

model into a set of refined models in the state (see Rodrigues, 

2005), by linearization of the non linear model around different 

operating points or from black box models based on the 

system’s inputs and outputs data. Therefore, a description of the 

overall model is achieved through an interpolation of different 

local models and uses the weighting functions associated with 

each of them. This approach has produced interesting results for 

the observation, diagnosis and control of ordinary non-linear 

systems. Several categories of MM exist in the literature, such 

as linear systems with time-varying (LTV) or parameters 

varying (LPV) (Zerar et al., 2009) or quasi-LPV     (q-LPV) 

systems, still known as Takagi-Sugeno (T-S) systems (Takagi 

et al., 1985). The MM approach has a universal approximation 

property of systems and has the advantage of being able to 

accurately represent a non-linear model on a compact of state 

space representation.  Besides, MM approach has been used for 

several control problems. Feedback stabilization has been 

addressed for several types of T-S models and models with 

bounded parametric uncertainties as in (Chen et al., 2000) or 

delayed systems in (Cao et al., 2001). In fact, the most linear 

system control techniques are based on accurate knowledge of 

the mathematical model. In reality, it is almost impossible to 

accurately describe the behavior of real process. The basic idea 

is that it would be more fruitful to consider a process model as 

the combination of nominal models with uncertainties 

(structured or unstructured). In this case, the control issue must 

be addressed in such a way as to ensure robustness in relation 

to these uncertainties. Conventional commands such as PID or 

standard feedback control are limited and not capable (in some 

cases) to ensure optimal system’s operation when various 

disturbances (internal or external) appear. This results in a 

deterioration of process performances, and may even induce 

system instability. It is therefore necessary to use robust 

advanced control techniques, capable of taking into account 

system uncertainties, disturbances, and ensuring a good process 

behavior. There are many methods for robust controller’s 

synthesis. The focus in this paper will be on an LPV-H∞ based 

synthesis technique, where the designed controller must satisfy 

stability and robust performances against parametric 

uncertainties and external disturbances. The three tank system 

is considered as an application to validate the proposed 

techniques. Since a long time, the three tank system is 

considered as a benchmark and has attracted researchers to 
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develop and test several control strategies. In (Stoustrup et al., 

2000) a combined feedback control and fault detection and 

identification is applied to three tank system. The design 

problem is formulated as an H∞ standard design problem, but 

only one linearized model is considered. In (Galindo, 2005), 

based on a stable pre-compensator and its dual post-

compensator, a mixed sensitivity H∞ control methodology is 

tested on a Three-Tank-System but it did not consider the whole 

system but it has also taken one linearized model (obtained 

around one operating point). In (Qingfeng et al., 2006) a three 

tank system with data packets loss is modelled as a discrete-

time Markov jumping linear system and controlled by H∞ 

control approach, but only two linearized models have been 

considered (one linearized model when measurement packet is 

transmitted and another one when the packet is lost). In 

(Zhenping et al., 2012) a multi-model predictive PID cascade 

control strategy was presented for level control of three-tank 

system. A fuzzy controller has been designed in (Mastacan et 

al., 2013), a bees algorithm has been used in a model predictive 

control (MPC) in order to control three-tank systems in 

(Sarailooa et al., 2015). A constrained PD controller design with 

exact linearization in (Bistak, 2015). RBF-ARX model-based 

MPC in (Zhou et al., 2015). Interval type-II Fuzzy Logic 

controller is applied to three tank system in (Hituraj et al.,  

2016). A disturbance observer based backstepping controller in 

(Zi-Jiang et al., 2017). Adaptive based control in (Elmira  et al.,  

2017). Multiple linearized approach based on LQR design in 

(Sathishkumar et al., 2017). Two degree of freedom model 

reference control with dynamical principle model feedforward 

control extended by a nonlinear disturbance observer in (Bistak, 

2018). A feedforward controller with  a nonlinear model 

predictive controller in (Shuyou et al., 2018). A fuzzy sliding 

mode and linear matrix inequality approach in (Mellouli et al., 

2018). A finite-time disturbance observer-based non linear 

control combined with dynamic surface control in (Zi-Jiang et 

al., 2019). From all the mentioned literature and to the author’s 

knowledge there are no results on the application of MM-H∞ 

control technique to the nonlinear three tank system. Motivated 

by this, the main purpose of this paper is the development and 

the application of a MM-H∞ control/observation strategy to an 

uncertain non linear multivariable system which is a three tanks 

system. Firstly, three modeling techniques devoted to non-

linear systems (Linear Parameter Varying (LPV), Multi-Model 

(MM) technique by linearization around different operating 

points, MM based convex polytopic transformation) have been 

adopted and applied to the three tanks system. Then, based on 

linear matrix inequality (LMI) technique, and by using the 

developed Multi Model, a MM-H∞ observer/controller is 

synthesized and compared with a multivariable polytopic state 

feedback controller. 

The  paper  is  organized  as  follows:  after  this  introduction,  

three tank system description and its non linear modeling   are  

provided  in  Section 2.  Section 3 presents a quasi-LPV model 

of the three tank system and shows a comparison between this 

model and the non linear model. Section 4 gives a multi model 

reformulation (MM-qLPV) of the q-LPV model previously 

developed. The linearization approach of the non linear model 

is also presented in this section and compared with the           

MM-qLPV approach. Section 5 states the MM based Multi 

obsever design problem where the synthesis conditions are 

expressed in terms of strict LMI. Then, the MM-qLPV model 

is used in section 6 for polytopic state feedback control design 

and in section 7 for MM-H∞ control synthesis. A comparison 

between these two developed controllers (state feedback and 

MM-H∞ is tackled in Section 8. The paper ends with a 

conclusion. 

Notations:  MT denotes  the  conjugate  transpose  of  matrix  

M  and  || M ||∞ stands  for  the  ∞-norm  of  matrix  M  induced 

from  the  Euclidean  vector-norm.  M−1 is  the  inverse  of  

square  matrix  M and  MH is  the  Hermitian  matrix  defined  

by  M  +  MT.  O  and  I  denote  the  zero  matrix  and  the 

identity  matrix  of  appropriate  dimension  respectively.  

Finally, Matrix  inequalities  are  considered  in  the  sense  of  

Löwner,  i.e. <0  (resp.  ≤0)  stands  for  (semi-)negative  

definite  and >0  (resp  ≥0)  stands  for  (semi-)positive  

definite.      

2. THREE-TANK SYSTEM DESCRIPTION  

Three-tank system is a multi-input and multi-output (MIMO) 

non-linear hydraulic system, consisting of three tanks T1, T2 

and T3, one tarpaulin B0 and two pumps P1 and P2. Each tank 

is connected to the tarpaulin by a duct of section Sn whose flow 

is modulated by a manual valve. In addition, two ducts of the 

same sections, whose flow is modulated by a valve, allow to 

connect T1, T3 and T2 tanks respectively. The pumps operate 

one-way and are controlled in flow. Water levels in the tanks, 

noted ℎ1, ℎ2 are measured by sensors placed on the tanks, and 

the ℎ3 level is immeasurable.  
 

Tank T1 Tank T3 Tank T2 

Valve 10 Valve 30 Valve 20 

h1 

h3 

 h2 
Valve 13 

 

Valve 32 

Flow Q1 Flow Q2 

Tarpaulin  B0 

P2 P1 

 

Fig. 1. Three-tank system schematic diagram.  

This system is represented by the following equations (as in 

(AMIRA, 1996):  

{
 
 

 
 𝑆𝑐

𝑑ℎ1
𝑑𝑡

=  −𝑄10(ℎ1) − 𝑄13(ℎ1, ℎ3) + 𝑄1              

𝑆𝑐
𝑑ℎ2
𝑑𝑡

=  −𝑄20(ℎ2) + 𝑄32(ℎ2, ℎ3) + 𝑄2              

 𝑆𝑐
𝑑ℎ3
𝑑𝑡

=  −𝑄30(ℎ3) − 𝑄32(ℎ2, ℎ3) + 𝑄13(ℎ1ℎ3)

                                             (1) 

Where: 

𝑄 𝑖0 = 𝑎𝑧𝑖0𝑆𝑛√2𝑔ℎ𝑖
= 𝑎𝑖0√ℎ𝑖                                                                                                                     (2) 

𝑄𝑖𝑗 = 𝑎𝑧𝑖𝑗𝑆𝑛𝑠𝑖𝑔𝑛(ℎ𝑖 − ℎ𝑗)√2𝑔|ℎ𝑖 − ℎ𝑗|              

= 𝑎𝑖𝑗𝑠𝑖𝑔𝑛(ℎ𝑖 − ℎ𝑗)√|ℎ𝑖 − ℎ𝑗|                                     (3) 

Sc  :  section of a tank, 

𝑎𝑧𝑖𝑗: valve coefficient reflecting the flow rate of the duct 

connecting the element i to the element j via the valve ij. 
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𝑄 𝑖0 : flow of the tank Ti into the tarpaulin B0,  

𝑄 𝑖𝑗  : flow from the tank Ti to the tank Tj. 

The state space representation of this system is given by: 

{
  
 

  
 
[

ℎ1̇
ℎ2̇
ℎ3̇

] =
1

𝑆𝑐
[

−𝑄10(ℎ1) − 𝑄13(ℎ1, ℎ3)

−𝑄20(ℎ2) + 𝑄32(ℎ2, ℎ3)

−𝑄30(ℎ3) − 𝑄32(ℎ2, ℎ3) + 𝑄13(ℎ1, ℎ3)
] +

1

𝑆𝑐
[
1 0
0 1
0 0

] [
𝑄1
𝑄2
] 

𝑦 = [
1 0 0
0 1 0

] [

ℎ1
ℎ2
ℎ3

]                                                                                

(3) 

3. QUASI LINEAR PARAMETERS VARYING MODEL 

(qLPV MODEL) 

Its principle is based on a linear representation whose 

parameters vary over the time according to one or more 

external or internal variables, called sequencing or premise 

variables (see Chouaba, 2012; Scherer, 2001). This 

representation is not unique, and to write the system of the 

three tanks in equivalent qLPV form; one uses a weighted sum 

of the states xi(t) thanks to the real scalars λi and γi (i = 1,.., 
n). The choice of these scalars gives the possibility to highlight 

several LPV forms. For λi, γi and xi(t) not null, the weighted 

sums, ∑ 𝜆𝑖𝑥𝑖
3
𝑖=1 (𝑡) and ∑ 𝛾𝑖𝑥𝑖

3
𝑖=1 (𝑡)  are not null. By using 

these sums, the system state space representation can be 

written as follows:  

�̇�1 = −
𝑊13

∑ 𝜆𝑖𝑥𝑖(𝑡)
3
𝑖=1

√|𝑥1 − 𝑥3|∑𝜆𝑖𝑥𝑖

3

𝑖=1

(𝑡)              

+
𝑄1
𝑆𝑐
                                                                                   (5) 

�̇�2

= −
𝑊32

∑ 𝛾𝑖𝑥𝑖(𝑡)
3
𝑖=1

√|𝑥3 − 𝑥2|∑𝛾𝑖𝑥𝑖(𝑡)

3

𝑖=1

−
𝑎20
𝑆𝑐

√𝑥2

+
𝑄2
𝑆𝑐
                                                                                                                           (4) 

             �̇�3 =
𝑊13

∑ 𝜆𝑖𝑥𝑖(𝑡)
3
𝑖=1

√|𝑥1 − 𝑥3|∑ 𝜆𝑖𝑥𝑖(𝑡)
3
𝑖=1 −

𝑊32

∑ 𝛾𝑖𝑥𝑖(𝑡)
3
𝑖=1

√|𝑥3 − 𝑥2|∑ 𝛾𝑖𝑥𝑖(𝑡)
3
𝑖=1                                                                (7) 

With : 𝑊13 =
𝑎13𝑠𝑖𝑛𝑔(𝑥1−𝑥3)

𝑆𝑐
    ;   𝑊32 =

𝑎32𝑠𝑖𝑛𝑔(𝑥3−𝑥2)

𝑆𝑐
     

The premise variables are defined as follows: 

𝑧1 =
𝑊13

∑ 𝜆𝑖𝑥𝑖(𝑡)
3
𝑖=1

√|𝑥1 − 𝑥3|                                                                                (5)  

𝑧2 =
𝑎20
𝑆𝑐

√
1

𝑥2
                                                                                                          (6)   

𝑧3 =
𝑊32

∑ 𝛾𝑖𝑥𝑖(𝑡)
3
𝑖=1

√|𝑥3 − 𝑥2|                                                                              (7) 

Then, the system (4) takes the following qLPV form: 

{
�̇�(𝑡) = 𝐴(𝑧1, 𝑧2, 𝑧3)𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡)                                    
                                                                   (8)  

Where the matrices 𝐴(𝑧1, 𝑧2, 𝑧3), B and C are defined as 

follows: 

𝐴(𝑧1, 𝑧2, 𝑧3)

= [
−𝜆1𝑧1 −𝜆2𝑧1 −𝜆3𝑧1
𝛾1𝑧3 𝛾2𝑧3 − 𝑧2 𝛾3𝑧3

𝜆1𝑧1 − 𝛾1𝑧3 𝜆2𝑧1 − 𝛾2𝑧3 𝜆3𝑧1 − 𝛾3𝑧3

]                                               (12) 

𝐵 = [

1

𝑆𝑐
0

0
1

𝑆𝑐

0 0

] ;       

𝐶 = [
1 0 0
0 1 0

 ],                                

Where the premise variables z1, z2 and z3 are the external 

entries of the matrix A.  

The following paragraph summarizes this MM approach and 

explains how to choose the scalars λi and γi (i = 1,.., n) : 

1- Based on the non linear model (1 or 4) and by multiplying 

and dividing each state equation by ∑ 𝜆𝑖𝑥𝑖
3
𝑖=1 (𝑡) and/or  

∑ 𝛾𝑖𝑥𝑖(𝑡)
3
𝑖=1 ,  the equations (5, 6 and 7) are obtained. 

2- In order to remove the non linear part from these equations 

(5, 6 and 7), the premise variables z1, z2 and z3 given in 

equations (8, 9 and 10) are introduced and variable 

changes are performed. The quasi LPV model structure 

(11, 12) is then obtained. 

3- From mathematical point of view, the model structure   

(11, 12) is only but a reformulation of the non linear model     

(1 or 4). The choice of the scalars 𝛾𝑖and 𝜆𝑖 gives the 

possibility to highlight several LPV forms.   Thus, the 

quasi-LPV form (11, 12) is not unique and for each quasi-

LPV form there exist a particular premise variable set. 

Choosing a quasi LPV form is equivalent to choose the 

premise variable set which directly related to the choice 

of the scalars 𝛾𝑖and 𝜆𝑖. In fact, this is a degree of freedom 

that should be used to ease the controllability, the 

observability and the stability analysis studies. Besides, 

this degree of freedom can also be used, to minimize the 

norm of the obtained sub-models i.e. to obtain sub-models 

with small eigenvalues, which leads to a control law (or 

observer gain) with small energy.   

The simulation result illustrated by fig. 2 shows a 

comparison between the developed LPV model (11) and 

the NL model (4). The parameters used for the simulation 

are: λ1 = -0.7, λ2 = 5,  λ3 = 17, γ1 = 0, γ2 =-3, γ3 = -1 and 

the initial conditions x0= [0.05 0.02 0.01] meter. The 

control inputs used to excite the system are: a sine wave 

form for the flow Q1, and a step form for the flow Q2. From 

Fig. 2, it is clear that the LPV model and the non linear 

model have exactly the same behavior.  

Remark: Up to now, it is noted that all possible values of 

λi and   γi (i = 1,.., n) excluding the degenerated cases 
λ1=λ2=λ3=0 and/or γ1 = γ2 = γ3 = 0  give the same 

simulation results. Besides, all the models (with different 

λi and γi) are analytically equivalent with the initial 

nonlinear form of the three-tank model (1). However, the 

parameters values used in this simulation will be justified 

in the next sections. 

 
Fig. 2. Comparison between non linear (NL) and LPV 

models. 
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4. SYSTEM MODELING BY USING MULTI-MODEL 

(MM) FORMULATION 

Based on MM formulation, two models have been developed 

by using two different approaches:  

a) By linearization around several operating points, 

b) Quasi LPV polytopic approach (MM-qLPV).   

4.1. MM by Linearization Approach  

This approach is based on the linearization of the non-linear 

mathematical model of the physical process around different 

operating points (wisely chosen). Let us consider the following 

non-linear system: 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))                                                                                            (9) 

The linearization of the system (13) around an arbitrary 

operating point (xi0, ui0) is given by: 

�̇�(𝑡) = 𝐴𝑖(𝑥(𝑡) − 𝑥𝑖0) + 𝐵𝑖(𝑢(𝑡) − 𝑢𝑖0) + 𝑓(𝑥𝑖0, 𝑢𝑖0)                                 (10) 

that can be rewritten in the form of: 

�̇�(𝑡) = 𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡) + 𝑑𝑖                                                                              (11) 

with:  

𝐴𝑖 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
|
𝑥 = 𝑥𝑖0
𝑢 = 𝑢𝑖0

, 𝐵𝑖 =
𝜕𝑓(𝑥,𝑢)

𝜕𝑢
|
𝑥 = 𝑥𝑖0
𝑢 = 𝑢𝑖0

,   𝑑𝑖 = 𝑓(𝑥𝑖0, 𝑢𝑖0) − 𝐴𝑖𝑥𝑖0 −

𝐵𝑖𝑢𝑖0 

For the three tank system, the different coordinates of the 

operating points are obtained by the resolution of the following 

equations: 

{

 −𝑄10(ℎ1) − 𝑄13(ℎ1, ℎ3) + 𝑄1 = 0                 

−𝑄20(ℎ2) + 𝑄32(ℎ2, ℎ3) + 𝑄2 = 0               

 −𝑄30(ℎ3) − 𝑄32(ℎ2, ℎ3) + 𝑄13(ℎ1, ℎ3) = 0

                                              (12) 

The numerical values of the obtained operating points (x10, x20, 
x30, u10, u20)=(h10, h20, h30, Q1e ,Q2e) are summarized in Table 1. 

For each operating point, a local model is built. Therefore, the 

matrices of the multi-model are obtained as follows: 

 𝐴𝑖 =
𝜕𝑓(ℎ,𝑄)

𝜕ℎ
|
ℎ = ℎ𝑖0
𝑢 = 𝑄𝑖𝑒

, 𝐵𝑖 =
𝜕𝑓(ℎ,𝑄)

𝜕𝑄
|
ℎ = ℎ𝑖0
𝑄 = 𝑄𝑖𝑒

,  𝑑𝑖 = 𝑓(ℎ𝑖0, 𝑄𝑖𝑒) − 𝐴𝑖ℎ𝑖0 −

𝐵𝑖𝑄𝑖𝑒 

Table 1. Different operation points.  

i Q1e Q2e h10 h20 h30 

1 1.10-5 1.10-5 0.0330 0.0166 0.0248 
2 1.10-5 3.10-5 0.0829 0.0666 0.0747 
3 1.10-5 5.10-5 0.1661 0.1498 0.1579 
4 3.10-5 1.10-5 0.2134 0.0666 0.1400 
5 3.10-5 3.10-5 0.2966 0.1498 0.2232 
6 3.10-5 5.10-5 0.4131 0.2663 0.3397 
7 5.10-5 1.10-5 0.5575 0.1498 0.3537 

 

Where: 

 𝐴𝑖 =

[
 
 
 
 
 
 −

𝑎13
2𝑆𝑐𝑄1𝑒𝑖

0
𝑎13

2

2𝑆𝑐𝑄1𝑒𝑖

0 −(
𝑎32

2

2𝑆𝑐𝑄1𝑒𝑖
+

𝑎20
2

2𝑆𝑐(𝑄1𝑒𝑖 + 𝑄2𝑒𝑖)
)

𝑎32
2

2𝑆𝑐𝑄1𝑒𝑖

𝑎13
2

2𝑆𝑐𝑄1𝑒𝑖

𝑎32
2

2𝑆𝑐𝑄1𝑒𝑖
−
(𝑎32

2 + 𝑎13
2)

2𝑆𝑐𝑄1𝑒𝑖 ]
 
 
 
 
 
 

, 

𝐵𝑖 =
1

𝑆𝑐
[
1 0
0 1
0 0

]                                                                                                      (13) 

The previously obtained local models are implemented in 

Matlab/Simulink. A simple switching algorithm is also 

implemented in order to switch between these models 

depending on the operating points.  The obtained simulation 

results are illustrated in (Fig. 3) and (Fig. 4). In (Fig. 3) a 

comparison between the NL model and the MM model is 

performed. The sequencing variable used to switch between 

the models is shown in (Fig. 4). The (Fig. 3) shows that there 

are a transient (picks) at each commutation instants. These 

picks could produce actuator saturation and causes a 

deterioration of the system performances. This problem will 

be treated by the MM-LPV polytopic approach presented in 

the next subsection.   

 

Fig. 3. Comparison between NL and linearized models. 

4.2. MM-LPV polytopic approach 

A MM-qLPV polytopic form is developed by using the 

polytopic convex transformation (see Kiss et al., (2009). In 

fact, the premise variables zj given by (8), (9) and (10) can be 

written as follows: 

𝑧𝑗  =  𝐹𝑗,1(𝑧𝑗(𝜌(𝑥, 𝑢))𝑧𝑗,1  +  𝐹𝑗,2 (𝑧𝑗(𝜌(𝑥, 𝑢)) 𝑧𝑗,2                                        (14) 

Where the scalars zj,1 and zj,2 are defined by:  

𝑧𝑗,1 = 𝑚𝑎𝑥
𝑥,𝑢

(𝑧𝑗(𝜌(𝑥, 𝑢))                                                                                       (15) 

𝑧𝑗,2 = 𝑚𝑖𝑛
𝑥,𝑢

(𝑧𝑗(𝜌(𝑥, 𝑢))                                                                                        (16) 

and the functions 𝐹𝑗,1, 𝐹𝑗,2 are given by: 

𝐹𝑗,1(𝑧𝑗(𝜌(𝑥, 𝑢))) =
𝑧𝑗(𝜌(𝑥, 𝑢)) − 𝑧𝑗,2

𝑧𝑗,1 − 𝑧𝑗,2
                                                              (17) 

𝐹𝑗,2 (𝑧𝑗(𝜌(𝑥, 𝑢))) =
𝑧𝑗,1 − 𝑧𝑗(𝜌(𝑥, 𝑢))

𝑧𝑗,1 − 𝑧𝑗,2
                                                            (18) 

 

Fig. 4. Sequencing between different sub-models. 
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Thus, the MM is composed of r = 23 sub-models. The 

weighting functions are calculated as follows: 

𝜇𝑖(𝑥) = ∏ 𝐹
𝑗,𝜎𝑖

𝑗 (𝑧𝑗(𝜌(𝑥, 𝑢)))
3
𝑗=1                                                                        (19) 

= 𝐹1,𝜎𝑖
1(𝑧1) 𝐹2,𝜎𝑖

2(𝑧2) 𝐹3,𝜎𝑖
3(𝑧3) 

The variables Fi,j  for each sub-model are summarized in     

Table 2. 

Table 2. Construction of MM with three premise 

variables. 

Where the index vector σi = (σi,1,.., σi,p) containing values 1or 2 

provides the value of the index i representing the number of 

the obtained sub-model. The constant matrices of each sub-

model are given by: 

 𝐴𝑖 = 𝐴(𝑧1,𝜎𝑖1 , 𝑧2,𝜎𝑖2 , 𝑧3,𝜎𝑖3) , 𝐵𝑖 = 𝐵,𝐶𝑖 = 𝐶,   𝑖 = 1,… , 8.                          (24)                  

Finally, the NL system (4) is rewritten as a MM: 

{
�̇�𝑖(𝑡) =∑𝜇𝑖

8

𝑖=1

(𝑥(𝑡))[𝐴𝑖𝑥(𝑡) + 𝐵𝑢(𝑡)]

𝑦(𝑡) = 𝐶𝑥(𝑡)                                               

                                                        (20) 

Note that the weighting functions µi and the matrices Ai depend 

on the scalars λi and γi (i =1, 2, 3). As said before, for different 

choices of these scalars, different MM will be obtained (except 

the case where λ1=λ2=λ3=0 and/or γ1=γ2 =γ3=0 which is not 

possible because it gives a division by zero in (8) and (10)).  

4.3. Choice of MM-LPV structure and parameters 

For the choice of the MM structure it is necessary to take into 

account the conditions to be respected (for example the 

observability and the controllability of the system) by a good 

choice of the real scalars λi and γi (i = 1, 2, 3). This choice is 

key point in order to be able to synthesize both observer and 

controller for the three tanks system. The following points 

explain how to choose the scalars λi and γi. 

1- First of all, the controllability and observability of each 

sub-model is necessary to ensure the controllability and 

observability of the global system, represented in a 

multiple model form. Thus, the scalars producing sub-

models which are not controllable or observable will not 

be considered.  

2- One eliminates all the quasi-LPV forms for which the 

matrices have null columns and or rows. For example: if 

the parameters 𝛾3 = 0 and 𝜆3 = 0 are chosen, the 

observability is not respected as shown below. 

a- The system observability matrix 𝒪 is given by : 

𝒪 =

[
 
 
 
 
 
1 0 0
0 1 0

−𝜆1𝑧1
𝛾1𝑧3
(∗)51
(∗)61

−𝜆2𝑧1
𝛾2𝑧3 − 𝑧2
(∗)52
(∗)62

−𝜆3𝑧1
𝛾3𝑧3
(∗)53
(∗)63 ]

 
 
 
 
 

                                

Where (*)ij represent the following terms: 

(∗)51 = 𝜆1𝑧1
2(𝜆1 − 𝜆3) + 𝛾1𝑧1𝑧3(𝜆3 − 𝜆2) 

(∗)52 = 𝜆2𝑧1
2(𝜆1 − 𝜆3) + 𝛾2𝑧1𝑧3(𝜆3 − 𝜆2) + 𝜆2𝑧1𝑧2 

(∗)53 = 𝜆3𝑧1
2(𝜆1 − 𝜆3) + 𝛾3𝑧1𝑧3(𝜆3 − 𝜆2)                  

 (∗)61 = 𝜆1𝑧1𝑧3(𝛾3 − 𝛾1) − 𝛾1𝑧3[𝑧2 + 𝑧3(𝛾3 − 𝛾2)]  

 (∗)62 = (𝛾2𝑧3 − 𝑧2)
2 + 𝜆2𝑧1𝑧3(𝛾3 − 𝛾1)−𝛾2𝛾3𝑧3

2                                      

 (∗)63 = −𝜆3𝛾1𝑧1𝑧3 + 𝛾3𝑧3[(𝛾2 − 𝛾3)𝑧3 − 𝑧2 + 𝜆3𝑧1] 

For 𝛾3 = 0 and 𝜆3 = 0, the terms (∗)53 = 0  and  (∗)63=0, 

then the third column of the observability matrix  𝒪 is null and   

rank(𝒪) =2 therefore the system is not observable. Then, one 

can conclude that all the sub-models that can be obtained from 

(11, 12) are observables for 𝛾3 ≠0 and 𝜆3 ≠ 0. 

b- The system controllability matrix 𝑄 is given by: 

𝑄 = [𝐵 𝐴𝐵…𝐴𝑛−1𝐵] = [𝐵 𝐴𝐵    𝐴2𝐵] 

    = 1/𝑆𝑐 [
1 0
0 1
0 0

    
−𝜆1𝑧1 −𝜆2𝑧1
𝛾1𝑧3 𝛾2𝑧3 − 𝑧2

𝜆1𝑧1 − 𝛾1𝑧3 𝜆2𝑧1 − 𝛾2𝑧3

    
∗
∗
∗
      
∗
∗
∗
] ,                              

Like the observability, the same analysis is performed for the 

controllability matrix Q. As an example, if one take 𝛾1=0,  and 

taking into account that the degenerate cases (x1 = x3, x2 = x3 

and x1= x2 = x3 =0) are excluded, the maximum and the 

minimum of the premise variables are always non null (𝑧1 ≠0), 

one can conclude from the third column of Q that all the sub-

models are controllable if  𝜆1 ≠ 0.  (rank(Q)=3 for 𝜆1 ≠ 0). 
Similar studies can be realized for the other possible cases. 

3- Secondly, it is noted that the degree of freedom given by 

the scalars 𝛾𝑖and 𝜆𝑖 is also used to minimize the energy of 

the controller output u trough the norm-2 minimization of 

the eigenvalues of the sub-models matrices Ai (i=1,..,8) of 

(25). In fact, it is clear that when a system has a big 

(positive) eigenvalues, this need a big effort (energy) from 

the controller to stabilize it. So a justified good choice of 

𝛾𝑖and 𝜆𝑖 is the one who leads to a set of models (sub-

models whose matrics Ai have small eigenvalues. 

To summarize, the scalars 𝛾𝑖and 𝜆𝑖 are chosen to ensure 

submodels observability and controllability and minimal  

norm-2 of the eigenvalues of the sub-models matrices Ai of the 

MM given by (25). 

5. MULTI-OBSERVER DESIGN  

As mentioned before, a synthesis of an observer is necessary 

in order to estimate the immeasurable state of the system. 

5.1. Observervability  condition  

To build an observer based on the developed MM, the 

observability of each sub-model is necessary to ensure the 

observability of the global MM. The following geometric 

condition is used (Kiss, 2010; Chi-Tsong Chen,1999): 

Model i  Partitions  

 z1  z2  z3  σi 
 F1,1 F1,2 F2,1 F2,2 F3,1 F3,2  

1 1 0 1 0 1 0 (1,1,1) 
2 1 0 1 0 0 1 (1,1,2) 
3 1 0 0 1 1 0 (1,2,1) 
4 1 0 0 1 0 1 (1,2,2) 
5 0 1 1 0 1 0 (2,1,1) 
6 0 1 1 0 0 1 (2,1,2) 
7 0 1 0 1 1 0 (2,2,1) 
8 0 1 0 1 0 1 (2,2,2) 
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𝑟𝑎𝑛𝑔(𝒪𝑖) = 𝑟𝑎𝑛𝑔 [

𝐶𝑖
𝐶𝑖𝐴𝑖
⋮

𝐶𝑖𝐴𝑖
𝑛−1

] = 𝑛   ∀𝑖 =  1, . . . , 8                                          (21) 

Where n is the system order. The matrices Ai (i = 1, ..., 8) have 

the same structure as the matrix A. The difference is that each 

variable z1, z2 and z3 takes its maximum or minimum. 

Assuming that degenerated cases are excluded (x1 = x3, x2 = 
x3 and x1 = x2 = x3 = 0), where the maximum and minimum 

of the premise variables are nonzero. Therefore, the eight 

observability conditions (26) have to be verified.  

5.2. Synthesis of a MM observer  

The method used here for the synthesis of an observer is based 

on the MM (18). Consider the matrices 𝐴0 and 𝐴𝑖 defined by: 

𝐴0 =
1

𝑟
∑ 𝐴𝑖
𝑟
𝑖=1 ,  �̅�𝑖 = 𝐴𝑖 − 𝐴0,  r=8                                                                  (27)                                                   

By substituting 𝐴0 and �̅�𝑖 in the state equation of the MM (25), 

the Multi-observer used for the three-tank system has the 

following form (as in Kiss, 2010): 

{
�̇� = 𝐴0𝑥 +∑µ𝑖(�̂�)[�̅�𝑖�̂� + 𝐵𝑢 + 𝐿(𝑦 − �̂�)]

𝑟

𝑖=1

�̂� = 𝐶 𝑥                                                                     

                                            (22) 

Where L is the observer gain (a matrix to be determined). The 

state estimation error is given by: 

𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)                                                                                                (23) 

Its dynamic is: 

�̇�(𝑡) = (𝐴0 − 𝐿𝐶)𝑒(𝑡) + ∆(𝑥, 𝑥)                                                                       (24) 

where:  

∆(𝑥, 𝑥) =∑�̅�𝑖(µ𝑖(𝑥)𝑥 − µ𝑖(�̂�)�̂� + 𝐵(µ𝑖(𝑥) − µ𝑖(𝑥)𝑢)

𝑟

𝑖=1

                           (25) 

According to the convergence theorem of the estimation error 

presented in (Ichalal et al., 2008) (Lemma 1), the state 

estimation error between the MM (25) and the observer (28) 

asymptotically converges to zero, if there exist matrices             

P = PT > 0, Q = QT > 0 and K such that the following LMI 

(Boyd, S. et al. (1994)) conditions are met: 

[
𝐴0
𝑇𝑃 + 𝑃𝐴0 − 𝐶

𝑇𝐾𝑇 − 𝐾𝐶 +𝜓2𝑄 𝑃
𝑃 −𝑄

] < 0                                              (32) 

The observer gain (28) is given by: 

𝐿 = 𝑃−1𝐾                                                                                                                 (33) 

It should be noted that the number of LMIs does not depend 

on the number of sub-models. It only depends on A0, the 

average matrix of the sub-models matrices A𝑖. Nevertheless, 

A0 and A𝑖  share the same structure, so the choice of the MM 

is important in determining the gain L. For the simulation, the 

parameters  λ1 = − 0.7,  λ2 = 5, λ3 = 17, γ1 = 0, γ2 = −3, γ3 = 
−1 and   ψ= 0.01 have been used. These parameters were 

chosen to comply with the observability conditions discussed 

in the previous sub-section. Considering different initial 

conditions (x0=[0.03 0.02 0.01] meter) for MM and ( �̂�0= 
[0.03 0.4 0.1] meter) for the observer. The states estimation 

results given by (Fig. 5) are correct, although white noise was 

added to all the states. Besides, as shown in (Fig. 6), it is clear 

that estimation error is almost zero. The LMI condition (32) is 

checked and the obtained matrices P, Q and the observer gain 

L are: 

𝐿 = [
2.1436 0.0023
−0.0216 2.0673
−7.1293 0.3886

], 𝑃 = [
5.9216   −0.0667  0.3130
 −0.0667 4.8562 −0.0195
 0.3130  −0.0195  0.1013

],  

𝑄 = [
24.5390 −0.4061  4.1753
 −0.4061  18.0554 −0.2605
 4.1753   −0.2605  16.6323

].

 

Fig. 5. Comparison of estimated and noisy system states. 

 

Fig. 6. Estimation errors in the presence of noise. 

Fig. 7 shows a comparison between the NL model and the 

developed MM. For the states h1 and h3, it is noted that there 

is a small error between the NL and the MM states from 0 to   

500 sec. This is due to the difference in initial conditions. Fig. 

8 shows that all the weighting functions, except for a few peaks 

due to noise, are in the range [0 1], the convexity condition is 

then respected. 

 

Fig. 7. Comparison between NL model and MM.  
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Fig. 8. Weighting functions µ𝑖 

6. MM-qLPV BASED STATE FEEDBACK CONTROL 

DESIGN 

This section is dedicated to the presentation of simulation 

results obtained by using a MM-qLPV based multivariable 

state feedback K applied to the control of the non linear three 

tank system.  A standard state feedback control law is given 

by: 

𝑢(𝑡) = −𝐾𝑥(𝑡)                                                                                                      (34) 

In MM convex polytopic approach, one calculates a state 

feedback gain 𝐾𝑖  of each local sub-model. Then, the global 

gain K is given by the following expressions: 

𝐾

=∑µ𝑖(�̂�) ∗ 𝐾𝑖              

𝑟=8

𝑖=1

                                                                                   (265) 

with: µ𝑖(�̂�) the weighting functions given by (23), and the 

states estimate �̂� are ensured by the multi-observer (28). Each 

matrix gain 𝐾𝑖   is calculted using multivariable state feedback 

algorithm presented in (Antsaklis et al., 1997). The global state 

feedback controller must ensure the stability of the closed loop 

system and reduce the effect of exogenous disturbances.  

Remark 1 : about the static performance, among the possible 

solutions to ensure zero static error is the use of decoupling 

matrix. It is noted that in some applications the use of 

integrators block is enough to ensure zero static error. 

6.1. Closed-loop simulation results (convex polytopic 

approach) 

By using the MM based multi observer  (28) and the MM state 

feedback control (34) and (35), references step change 

regulation of both levels h1 and h2 is performed (in nominal 

condition). A white noise with zeros mean is added to the 

outputs.  Fig. 9  and  Fig.  10  show the simulation results with 

initial conditions (x0=[0.003 0.002 0.001] meter). The 

obtained regulation performances are good. However, there is 

an overshoot in the first output h1. With the following choice 

of closed loop poles ([-0.38 -0.35 -0.36]), the obtained Ki 

gains are given by: 

𝐾1 = [
0.0057    −0.0017  −0.0108
 −0.0005 0.0109 0.0567

]  ; 𝐾2 = [
0.0060    0.0014  −0.0413
  0.0013 0.0114 −0.1383

]; 

 

𝐾3 = [
0.0057    −0.0017  −0.0108
  −0.0005 0.0120 0.0567

]  ; 𝐾4 = [
0.0060    0.0014  −0.0413
  0.0013 0.0125 −0.1383

]  ; 

𝐾5 = [
0.0056   −0.0007   −0.0082
  −0.0001  0.0095 0.0676

]  ; 𝐾6 = [
0.0056    0.0006  −0.0044
  0.0000 0.0103 −0.0392

]  ; 

𝐾7 = [
0.0056   −0.0007   −0.0082
  −0.0001  0.0106  0.0676

]  ; 𝐾8 = [
0.0056    0.0006  −0.0044
  0.0000 0.0114 −0.0392

]  . 

Remark 2: it is noted that the static errors are treated by adding 

the term 𝑢𝑖 = −𝐾𝑖𝑛𝑡 ∫ 𝜀(𝜃)𝑑𝜃
𝑡

0
  to the control u(t), where         

𝜀(𝜃) = 𝑦(𝑡) − y𝑟(𝑡), the error between the outputs y(t) and 

the references y𝑟(t). After few trials, the following integral 

matrix gain is chosen:  𝐾𝑖𝑛𝑡 = [
0.0005 0

0 0.02
]. 

 

Fig. 9. Three-tank system response in closed loop (polytopic 

approach with observer and noisy outputs). 

 

              (a) 

    

               (b) 

Fig. 10. (a) State feedback control signals (polytopic 

approach with noisy outputs), (b) Zoom. 
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7. MM-qLPV BASED H∞ CONTROL DESIGN 

The linear fractional transformations (LFT) of the standard 

problem is shown in the fig. 11 (Doyle et al., 1991)). The 

resolution of the standard problem (generalized mixed 

sensitivity problem) involves finding a dynamic control law     

u = K(s) y  minimizing the influence of the exogenous signals 

w on the controlled output signal z, such that: 

 

 

 

 
 

Fig. 11. Standard problem LFT representation. 

‖[
𝑊𝑃𝑆
𝑊𝑎𝑅
𝑊𝑡𝑇

]‖

∞

< 1                                                                                                     (36) 

where 𝑊𝑝 ,𝑊𝑎,𝑊𝑡 the weighting filters. S, R, T the sensitivity 

functions. The closed loop states space representation of the 

three tank system can be written as follows: 

{

�̇� = 𝐴𝑥 + 𝐵1𝑤 +𝐵2𝑢                
𝒛 = 𝐶1𝑥 + 𝐷11𝑤 + 𝐷12𝑢           
𝑦 = 𝐶2𝑥 + 𝐷21𝑤 + 𝐷22𝑢          

                                                                         (37) 

With :    𝑢 = [
𝑄1
𝑄1
], 𝑤 = [

ℎ1 𝑟𝑒𝑓
ℎ2 𝑟𝑒𝑓

], 𝑦 = [
ℎ1 𝑚𝑒𝑠
ℎ2 𝑚𝑒𝑠

] and 𝒛 = [

ℎ1 𝑚𝑒𝑠
ℎ2 𝑚𝑒𝑠
𝑄1
𝑄2

]  

Q1, Q2 are the pump flows.  

h1 ref and h2 ref are the reference levels for h1 and h2.  

h1 mes and h2 mes are the measurements of levels h1 and h2. 

The technique adopted in this work to find the robust controller 

K(s) is based on LMI approach of (Scherer C. et al., 1997). By 

using the transformation (38), the output feedback controller 

K(s) is obtained by solving the LMIs (39) and (40). The 

matrices M and N are chosen such that: 𝑀𝑁𝑇 = 𝐼𝑁 − 𝑋𝑌. This 

choice allows to find the optimal 𝐻∞  controller: 

{
 
 

 
 �̃� = 𝐷𝑐                                                                                              

�̃� = 𝐷𝑐𝐶2𝑋 + 𝐶𝑐𝑀
𝑇                                                                      

�̃� = 𝑌𝐵2𝐷𝐶 + 𝑁𝐵𝐶                                                                           

�̃� = 𝑌𝐴𝑋 + 𝑌𝐵2𝐷𝐶𝐶2𝑋 + 𝑁𝐵𝐶𝐶2𝑋 + 𝑌𝐵2𝐶𝐶𝑀
𝑇 +𝑁𝐴𝐶𝑀

𝑇

                   (38) 

[
 
 
 
 

𝐴𝑋 + 𝐵2�̃� 0 0                  0

�̃� + 𝐴𝑇 + 𝐶2
𝑇�̃�𝑇𝐵2

𝑇 𝑌𝐴 + �̃�𝐶2  0                   0 

𝐵1
𝑇 +𝐷21

𝑇 �̃�𝑇𝐵2
𝑇

𝐶1𝑋 + 𝐷12�̃�

𝐵1
𝑇𝑌 + 𝐷21

𝑇 �̃�𝑇

𝐶1 + 𝐷12�̃�𝐶2

−𝛾∞𝐼𝑛         0

𝐷11+𝐷12�̃�𝐷21 −𝛾∞𝐼𝑛]
 
 
 
 

  

𝐻

< 0(39) 

[
𝑋 𝐼𝑛
𝐼𝑛 𝑌

] > 0                                                                                                            (40) 

If there exist the matrices X, Y, �̃�, �̃�, �̃� and �̃� with minimal 

𝛾∞. The state representation of the 𝐻∞  controller is given by: 

[
�̇�𝑐
𝑢
] = [

𝐴𝑐 𝐵𝑐
𝐶𝑐 𝐷𝑐

] [
𝑥𝑐
𝑦 ]                                                                                           (27) 

7.1. Weighting functions selection 

Weighting filter 𝑊𝑃  : 

  

Used to reject low frequency disturbances,.  𝑊𝑃 is chosen as  a 

low pass filter given by: 

𝑊𝑃 =
𝐾𝑐 𝑠 + 𝐾𝑑

𝑠+ 𝐾𝑑
                                                                                                          (42) 

Where Kc, Kd  are the tuning parameters.  

Weighting filter 𝑊𝑢:  

Used to limit the bandwidth of the controller and avoid high 

amplitude control signals, 𝑊𝑢 is appropriately chosen as a 

constant gain. 

Weighting filter 𝑊𝑡 :  

Is chosen as a high-pass filter given by:  

𝑊𝑡 =
𝐾𝑒 𝑠+𝐾𝑓

𝑠+ 𝐾𝑏
                                                                                               (43) 

Where Ke, Kf  and Kb are the tuning parameters.  

7.2. Simulation results  

Remember that the developed MM is made up of eight         sub-

models, so eight standard representations have been obtained. 

Now, one calculates for each sub-model an output feedback 

controller Ki(s) (i=1,…, 8) that ensures both stability, dynamic 

and static performances (imposed by the weighting filters). 

The synthesized controller must also be realizable (i.e., the 

control efforts must not exceed the actuators physical limits). 

In our case, the maximum effort, which is the pumps 

maximum flow, is equal to Qmax=0.01 m3/sec. 

Finally, the global 𝐻∞ output feedback controller K(s) is 

created by a weighting sum combining all the sub-models. 

Each of the Ki(s) controllers can be written in the form of a 

dynamic output feedback whose state matrices are given by: 

𝐾𝑖(𝑠) = [
𝐴𝑐𝑖 𝐵𝑐𝑖
𝐷𝑐𝑖 𝐷𝑐𝑖

]                                                                                               (44) 

and the overall polytopic MM-H∞ controller K(s) is given by: 

𝐾(𝑠) =∑µ𝑖

𝑟=8

𝑖=1

∗ [
𝐴𝑐𝑖 𝐵𝑐𝑖
𝐷𝑐𝑖 𝐷𝑐𝑖

]                                                                                 (45) 

With : µ𝑖  the weighting functions satisfying the convexity 

conditions:     

0 ≤ µ𝑖(𝑡) ≤ 1                and           ∑ µ𝑖
𝑟=8
𝑖=1 = 1                                            (46) 

Finally, to check the performances of the proposed 

controller/observer synthesis approach, the robust MM-H∞ 

controller K(s) is applied to the non-linear model of the three-

tank system. The states used in the premise variable (µ𝑖(�̂�)) 
are observed by the developed multi-observer (28). Fig. 12 

shows the simulation results of the outputs levels (h1 and h2) 

of the three-tank system non linear model, with initial 

conditions                 x0 =[0.02 0.09 0.01] meter. Different 

initial states have been used for the observer x0 =[0.03 0.02 
0.01] meter. One can see that the  output levels follow the  

references well with a  small overshoot for the level h2 (around 

6.05%), no overshoot for h1. Acceptable   response times  

(𝑡𝑟ℎ1=54.7 sec, 𝑡𝑟ℎ2=36.14 sec)  are obtained.  Fig.13 (a, b 

and  c) shows  the control signals of  the pumps  with  zooms 

on the step change instants.  These signals are 50% less than 

the authorized maximum effort.  
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Fig. 12. Three-tank system outputs with MM-H∞ 

controller/observer. 

 

Fig.13. (a) MM-H∞  control signals with observer. 

 

Fig. 13. (b) MM-H∞  control signals (zoom 1)./ 

 

Fig. 13. (c) MM-H∞  control signals (zoom 2). 

Fig. 14 shows that the convexity condition (all the weighting 

functions belong in the interval [0 1]) is checked. Fig. 15 

shows the same thing for the functions 𝐹𝑖,𝑗. 

 

Fig. 14.  Weighting functions. 

 

Fig. 15. Functions 𝐹𝑖,𝑗. 

To test the robustness of the proposed design approach in the 

presence of noise, a white noise (with zero mean) is added to 

the system outputs. Although the level measurements given by 

the sensors are noisy, the MM-H∞ controller/observer ensures 

a good regulation as shown in fig. 16. 

 

Fig. 16. Three-tank system outputs with MM-H∞ 

controller/observer (with noise).  
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8. COMPARISON BETWEEN MULTIVARIABLE 

STATE FEEDBACK AND MM-H∞ CONTROLLERS  

In this section a robustness test is performed to compare the 

robust performances of both designed controllers (the 

polytopic state feedback control and the MM-H∞ control) in 

disturbed mode. Firstly, parametric uncertainty robustness test 

is carried out, and secondly robustness against external 

disturbance is tested. 

8.1. Parametric uncertainty robustness test 

In this case the valve 10  (which was initially closed during all 

the previous simulation) is 20% opened  in the interval [500 
800] sec. which causes a change in the corresponding 𝑎𝑧10 

parameter. Fig. 17 and fig. 18 show the obtained results. 

 

Fig. 17. Comparison between state feedback and MM-H∞.  

 

 

Fig. 18. Polytopic state feedback and  MM-H∞ control 

signals.  

One notices that both controllers (polytopic state feedback and 

MM-H∞) are quite robust against this parameter uncertainty, 

but the performances of the MM-H∞ controller are better than 

those of the state feedback. Table 3. summarizes these 

performances.  

Table 3. Performances Comparison between state 

feedback and MM-H∞ controllers. 

performances State feedback 

controller 

MM-H∞ 

controller 

Overshoot h1   = 17.5 % 
h2   = 27.5 % 

h1   = 0 % 
h2   = 6.05 % 

Static Error  0 0 

Response time 𝑡𝑟ℎ1= 50.48 s 
𝑡𝑟ℎ2= 19.15 s 

𝑡𝑟ℎ1=54.7 s 
𝑡𝑟ℎ2 = 36.14 s 

Disturbance 

rejection time 

 𝑡ℎ2 = 8.5 s 
𝑡ℎ1 = 25.1 s 

𝑡ℎ2 = 4.2 s 
𝑡ℎ1 = 10.6 s 

According to this table it is noted that the polytopic state 

feedback controller has larger overshoot than the MM-H∞ one, 

but it is faster. The static error is zero in both controllers. 

Regarding the time of disturbance rejection, it is noted that the 

robustness of the MM-H∞ controller is better than the 

polytopic state feedback one. 

8.2. Measurement disturbances test  

In this case, a disturbance of 2cm is added to the 

measurements (h1 and h2) from 300 sec to 500 sec. Fig. 19 (a 

and b) and        fig. 20 (a and b) show respectively the regulated 

outputs        (h1, h2 levels) subject to external disturbances and 

the corresponding control signals.  

 

Fig. 19. (a) Comparison between state feedback and MM-H∞ 

controls subject to external disturbance. 

 

Fig. 19. (b) Comparison between state feedback and MM-H∞ 

controls subject to external disturbance (Zoom of fig 19.( a)). 
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Fig. 20. (a) Polytopic state feedback control signals.  

 

Fig. 20. (b)   MM-H∞ control signals.  

From these figure, it is noted that the presence of external 

disturbances influences regulation performances of the 

polytopic state feedback. On the other hand, the MM-H∞ 

controller gives better robust performances and keeps some 

robustness.  

9. CONCLUSION 

Two control techniques have been developed and applied to 

the three tanks system: a polytopic state feedback approach 

and MM-H∞ approach. A comparison of the performances of 

these techniques is carried out through different simulations 

test in nominal and disturbed cases. The obtained results have 

clearly demonstrated the effectiveness of the MM-H∞ 

controller over the state feedback one in maintaining the robust 

performances against the system parameters uncertainties, 

measurement noise and external disturbances of the levels 

measurements. Finally, it can be concluded, that the robust 

MM-H∞ controller combined with a multi-observer applied to 

the three-tank system is efficient, because it can guarantee the 

achievement of better robust performances compared to state 

feedback controller. However, it is noted that the tuning of the 

MM-H∞ waiting filters is obtained after some tests and it 

could be considered as the main disadvantage of the proposed 

approach. As a perspective to this work, it will be interesting 

if the weighting filter parameters could be included as a free 

parameter in the controller design like (Dinh et al., 2005). 
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