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Abstract: To overcome the shortcomings associated with modeling difficulty from Coulomb friction and 

low accuracy from traditional methods, this paper proposes a two-step modeling method based on 

Lagrange equation for the inverted pendulum. After establishing the high nonlinear dynamic model, the 

model predictive control (MPC) is adopted for the inverted pendulum control and the satisfactory results 

are obtained. Furthermore, those studies⎯the comparisons of simulation and experiment from literature, 

the statistics of averaged computation time, the responses of no Coulomb friction, the responses of 

having constraints of maximum control force, and the influences of MPC parameters⎯are respectively 

carried out. Compared with experimental results from the literature, simulation results are effective and 

reliable, which further explain the fluctuation phenomenon caused by Coulomb friction after entering the 

stable state and thereby illustrate the higher accuracy of the model proposed in this paper. Moreover, 

simulation results demonstrate that MPC has obvious advantages of dealing with highly nonlinear system 

with constraints and hence has a high value of practical application, and also reveal that the control and 

prediction horizon risen properly can improve the response performance. 
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1. INTRODUCTION 

Inverted pendulum, a typical multivariable, under-actuated, 

nonlinear, and strongly coupled unstable system, is one of the 

best model used for evaluating the performance of modern 

control methods. A high accuracy model applied for the 

control simulation is extremely important whether it can be 

used for real-time control for a physical model. To establish 

the model as accurately as possible, it is necessary to 

consider the nonlinear damping resulted from the friction or 

the parameter uncertainties caused by the manufacturing and 

assembly. Accordingly, a large number of studies have been 

carried out in order to improve the modeling accuracy of 

inverted pendulum, even applying the identification model to 

overcome the uncertainty encountered in modeling (Coxe, 

2019; Hazem et al., 2020; Jadlovska et al., 2013; Muhammad 

et al., 2013; Shalaby et al., 2019; Tian et al., 2019).  

Currently, there are mainly four methods used for dynamic 

modeling: Newton−Euler, Lagrange, Kane, and variational 

method (Balafoutis, 1994; Liu, 2016; Sandino et al., 2013). 

Among these methods, Lagrange equation of second kind 

uses the independent generalized coordinates to express the 

energy and work of the dynamic system, and then based on 

pure mathematical method obtains the differential equations 

whose number is equal to degrees of freedom. Due to the 

unified compact form, it has significant advantage when we 

manually deduce equations with a small number of degrees 

of freedom, which becomes the most popular modeling 

method for inverted pendulum.  

When Lagrange equation of second kind is adopted for

modeling of inverted pendulum, it is necessary to calculate 

the generalized force from friction by work involving in 

integral operation. Unfortunately, the work produced by 

Coulomb friction will cause great difficulties for the 

derivation of equation. Maybe “it is for this reason” that 

many researchers neglect the Coulomb friction and only 

consider the linear damping in modeling of inverted 

pendulum, and some even neglect damping (Andrzejewski et 

al., 2019; Chandra et al., 2019; Cruz et al., 2016; 

Hassanzadeh et al., 2011; Jadlovska et al., 2013; Shahab et al., 

2017). Obviously, these modeling methods handling damping 

are inaccurate, and difficult to explain special phenomena 

(say the stable fluctuation phenomenon shown in this work) 

encountered in the experiment. Sometimes it can lead to a 

control failure in physical control owing to excessive error 

between the simulation and real models.  

Therefore, to overcome the issue in modeling considering 

Coulomb friction, a two-step modeling method based on 

Lagrange equation of second kind is presented. At first, the 

dynamic equation of the inverted pendulum is established by 

using Lagrange equation of second kind without considering 

the damping, which obtains the dynamic equilibrium form 

with respect to force and moment similar to D’ Alembert 

principle. Then, the Coulomb friction, viscous friction, and 

friction moment are directly added into the established 

equations without damping. It is noted that the plus or minus 

sign of the added force and moment depends on its direction 

with respect to the coordinate axes. In fact, the coordinate 

axes are reasonably defined to avoid these sign problems 

while modeling in this paper. After this operation, the high 

nonlinear dynamic equations of inverted pendulum are 
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obtained considering Coulomb friction, viscous friction, and 

friction moment. 

After establishing the high nonlinear dynamic equations of 

inverted pendulum, the next crucial step is to select an 

appropriate control method for realizing the expected goals of 

inverted pendulum. In recent years, model predictive control 

(MPC) has achieved a great success in the application of 

industrial process control, widely employed for controlling 

linear or non-linear systems (Ji et al., 2017; Kayacan et al., 

2018; Mayne, 2014; Xi et al., 2013; Yao et al., 2019). With 

the development of the intelligent driving technology, MPC 

due to its strong ability of dealing with constraints has been 

successfully applied in the fields of autonomous vehicles, 

unmanned aerial vehicles, and autonomous underwater 

vehicles (D Amato et al., 2020; Hu et al., 2020; Huang et al., 

2019; Tan et al., 2019; Wang et al., 2020; Yao et al., 2018). 

As it turned out, the control method with input and output 

constraints, which is especially suitable for the practical 

problems encountered in engineering, has bright prospects.  

MPC divided into linear model predictive control and 

nonlinear model predictive control (NMPC), and the 

abbreviation MPC generally denotes linear model control. In 

this paper, the linear model predictive control is adopted for 

inverted pendulum control, mainly based on the following 

three reasons.  

First, NMPC is suitable for the dynamic model expressed by 

an analytic expression, otherwise the identification model is 

necessary to adopt, which increases the difficulty and 

uncertainty of modeling. Due to the introduction of Coulomb 

friction, the nonlinear dynamic model of inverted pendulum 

cannot be represented by a unified analytical expression, so it 

is not quite suitable for NMPC without identification model.  

Second, when NMPC performs receding horizon 

optimization, its optimization model is not convex, and the 

efficiency and result of solution cannot be guaranteed for 

real-time control. For this reason, nonlinear model predictive 

control, currently, mostly stays in the stage of simulation 

research, and hence there are few practical applications. For 

the purpose of real-time control, linear model predictive 

control is also a better choice.  

Third, a large amount of literature illustrates that linear model 

predictive control has a certain ability to deal with nonlinear 

system. Hence, one of the purposes of our research is to 

verify the conclusion by using the inverted pendulum model 

with the nonlinearity in this paper, hoping that MPC method 

can be popularize in more applications by the classical 

inverted pendulum model.  

Although MPC has great advantages, especially in the aspect 

to deal with constraints, there are few studies on the 

computation time and influence of MPC parameters on 

response characteristics in the existing literature. Therefore, 

after establishing a highly nonlinear dynamic model for the 

inverted pendulum and verifying the simulation result by 

comparing with experimental results, we not only 

demonstrate its ability to handle the constraints, but also 

further analyze the computation time and influence of MPC 

parameters. 

The rest of this paper is organized as follows. In Section 2, a 

highly nonlinear dynamic model for the inverted pendulum 

considering Coulomb friction, viscous friction, and friction 

moment is established based on the two-step modeling 

method proposed in this paper. In Section 3, MPC design 

process is introduced in detail. In Section 4, control 

simulations of inverted pendulum using MPC are 

implemented based on MATLAB programing, thereby 

obtaining simulation results. Furthermore, we compare the 

simulation with experimental results shown in literature 

(Shahab et al., 2017), make statistics of the averaged 

computation time under different MPC parameters, and 

respectively study the influences on response characteristics 

under the following three conditions: without Coulomb 

friction, with the constraints of maximum control force due to 

the physical limitations, and with different MPC parameters. 

Finally, conclusions are drawn in Section 5. 

2. INVERTED PENDULUM MODEL 

The single inverted pendulum model is shown in Fig. 1 

where m and l respectively are the mass and length of the 

pendulum, M is the mass of the cart, u is the control input 

force, and g is the acceleration of gravity, the origin of the 

coordinate system is the rotation center of the pendulum and 

cart, the x-axis is vertically upward, the y-axis is horizontally 

leftward, and J is the pendulum moment of inertia of z-axis 

relative to the center of mass. The coordinate axis is given in 

Fig. 1, which can ensure that pendulum angle  is angular 

deviation with its vertical inverted position and is positive 

value along with anti-clockwise direction. 



y

x

o Input u

m,l,J

29.8m/sg =

M

 

Fig. 1. Single inverted pendulum model. 

2.1 Dynamical equation without damping  

By using the Lagrange equations of second kind, the 

dynamical equation of single inverted pendulum model 

without damping can be obtained as 

( ) ( ) ( )2cos sinM m y m L m L u   + + − =                        (1) 

( ) ( ) ( )2cos sin sinmL y J mL mLy mgL     + + − =       (2) 

where L=l/2. After considering J=mL2/3, Equations (1) and 

(2) can be concisely rewritten as 

( ) ( ) ( )2cos sinM m y m L m L u   + + − =                        (3) 

( ) ( ) ( )
4

cos sin sin
3

L
y y g    + − = .                             (4) 
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2.2 Dynamical equation with damping using two-step 

modeling method 

In fact, there are frictions between the cart and guideway and 

frictional resisting moment between the pendulum and cart, 

that is, the dynamical model of single inverted pendulum in 

practice exists damping. Here, it is assumed that the friction 

between the cart and the guideway is a combination of 

Coulomb and viscous friction, and the frictional resisting 

moment at the hinge joint is a linear damping (i.e. the linear 

relationship between frictional resisting moment and angular 

velocity of pendulum). When using the Lagrange equations 

of second kind deduces the dynamical equation with 

damping, it is necessary to calculate the generalized force 

from friction by work involving in integral operation. 

However, there exits work only when cart is moving due to 

Coulomb friction, which causes great difficulties for the 

derivation of equation.  

By observing Equations (1) and (2) carefully, it can be seen 

that both sides of the equations are forces or moments. 

Actually, they are dynamic equilibrium form which can be 

obtained by D’Alembert principle. Accordingly, we only 

need to add damping force terms caused by the friction force 

and frictional resisting moment into Equations (1) and (2), 

and obtain the dynamical equations with damping. It is noted 

that plus or minus sign of the added force and moment 

depends on its direction with respect to the coordinate axes. 

By taking the pendulum as the research object and according 

to the theorem of momentum, its dynamic equation on the x-

axis can be expressed as 

( )( )sin x

d
mL F mg

dt
 − = −                       (5) 

where Fx denotes the force on x-axis from cart. 

By applying the Newton’s second law, the normal reaction 

force of cart can be obtained as 

( ) ( ) ( )( )2 cos sinNF M m g mL    = + − + .                     (6) 

The friction force between cart and guideway can be 

expressed as 

( ) ( ) ( )( )( )2 cos sinf M m g mL    = + − +                  (7) 

where  is coefficient of sliding friction.  

Consider that the frictional resisting moment at the hinge 

joint is a linear damping; after adding damping force and 

moment into Equations (1) and (2), the dynamical equations 

can be written 

( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )

2

0

2

cos

sin cos , ,

, sin

c c

M v c

M m y m L u

M m g mL mL f y v v

c yf y v m L

 

    

 

+ + = +

− + + + −

+
  

               (8) 

( ) ( ) ( )
4

cos sin sin
3

mcL
y g y

mL


    + = + −              (9) 

where cM is the viscous damping coefficient between the cart 

and guideway, cm is the damping coefficient from the 

frictional resisting moment at the hinge joint, fc(•) denotes 

the Coulomb coefficient function whose curve is defined in 

Fig. 2, and fv(•) denotes the viscous coefficient function 

whose curve is defined in Fig. 3. Here, it can be assumed that 

there exist v0 and vc which respectively denote the initial 

velocity (caused by Coulomb friction) that is going to work 

and the critical velocity that is going to move completely, as 

shown Figs. 2 and 3. For the purpose to control inverted 

pendulum, as a matter of fact, the cart must have certain 

velocity. In other words, Coulomb friction definitely exits, 

but viscous friction exits only when the cart velocity is 

greater than critical velocity vc or less than critical velocity 

−vc. In addition, the introduction of v0 is mainly to avoid the 

ill-condition of numerical solution.  

o
y

cf

1

-1

cv
0v

cv− 0v−

 

Fig. 2. Coulomb coefficient curve. 
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Fig. 3. Viscous coefficient curve. 

Equation (8) is rearranged and simplified as 

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )( )

0

0

2

0

cos sin , ,

, ,

, sin cos , , .

c c

c c

M v c c c

M m y m L f y v v

u M m gf y v v

c yf y v m L f y v v

   



   

+ + − =

− + −

+ +
 

  (10) 

It can be found that Equations (9) and (10) are highly 

nonlinear equations only by means of the numerical method 

to solve. In general,  is 0.15 for dry friction or 0.05-0.1 for 

lubricated Friction. Because  is very small, coefficient 

matrix with respect to y  and   in Equations (9) and (10) is 

invertible. For the convenience to solve using numerical 

method, therefore, the dynamical equation of single inverted 

pendulum with damping can be expressed as 
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( ) ( ) ( ) ( ) ( ) ( )( ) 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 

( ) ( ) ( )

2

0 0

0

2

0 0

4
, , , sin cos , ,

3

cos sin , , sin sin

cos , , , sin cos , ,

sin sin

M v c c c c c

m
c c

M v c c c c c

L
u c yf y v M m gf y v v m L f y v v

c
mL f y v v g y

mL

u c yf y v M m gf y v v m L f y v v

M m g y
y

    


     

     

  



− − + + + −

 
− + − 

 

− − − + + + +

+ + −
 

= 
  ( ) ( ) ( ) ( ) ( )( )0

4
cos cos sin , ,

3

m

c c

c

mL

L
M m mL f y v v



   

 
 
 
 
 
 
 
 
  
  
   

+ − − 

.    (11)

When the input u is given, system responses can be obtained 

by numerical solution according to Equation (11). After 

establishing the dynamical equation, we can design controller 

to realize the control goals that the pendulum turns towards 

the inverted vertical position (i.e. =0) and that the cart 

moves to the original position (i.e. y=0) under certain 

disturbance.  

3. DESIGN OF MPC 

3.1 Linearized dynamical equation and its augmented state-

space model 

Suppose that the pendulum angle is very small, neglect 

second order small quantity, and let 
T

X y y   =   , 

and then Equations (3) and (4) can be written the state 

equation form considering y and  as outputs 

X AX Bu= +                                    (12) 

Y CX=                                       (13) 

where 

( )

( )

( )

0 1 0 0

3
0 0 0

4

0 0 0 1

3
0 0 0

4

mg

M m
A

M m g

M m L

 
 
 −

+ 
=  

 
 +
 

+  

，
( )

( )

0

4

4

0

3

4

M m
B

M m L

 
 
 

+ 
=  

 
 
− 

+  

，

1 0 0 0
.

0 0 1 0
C

 
=  

 
                                                            (14) 

In general, the system to be controlled is modeled by discrete 

state-space model in the MPC literature (Liuping, 2009; 

Ridong et al., 2019). Therefore, Equations (12) and (13) are 

transformed into the discrete state-space model as 

( ) ( ) ( )1d d d dX k A X k B u k+ = +                    (15) 

where Ad and Bd are the state and control matrices for the 

discrete state-space equation, respectively, which can be 

accurately calculated as 

A T

dA e =                                     (16) 

0

T
At

dB e dt B


=                               (17) 

where T is the sampling interval for the discrete state-space 

model. 

The pendulum angle and cart displacement are defined as 

outputs variables as 

( ) ( )d d dY k C X k=                            (18) 

where Cd=C. 

For convenience to control using MPC, the incremental 

forms of the control, state, and output variables are defined as 

( ) ( ) ( )1d d d dX k A X k B u k + =  +                  (19) 

( ) ( ) ( ) ( )1d d d d d d dY k Y k C A X k C B u k+ − =  +             (20) 

where ( ) ( ) ( )1 1d d dX k X k X k + = + − ,

( ) ( ) ( )1d d dX k X k X k = − − , ( ) ( ) ( )1u k u k u k = − − . 

Next, define a new state variable 

( )
( )

( )
6 1

d

a

X k
X k

Y k


 
=  

 
.                          (21) 

By Equations (19)−(21), the following state-space model can 

be obtained as 

( ) ( ) ( ) ( ) ( )
6 6 6 1

1a a a aX k A X k B u k
 

+ = +             (22) 

( ) ( ) ( )
2 6a a aY k C X k


=                             (23) 

where the triplet (Aa, Ba, Ca) are called the augmented model, 

which can be described as follows:  

 , , ,

0 0 0 0 1 0
, .

0 0 0 0 0 1

T
dd a

a a a a a

d dd d a

a a

BA O
A B C O I

C BC A I

O I

   
= = =   

  

   
= =   

   

         (24) 

3.2 Prediction of state and output variables 

According to Equation (21), we have 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

m a

T

X k X k

y k y k k k y k k  

= =

     

.        (25) 

An important step for MPC is to predict the future behavior 

according to linear or nonlinear dynamic mode, so it is 
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necessary to define the prediction horizon Np and control 

horizon Nc in advance. With given information Xa(k) 

calculated by simulating or measured by sensor, the future 

state variables can be predicted for Np step ahead, as follows: 

( ) ( ) ( ) ( )1 , 2 , , , ,a a a a pX k X k X k m X k N+ + + +       (26) 

where Xa (k+m) is the predicted state variable at k+m with 

given current plant information Xa(k). 

Since the control horizon is Nc, we denoted by Um the 

sequence of future input increments as 

 ( ), , ( ), , ( 1)
T

m cU u k u k m u k N =   +  + − .         (27) 

It should be noted that input increment in the control horizon 

is variable while remains constant outside the control 

horizon. 

Then, we define 

( ) ( ) , ( 1) , , ( )
T

T T T

m a a a pY k Y k Y k Y k N = + +  .           (28) 

By Equations (22), (23) and (25)−(28), the compact matrix 

form can be obtained as (Liuping, 2009; Ridong et al., 2019) 

( ) ( )m m m m mY k F X k G U= +                          (29) 

( ) ( ) ( )
2 6

, , , , pc

p

T
TTT NN

m a a a a a a
N

F C A C A C A


 =
  

        (30)  

1 2

1 2

2

0 0

0

c c

p p p c

p c

a a

a a a a a

N Nm
a a a a a a a a

N N N N

a a a a a a a a a N N

C B

C A B C B

G
C A B C A B C B

C A B C A B C A B

− −

− − −



 
 
 
 

=  
 
 
 
  

(31) 

3.3 Cost function 

Considering control goals that the pendulum turns towards 

the inverted vertical position (i.e. =0) and that the cart 

moves to the original position (i.e. y=0) under certain 

disturbance, we have the reference outputs in the prediction 

horizon as follows 

( )  
2 1

0,0, ,0,0
N p

T
R k



= .                       (32) 

The predictive outputs can be expressed as 

( ) ( ) ( ) ( ) ( )
2 1

1 , 1 , ,
N p

T

m p pY k y k k y k N k N 


 = + + + +
 

 .           
                         (33) 

Define 1, 2 and 3 which express the weights of the cart 

displacement, pendulum angle and input increment, 

respectively. Then the cost function is given by 

( ) ( ) ( ) ( )

( ) ( )

T T

E m m m m

T T

m m m m

J R k Y k Q R k Y k U R U

Y k QY k U R U

= − − +        

= +  
    (34) 

where 

1

2

3

1

2 2 2

,
c c

p p

N N

N N

Q R I















  
  
  

 = =
 
  
  

  

.     (35) 

By according to Equation (29) and neglecting the unrelated 

terms with Um, JE can be rewritten as 

1

2

T T

E m m m m mJ U R U U E=   +                     (36) 

where 

( )2 T

m m mR G QG R= + , 2 ( )T

m m m mE G QF X k= .           (37) 

3.4 Constraints for MPC 

The obvious advantage of MPC is able to deal with 

constraints with input and output, which can satisfy actual 

requirements. There are three major types of constraints as 

follows: 

( )1 max 1 2 1 max1 mC u C u k C U C u−  − +                 (38) 

1 max 1 maxmC u U C u−                            (39) 

max max

3 3

max max

( )m m m m

y y
C F X k G U C

 

−   
 +     

−   
           (40) 

where maxu  and maxu  respectively denote the allowable 

maximums of the input and input rate determined by the 

engineering realization, and maxy  and max  respectively 

denote the allowable maximums of the cart displacement and 

pendulum angle. In Equations (38)−(40), there are 

1

1

1

1

1
cN

C



 
 
 =
 
 
 

, 2

1 0 0 0

1 1 0 0

1 1 1
c cN N

C



 
 
 =
 
 
 

, 3

2 2

1 0

0 1

1 0

0 1
pN

C



 
 
 
 =
 
 
 
 

. (41) 

These constraints can be written as the following linear 

matrix inequality form 

m mM U N                            (42) 

where 

( )

2

2

4 4

,
c c

c c

c p

N N

m

N N

m

m N N Nc

C

C

I
M

I

G

G





+ 

 − 
  

  
 − 
 =  
    
 − 
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mN =

( )

1 max 1

1 max 1

max 1

max 1

max

3

max

max

3

max
4 4 1

( 1)

( 1)

( )

( )

c p

m m

m m

N N

C u C u k

C u C u k

u C

u C

x
C F X k

x
C F X k




+ 

 + −  
  

− −  
  
  

  
 
 −   
− +   −   

   
 −  
     

                     (43) 

3.5 Receding horizon optimization for MPC 

Generally, the input and input rate constraints are called hard 

constraints (Equations (38−39)), while the output constraints 

are called soft constraints (Equation (40)). Because of the 

limitation of physical conditions, the hard constraints must be 

satisfied, while the soft constraints are determined largely by 

the hard constraints, so they can be violated owing to the 

conflict between the hard and soft constraints. 

According to Equations (36) and (42), it is observed that the 

problem, which minimizes cost function with linear 

inequality constraints, is a quadratic convex optimization 

with respect to Um. Hence, Um has a global optimum 

solution, when there is no conflict between the hard and soft 

constraints. But if there is a conflict between them, the global 

optimal solution will be obtained by satisfying the hard 

constraints and neglecting the soft constraints. 

By Equations (36) and (42), the existing quadratic 

programming function with linear matrix inequality 

constraints can be directly used for solution, but it is 

necessary to take a certain mechanism for dealing with the 

soft and hard constraints. After the optimal incremental 

sequence of control input is obtained by optimization, the 

first control increment is selected to calculate the response to 

impose on the nonlinear inverted pendulum model. Then the 

prediction and optimization is implemented according to the 

current response. The process (i.e. receding horizon) of the 

prediction, optimization and selection, will be finished up to 

the end time. 

As can be seen above, an online optimization solution is 

needed in every time step, which has a great influence on 

real-time control. It is the drawback that exists in the MPC. 

With the continuous improvement of the computer hardware 

and algorithm, fortunately, the problem has been basically 

solved for linear model predictive control. 

4. SIMULATION AND DISCUSSIONS 

To investigate the performance and parameter influence of 

MPC, numerical simulations will be implemented based on 

MATLAB programing, and the numerical simulation process 

is shown in Fig. 4.  

Calculate response states by using the high 

nonlinear inverted pendulum model

Input 

control

targets

Select the first control increment to obtain the 

control input at time k+1

( )u k

Input initial states

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1
T

mX y y y   =     
```

( 1)u k +
Next iteration

Obtain the optimal control increment 

• Optimize the cost function with linear 

inequality constraints by considering 

hard and soft constraints

( ) ( ) ( ) ( ) ( ) ( ) ( )
T

mX k y k y k k k y k k   =     

Predict the output states at time k+1~k+Np

( )mY k

( )R k

( )mU k

• Establish a quadratic cost function

 

Fig. 4. Simulation process for MPC. 

4.1 Simulation parameters and computer configurations 

For comparison with experimental results, the simulation 

parameters of single inverted pendulum from literature 

(Shahab et al., 2017) are shown in Table 1. 

Table 1. Simulation parameters of single inverted 

pendulum. 

Symbol Value Unit 

M 1.02 kg 

m 0.49 kg 

L 0.2 m 

 0.05 − 

cM 21.06 Nms/rad 

cm 0.009 Ns/m 

v0 0.001 mm/s 

vc 0.1 mm/s 

g 9.8 m/s2 

To study the computation time in section 4.3, we give the 

computer configurations for simulation as follows. 

Operating system: windows 7 with 64 bit 

CPU: Intel(R) Core(TM) i7-3667U 

RAM: 8GB with 1333MHz 

MATLAB versions: MATLAB 2012a 

4.2 MPC Simulation results and discussions 

In this section, firstly, we give the MPC simulation results for 

the inverted pendulum based on the process shown in Fig. 4, 

and compare them with the experimental results from the
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literature (Shahab et al., 2017). Then, the simulation results 

for the inverted pendulum with and without damping are 

contrasted. Finally, we obtain the MPC simulation for the 

inverted pendulum under the condition with restrict 

maximum control force results. 

Because MPC needs to be optimized at every time step, in 

order to ensure the real-time control requirements, the 

sampling time generally is not too small. In addition, with the 

increase of prediction and control horizon, the optimization 

time will dramatically increase. Therefore, based on trial-and-

error process and experience, the parameters of MPC 

controller are given, as shown in Table 2.  

Table 2. Parameters of MPC controller. 

Symbol Value Unit 

Np 15 − 

Nc 8 − 

T 0.05 s 

T 10 s 

umax 500 N 

umax 500 N/s 

ymax 1 m 

max 1.2 rad 

1 1 − 

2 5 − 

3 0.001 − 

After initial state is given as  0 0 0 0.8 0
T

X = , the 

simulation results expressed by black curves can be obtained 

by performing the developed program based on MATLAB, 

as shown in Figs. 5−7. To clearly observe the fluctuation of 

curves after the system remains stable, the enlarged views at 

6−10 s are respectively shown in Figs. 5−7. 

It can be seen from the Figs. 5−7 that, under the given initial 

state and MPC controller parameters, the inverted pendulum 

tends to be stable after 2 s, which illustrates that MPC 

achieved the expected control goals that both the cart 

displacement and the pendulum angle are gradually close to 

0. In addition, it is carefully observed that black curves in 

Figs. 5−7 slightly fluctuate along with their respective control 

goals after the settling time. When meticulously observed the 

experimental results of the pendulum angle in literature 

(Shahab et al., 2017), it also slightly fluctuates along with the 

target, which illustrates that the results in this paper are 

consistent with experiments well. Similarly, the fluctuation 

phenomenon also exists in experiment results (Guo et al., 

2014; Haddad et al., 2018; Maity et al., 2019; Tang et al., 

2020). However, it should be noted the unit and range of y-

axis in Fig. 15 from the literature (Shahab et al., 2017), 

because the curve fluctuation is seemingly not obvious. In 

fact, the simulation results in this paper are considerably 

consistent with experimental results if experimental curves 

maintain same unit and range of y-axis with Figs. 5−7.  

 

Fig. 5. Response of cart displacement. 

 

Fig. 6. Response of pendulum angle. 

 

Fig. 7. Response of control force. 

Theoretically, the stable fluctuation is also easily explained. 

On the one hand, in order to control pendulum angle, the cart 

must have a certain velocity, so the control force in Fig. 7 at 

this time must be enough to overcome the Coulomb friction. 

On the other hand, in order to control displacement of cart 

with a certain velocity, a reverse control force is applied to 

the cart, leading to that the pendulum angle is deviated from 

0. Subsequently, the pendulum angle will be controlled again, 

and so forth, generating the black curves with fluctuation as 

depicted Figs. 5−7.  

From above the theoretical analysis, it can be known that if 

no Coulomb friction (i.e.  = 0), there is not a stable 

fluctuation after the settling time. The simulation results 

without Coulomb friction is shown in blue curves in Figs. 

5−7, verifying the correctness of theoretical analysis. 

MPC have ability to deal with constraints. To further 

demonstrate its advantage, we assume that the maximum 

control force that the system can provide is 50 N (i.e. umax = 

50N) due to physical limits. Then, the simulation results 

expressed by red curves can be obtained, as shown in Figs. 

5−7. Note that there is Coulomb friction ( = 0.05) in this
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simulation results of red curves, and it is just that the 

constraint of maximum control force is different from black 

curves, as shown in Figs. 5−7. It can be seen from the red 

curves shown in Figs. 5−7 that, the control force applied to 

the cart will not exceed 50 N, which also achieves the 

expected control effect according to the response results of 

cart displacement and pendulum angle. However, under the 

limit of maximum control force being 50 N, the amplitudes 

of the cart displacement and pendulum angle increase to a 

certain extent, and the settling time is delayed slightly.  

In short, compared with the experimental results from 

literature (Shahab et al., 2017), simulation results using the 

supposition modeling method considering Coulomb friction 

is effective and more accurate for MPC in this paper. Next 

section will further study the influence of MPC parameters 

on response results. 

4.3 Influence analysis of MPC parameters 

The methods based on trial-and-error process and experience, 

however, cannot quickly be used to design MPC controller. 

Because of this drawback, the influence on simulation results 

from MPC parameters will be researched in this section.  

Table 3 shows five combinations caused by the changes of 

the prediction horizon and control horizon, and the other 

parameters remain the same with Table 2. The last row in the 

Table 3 lists computation time that is statistical average 

performing 20 times same simulations in their respective 

parameter combinations. It is clear that with the increase of 

the prediction horizons and control horizons, the averaged 

computation time gradually increases. By comparing the 

simulation time (10 s) with averaged computation time 

shown in Table 3, obviously, computer configurations meet 

the requirement of the real-time control. 

Table 3. Five combinations of controller parameters for 

MPC. 

 1 2 3 4 5 

Np 15 15 15 10 20 

Nc 2 5 8 5 5 

Averaged 

computation time (s) 

1.29 1.35 1.52 1.21 1.55 

Figs. 8−10 show the simulation results of cart displacement, 

pendulum angle, and control force under different control 

horizons while prediction horizon remains unchanged. It can 

be seen that as the control horizon increases, setting time 

decreases, but the influences of these amplitudes are not 

apparent. Besides, with the increase of control horizon, the 

response curves become steeper, which improves the 

transient response to some degree.  

Theoretically, it is easier to explain these simulation results 

as shown in Fig. 8−10. With the increase of control horizon, 

the amount used for control increases. To minimize the 

performance index (Equation (36)), it will make full use of 

the control sequence to make the system stable as soon as 

possible.  

 

Fig. 8. Response of cart displacement under different control 

horizons. 

 

Fig. 9. Response of pendulum angle under different control 

horizons. 

 

Fig. 10. Response of control force under different control 

horizons. 

Figs. 11−13 show the simulation results of the cart 

displacement, pendulum angle, and control force under 

different prediction horizons while the control horizon Nc 

remains unchanged. With the rise of the prediction horizons, 

the responses in Figs. 11−13 have the similar characteristics 

with the counterparts in Figs. 8−10. Theoretically, it is also 

easier to explain these results shown in Fig. 11−13. With the 

increase of prediction horizon, the future information that can 

be obtained increases accordingly, and it will take full 

advantage of the control sequence to minimize the 

performance index during longer period of time, ensuring 

that the system enters the stable state more fast (that is, 

settling time will shorten). 

In a word, the simulation results shown in Figs. 8−13 indicate 

that appropriately increasing the control horizon and 

prediction horizon can improve the response performance 

under the premises that the requirement of real-time control 

is satisfied and that the predictive model is accurate enough 

with real model. 
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Fig. 11. Response of cart displacement under different 

prediction horizons. 

 

Fig. 12. Response of pendulum angle under different 

prediction horizons. 

 

Fig. 13. Response of control force under different prediction 

horizons. 

5. CONCLUSIONS 

In this paper, a two-step modeling method of inverted 

pendulum based on Lagrange equation is proposed, 

improving the modeling accuracy by considering the 

Coulomb friction. Then, the MPC is adopted for the inverted 

pendulum control and the satisfactory results are obtained. 

Furthermore, we compare the simulation with experimental 

results shown in literature (Shahab et al., 2017), make 

statistics of the averaged computation time under different 

MPC parameters, and respectively study the influences on 

response characteristics under the following three conditions: 

without Coulomb friction, with the constraints of maximum 

control force due to the physical limitations, and with 

different MPC parameters. Through the above studies, the 

conclusions can be drawn as follows. 

(1) The concept of two-step modeling method based on 

Lagrange equation for the inverted pendulum is simple and 

easy to understand. In addition, this method can be easily 

extended to the dynamic modeling of a multistage inverted 

pendulum. 

(2) The simulation results using the highly nonlinear dynamic 

model that considers the Coulomb friction for inverted 

pendulum can better reflect the experimental results, 

illustrating that the model proposed in the paper have a 

higher accuracy than previous models and the simulation 

results are effective and reliable.  

(3) Stable fluctuations of the simulation and experimental 

curves after the settling time are caused by Coulomb friction. 

(4) Linear model predictive control can perform effectively 

control under the constraints, and also is able to deal with the 

certain nonlinear systems, which has significant advantages 

in practical application. 

(5) The averaged computation time gradually increases with 

the increase of prediction and control horizons. 

(6) Simulation results indicate that the control and prediction 

horizon risen properly can improve the response performance 

under the premises that the requirement of real-time control 

is satisfied and that the predictive model is accurate enough 

with real model. 
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