
CEAI, Vol.23, No.1, pp. 60-71, 2021 Printed in Romania

Interconnection of Systems with Cloud-Fog-Edge
architectures: Concept and Challenges

Cosmina Corches*, Mihai Daraban**, Ovidiu Stan*, Szilárd Enyedi*, Liviu Miclea*

*Automation Department, Technical University of Cluj-Napoca (UTCN), 400027 Cluj-Napoca,
Romania (e-mail: Cosmina.Corches@aut.utcluj.ro)

**Applied Electronics Department, Technical University of Cluj-Napoca (UTCN), 400027 Cluj-Napoca,
Romania (e-mail: Mihai.Daraban@ael.utcluj.ro)

Abstract: The advent of Internet of Things (IoT) has sparked enthusiasm and captured the attention of
most industries. However, the development of IoT devices took place without the context of a
standardization process regarding the data that these devices can communicate or regarding the protocols
through which they communicate. Currently, the desire is to use the information from IoT devices in
building the context related to the user actions. The user’s data IoT equipment and the results of context
analysis, such as road traffic control, can be used in monitoring of environmental conditions or
coordinating emergency situations. The paper aims to present the challenges that arise when trying to
connect multiple IoT devices or sensors in a Cloud-Fog-Edge architecture.

Keywords: cloud computing; fog computing; edge computing; Internet of Things; heterogeneous sensors;
wireless sensor networks; heterogeneous networks; interconnected systems; interoperability

1. INTRODUCTION

Nowadays, almost all the devices that surround us can be
accessed or controlled via the Internet. In this paper, we
present details associated with the challenges of achieving
interconnection and interoperability between IoT devices.
Sensors transmitting collected data to a dedicated data center
(BILLION, 2018; Gallis, 2018) is one thing, it is another to
use the data in a correlated manner to build context or to
manage current events (Almeida et al., 2017; Duan et al.,
2018). As a result, the IoT systems should be global for
serving different industries and fields. To achieve
interoperability in IoT is needed to go through layers of
physical network, communication, and application functions
(Roy et al., 2021).

The major contributions of this work are:

- To help other researchers, the paper analysis different
studies and concepts that tackled interoperability in IoT
technology in the last years.

- The goal is to identify the technologies or approaches to
achieve interconnection and interoperability for
heterogeneous IoT devices.

- The paper presents a comprehensive study in which it
presents different techniques that are addressing and solving
the interoperability issues of IoT devices and services from
different layers. Each layer of interoperability is analyzed by
presenting the techniques proposed by organizations or
researchers to solve this topic.

- The paper also identifies the key role that industry can have
in IoT evolution, which might be the next step towards
standardization.

2. CLOUD-FOG-EDGE ARCHITECTURE

2.1 Cloud Computing

Cloud Computing represents a new phase of industrialization
in the provision of computing power as a public service, its
development being comparable to how power plants’
industrialization influenced the distribution of electricity
(European Commission, 2012).

The literature has many definitions of the term Cloud
Computing, some of them simplified, others very abstract,
but there is only one definition unanimously accepted by
specialists in the field, formulated by NIST (US National
Institute for Standards and Technology).

According to this definition, Cloud Computing is a model
that allows, on request, easy remote access via the Internet to
a configurable set of shared resources that can be provided
quickly, with minimal effort or with minimal interaction from
the service provider (e.g. networks, servers, external memory,
applications and services) (Mell and Grance, 2011).

Depending on user requirements, several Cloud Computing
solutions are available. These can be grouped into three
service models (Dumitrache et al., 2017): SaaS, PaaS, IaaS.

2.2 Fog Computing

Fog Computing is an extension of the Cloud that emerged in
the context of IoT development. The number of devices that
collect data, and the amount of data processed, is growing
exponentially.

The Cloud provides remote servers to process this data, but
sending it and getting back the results takes time, which can

CONTROL ENGINEERING AND APPLIED INFORMATICS 61

affect a real-time system. In addition, when the Internet
connection is not characterized by high bandwidth, reliance
on the remote server becomes a challenge.

Cisco defines Fog Computing as a paradigm that extends
Cloud and network edge services and that provides end users
with data, computing, storage, and application services
(CISCO, 2015). In a practical implementation, Fog
Computing represents a geographically distributed computing
architecture, characterized by the shared use of resources.

A Fog architecture comprises one or more heterogeneous
devices that are ubiquitously connected to the edge of the
network and are not supported only by Cloud services (Yi et
al., 2015). The Fog level is characterized as a low latency
intermediary-bidirectional link, which ensures the transfer of
data from the Fog level to the Edge level or vice versa.

2.3 Edge Computing

Edge Computing redefines the computation and analysis of
data as processes which are close to the IoT devices or
sensors that generated the data flow. This level improves the
security and quality of service (QoS) imposed by new
applications (Cao et al., 2018; Hu et al., 2018; Mois et al.,
2010). Besides processing data for Edge-connected devices
or sensors, the Edge layer is also responsible for processing
data received from the layers Cloud and/or Fog.

For example, two of the most requested processes today, face
recognition and neural network computation, benefitted from
moving the computation from the Cloud layer closer to the
device on the Edge layer. For the first application, face
recognition, the response time was reduced from 900 ms to
169 ms (Jridi et al., 2018), meanwhile for a portable device
that was using neural network computation the response time
was kept between 80 ms to 200 ms when moved to Edge (Ha
et al., 2014).

For a mobile carrier to offer low-latency access to network
resources for a user, the services typically located on the
Internet (i.e. Cloud computing) needs to be placed right at the
edge of the mobile carrier network (Giust et al., 2018). With
Multi-Access Edge Computing (MEC), Edge Computing is
enabled at the access network (i.e. mobile). Compared to
other “edge computes”, MEC can offer new services (Sabella
et al., 2019): extreme user proximity, ultra-low latency, high
bandwidth, real time access to radio network and context
information, and location awareness.

It is important to note that the resources within an Edge or
Fog node must be split between the core functions of the
node (routing and data transport) and running software
applications, to serve the needs of IoT systems or to allow
sensor interconnection. Therefore, implementing equipment
that acts as Edge or Fog nodes becomes a challenge. These
must be implemented as Cloud systems, additionally
Application Programming Interfaces (APIs) or Software
Development Kits (SDKs) are required to access resources,
and to be able to install software needed to run services.

3. RELATED WORK

The development of IoT has generated interest in a wide
range of fields, an example being the interconnection of
public transport elements (Brutti et al., 2019). By
interconnecting the sensors from the vehicles and those from
the traffic lights, it became possible to develop intelligent
traffic control for public transport in certain cities (Bangui et
al., 2018).

The information collected by the sensors is analyzed at the
Cloud layer where various data reports are generated: traffic
statistics, vehicle monitoring and maintenance history, traffic
management for autonomous vehicles or public parking
management.

Thus, as seen in the previous examples, sensor information is
transmitted to the Cloud layer by devices, where resources
(e.g. computing power, storage space, access to databases)
are accessed by multiple users, on the principle of the multi-
tenant model. Resources are accessed through
communication networks using standard protocols and
mechanisms (Roman et al., 2018).

The multitude of protocols and devices that can be used
raises real challenges in achieving interconnection and
interoperability between IoT devices in a Cloud-Fog-Edge
architecture. Not just the heterogeneity of the system
represents a challenge, but also scalability in the IoT network
can cause interoperability issues. Connecting a new device
with the network can generate many configurations to operate
with the deployed devices (Roy et al., 2021; Esposito et al.,
2018).

3.1 Interconnection and Interoperability

Interconnection represents the process of communication
between networks. This type of communication only deals
with the lower levels of the Open System Interconnection
(OSI) model: the physical level, the data link and the network
level.

Interoperability is the communication between two active
processes that consist in exchanging and being able to use the
information that has been exchanged. Therefore, it is treated
above the transport level of the OSI model.

Thus, interoperability characterizes the ability of two systems
to exchange data (Naik, 2017; Rachna, 2001): lossless, in an
unambiguous way, in a format that both systems
understand/support, in a manner in which data interpretation
is similar. Interoperability is divided into four levels (Veer
and Wiles, 2008), Fig. 1:

- Technical interoperability – is associated with
hardware/software components, systems and development
platforms that facilitate machine-to-machine (M2M)
communication.

- Syntactic interoperability – treats the influence of the data
format on the interoperability.

62 CONTROL ENGINEERING AND APPLIED INFORMATICS

- Semantic interoperability – guarantees that the information
exchange between two systems is understood at both ends.

- Organizational interoperability – ensures the transmission
of information between organizations that are using various
information systems.

Because it is domain independent and does not care about the
meaning of what is exchanged, technical interoperability does
not raise special concerns (Benson and Grieve, 2021). This
interoperability layer is associated to technology layer and
tries to achieve 100 % reliable communication over a noisy
channel.

Fig. 1. Interoperability levels.

To exchange data between IoT devices, it needs to be
serialized according to syntactic rules. At the receiver side,
the message is decoded using syntactic rules defined in the
same or some other grammar. Through free access to APIs is
possible to attain cross-platform and cross-domain
interoperability, by exposing data to an application written in
a high-level language (Abdelghaffar and Abousteit, 2021).

For syntactic interoperability two reference implementation
can be used: XML (eXtensible Markup Language) and JSON
(JavaScript Object Notation) (Brutti et al., 2019).

Semantic interoperability according to World Wide Web
Consortium (W3C) is accomplished by information, data and
knowledge exchange between different agents, services and
applications on and off the Web (Abdelghaffar and Abousteit,
2021).

Although there are solutions for technical and the syntactic
interoperability, semantic interoperability remains a
significant challenge. As there are many solutions for
implementing IoT sensors and devices, each manufacturer
has its own data transmission protocol and interpretation.

This self-interest driving policy, on using an in-house non-
standard interface, is the primary cause for preventing
interoperability between IoT devices (Abdelghaffar and
Abousteit, 2021; Benson and Grieve, 2021).

4. CLOUD-FOG-EDGE INTERCONNECTION

Trying to scale a classical communication network can be a
challenge. This process quickly becomes difficult, especially
when millions of heterogeneous nodes must be added and
some of them are even mobile. At the same time, the quality
of services must not be affected, and costs should be kept as
low as possible.

In classical networks which use dedicated hardware
components for data processing and transmission, the control
and data transmission components are unified. By using
dedicated components, changes in network scaling will be
more time-consuming, especially because specialized
personnel is needed and because of hardware performance
limitations.

In a network with classical architecture, the following
limitations were identified: complex network devices,
difficulty in managing headers, and difficulty in scaling the
network (Bahga and Madisetti, 2014a; Bahga and Madisetti,
2014b).

4.1 Achieving Interconnection in Cloud-Fog-Edge using SDN
and NFV

Within the nodes of a Cloud-Fog-Edge architecture, the
actions that deal with network traffic management are
separated from the software applications that run as services
to serve the Cloud-Fog-Edge architecture.

This is done by using Software-Defined Networking (SDN)
and Network Function Virtualization (NFV) technologies.
SDN and NFV are necessary technologies for next-generation
networks, especially for the emerging 5G mobile network
(Chairman of ISG ENI, MEC, NFV and ZSM, 2019).

Through NFV, standard IT virtualization technology is used
to merge heterogeneous network infrastructure (e.g. physical
switches, physical routers, load balancer, firewall) into
standard high-volume servers. The result consists in
designing network functions in software running on a
homogeneous, industry-standard infrastructure.

In such an implementation, the Cloud-Fog-Edge architecture
using SDN would be based on the processing power of some
servers, to the detriment of specially designed embedded
components running a specific set of functions, typical of
traditional implementations.

With such a concept, the SDN server platform will be at the
Cloud level (Lea, 2018; Wang, 2019), where it serves
network services at the software level instead of using an
Application Specific Integrated Circuit (ASIC). Without the
SDN component, Edge-level routers cannot provide the
services specific to the Cloud-Fog-Edge architecture.

In the literature, there are proposals to install an SDN
controller at each node of the Fog layer. The SDN would
have to manage the Edge nodes and the devices they are
serving. In such a scenario, the Cloud layer will act as a
general controller, having a virtual overview of the network.
Such an approach enhances security and can isolate
compromised nodes, or those nodes that are no longer online,
by redirecting data traffic (Kahvazadeh et al., 2019; Sharma
et al., 2017).

NFV is going to create new network devices, which then will
be managed by SDN. As a result, SDN will manage both
physical and virtual devices, having the advantage of mixing
and matching it well. With SDN and NFV, it is much easier

CONTROL ENGINEERING AND APPLIED INFORMATICS 63

to bring Cloud resources to MEC and achieving the speed
and latency improvements promised by 5G (Jun, 2020).

4.2 Protocols for Achieving Interconnection in Cloud-Fog-
Edge

For interconnecting IoT devices, the protocol chosen for this
task represents an important factor, since it may have a major
impact on the device power consumption. Another important
criterion used in selecting an interconnection protocol for IoT
is communication range.

Additionally, the carrier frequency and the communication
bandwidth have a greater impact on the protocol’s overall
performance, since they will affect the power consumption,
communication range, the ability to work in confined spaces,
and the data bandwidth. If the protocol is using non-ISM
(Industrial, Scientific, and Medical) bands, additional license
fees will apply.

In terms of connectivity of an IoT device, there is a major
change regarding data transfer compared to a typical
consumer-based cellular device. The data traffic on a
smartphone mainly consists of downloading large amounts of
information and real time streaming from the Internet (e.g.
video data, music data) (Lea, 2018). However, for an IoT
device, the data can be sparse and arrive in short bursts, and

in most cases the data will be generated by the IoT device
and uploaded to superior levels (e.g. Cloud, Fog, Edge).

When choosing a protocol for interconnection, an advantage
is already the presence of a telecommunications network in
place. In such a scenario, the users will connect without
having to deploy the network, from this point of view mobile
networks having a major advantage.

Prior to the IoT devices revolution, there were studies and
proposals that contributed to implementing different sensor
networks, which allowed to communicate the measured
parameters or even exchanging configuration messages (Al-
Fuqaha et al., 2015; Yick et al., 2008).

The proposed concepts used wireless technologies such as
Wi-Fi, Bluetooth or Zigbee to interconnect sensors, thus
ensuring a local sensor network. Such approaches were used
as there was no support for IoT over mobile networks.
However, since the 3rd Generation Partnership Project’s
(3GPP) release of CAT-1, CAT-0 and, starting with 2016, of
NB-IoT (CAT-NB1) and CAT-M1, things have changed
regarding mobile networks.

In Table 1, we can see the advantages brought by these
technologies compared to the approaches based on Wi-Fi,
Bluetooth and Zigbee (Lea, 2018; Lee et al., 2007).

Table 1. Wireless communications protocols for IoT.

Criteria Cat-1 Cat-0 Cat-M1 NB-IoT Bluetooth Zigbee Wi-Fi

ISM Bands No No No No Yes Yes Yes

Channel
Bandwidth

20 MHz 20 MHz 1.4 MHz 180 kHz 1 MHz
0.6 MHz
2 MHz

22 MHz

Downlink Rate 10 Mbps
1 Mbps

1 Mbps
375 Kbps

200 Kbps

1 Mbps

250 Kbps 54 Mbps
Uplink Rate 5 Mbps

Range 30-100 km 30-100 km ~4x Cat-1 ~7x Cat-1 10 m 10-100 m 100 m

Sleep Power
High

~ 2 mA
Low

Very Low
~ 15 µA

Very Low
~ 15 µA

Very Low
~ 9 µA

Very Low
~ 12 µA

Very Low
~ 30 µA

Latency 50-100 ms 50-100 ms 10-15 ms 1.6-10 s 6-250 ms 80-130 ms 150 ms

Even if at first glance, NB-IoT seems to be the slowest
protocol regarding download and upload speeds, it is
important to associate these criteria with the channel
bandwidth, which translates in low power consumption (i.e.
almost 10 years operation from one battery) and the
capability to transmit from underground installations (I-
SCOOP, 2019a).

Another approach for interconnecting IoT devices over long
distances is LoRa and Sigfox. Although communication is
carried out using ISM license-free bands, the two protocols
require intermediary gateways to allow the connection of
devices to the Internet, Table 2 (Lea, 2018).

Comparing Table 1 and Table 2, depending on the transfer
speed on the uplink, power consumption, communication
range, the most suitable protocols for interconnecting IoT

devices are Cat-M1, NB-IoT and LoRa. In terms of latency,
the protocol with the fastest response is Cat-M1.

Table 2. LoRa and Sigfox communication protocols.

Criteria LoRa Sigfox
ISM Bands Yes Yes
Channel
Bandwidth

125 kHz 100 kHz

Downlink Rate 0.3-5 Kbps 100 bps
Uplink Rate 5 Kbps 600 bps

Range
5 km urban
15 km rural

Up to 50 km

Sleep Power
Extremely

Low - 1.5 µA
Extremely

Low - 1.5 µA
Latency 500 ms to 2 s Up to 60 s

64 CONTROL ENGINEERING AND APPLIED INFORMATICS

Cat-M1 and NB-IoT protocols were designed to be supported
by legacy mobile technology networks (2G, 3G and 4G) but
also by the new release, 5G. As these two protocols were
designed to reach their full potential with 5G, since 2019 the
introduction of Cat-M1 roaming functionality was deployed.

By the end of 2019, AT&T and Vodafone announced the

conclusion of an agreement to support NB-IoT roaming
functionality (I-SCOOP, 2019b).

Being supported by 5G deployment, Cat-M1 and NB-IoT
will begin to be the primary solutions for connecting massive
webs of IoT devices (e.g. low-cost devices, low energy, small
data volumes), Table 3 (ERICSSON, 2019).

Table 3. Cellular IoT connections forecast.

Year

Cellular IoT connections by segment and technology (billion)

Legacy (2G/3G)
Massive IoT
(NB-IoT/Cat-M1)

Broadband IoT (4G/5G)
(e.g. high throughput, low
latency, large data volume)

Critical IoT (4G/5G)
(e.g. ultra-reliability, ultra-low
latency, very high availability)

2019 0.8 0.1 0.4

2020 0.87 0.25 0.6

2021 0.95 0.42 0.78

2022 1 0.75 1

2023 1 1.22 1.18

Having the devices connected to the Internet, it does not
mean we have them interconnected. The difference between a
smart IoT device and a sensor on Wireless Sensor Network is
given by the possibility of connecting to the Internet and the
ability to use or access data provided by different IoT devices
produced by other manufacturers.

The IoT devices are using the Internet to communicate and
receive data from terminals and data centers as diverse as
possible from performance and implementation point of
view. The common point is the information needed to
accomplish the purpose for which the device was designed.

Realizing interoperability between IoT sensors/devices raises
the necessity to encapsulate the messages/data transmitted
through a protocol that uses the Internet as a communication
support. To achieve this goal, the most widely used protocol
in the last 20 years was the Hypertext Transfer Protocol
(HTTP) (Bahga and Madisetti, 2014b). Although this
protocol has proven to be useful in connecting computers and
servers to the Internet, its features are not suitable for
networks consisting of IoT sensors and devices.

The challenges in interconnecting IoT devices come from the
devices’ limited resources, but also because they should be
able to work from remote locations. In addition, devices in
difficult to access places are suffering from low mobile
service coverage, resulting in low data rate.

On top of the previous statements, IoT networks need to use
well-secured, optimized and scalable protocols to handle the
wide range of IoT devices for different network topologies
(e.g. mesh network).

The communication between the Edge, Fog and Cloud levels
is performed using the Transmission Control Protocol /
Internet Protocol (TCP/IP) and User Datagram Protocol /
Internet Protocol (UDP/IP) protocols. At the top layers of the
Cloud-Fog-Edge architecture, reusing existing protocols and
technologies is suitable, because the equipment used is more

efficient, allowing the implementation of a packet
transmission management system.

In terms of interconnection and interoperability with and
between IoT sensors or devices, things are not so simple. One
reason is because of the diversity in the IoT environment. An
issue is also represented by the large volume of data that is
exchanged between devices, but also because of irregular
(spontaneous) traffic, based on events and not on planned
operations (Bangui et al., 2018; Esposito et al., 2018; Mujica
et al., 2018). Because of the previous reasons, a
communication between sensors, based on request-response
principle, is not suitable, instead a publish-subscribe
approach is desired (Eugster et al., 2003).

4.3 Publish-Subscribe Model

A network where messages are exchanged via publish-
subscribe communication is data-centric. The recipient of a
message or package is identified by associating the content of
the message with the interest expressed by the recipient for
certain topics. Such communication has the advantage that it
allows the grouping of sensors and nodes according to the
interest shown for a certain message flow (Esposito et al.,
2018). Publish-subscribe services are middleware solutions
that provide two APIs to the application, depending on the
role of the middleware:

- publisher role, responsible for generating notifications
related to the events occurring in the system;

- subscriber role, that addresses the application which
receives and processes the notifications for which it has been
subscribed.

Besides the two roles mentioned above, there is also the role
of Notification Service. The role of the Notification Service
is to mediate between the publisher and the subscriber. It also
fulfils the following three roles: storing subscriptions from
subscribers, managing notifications from the publisher (e.g.

CONTROL ENGINEERING AND APPLIED INFORMATICS 65

data, services) and distributing notifications to subscribers
based on subscriptions made.

For the interconnection between IoT devices or routers at the
Edge layer, message-oriented communication protocols
(Message Orientated Middleware - MOM) have been
proposed. For implementing MOM-based protocols, either a
broker (mediator) or an intermediary node for organizing the
sequence of messages is required.

One of the most popular and widely used protocols for
message and data transport between sensors and Cloud layer
is Message Queuing Telemetry Transport (MQTT data
centric) (Bangui et al., 2018; Mujica et al., 2018). Although
this protocol is based on MOM, being of publisher-subscriber
type, the protocol has been designed to separate the client
transmitting the information from the one receiving it.
Therefore, the devices/sensors do not have to know the IP,
respectively the communication port on which the device
published or consumed the data from the broker's stack.

For properly exchanging messages between the MQTT
broker and publisher or subscriber, all participants need to
know the topic and the format of the data they want to
publish/access. Even if MQTT does not store the messages
received in a stack, it keeps the last message received from a
publisher in order to provide data to any new subscribers
(Lea, 2018). Although MQTT is TCP based, the connection
between the broker and the data providers may end because
of network reasons or because of hardware failure associated
with the IoT sensors or devices.

For wireless sensor networks, MQTT for Sensor Networks
(MQTT-SN) was developed. Although the protocol is derived
from MQTT, it is optimized for connections between sensors
with low data rates, prone to communication loss, which
require exchanging short messages and operating on
hardware with limited resources. Being a simplified protocol,
it does not require the use of a TCP-IP stack, it can be used in
a Bluetooth, Zigbee, serial (Serial Peripheral Interface, Inter-
Integrated Circuit) or UDP transmission.

The MQTT-SN protocol facilitates communication with the
Fog layer mainly because of how the gateways are
implemented. Edge-layer routers will communicate with Fog-
layer gateways (i.e. Fog servers) via the MQTT-SN protocol.
These servers will be responsible for further processing or
transmission of data to the Cloud layer.

The interconnection with the Cloud layer will be done
through MQTT. At the Fog layer, the conversion from
MQTT-SN to MQTT will be carried out. This can be
achieved by simply transforming the data flow using a
transparent gateway, either by processing it and organizing
the traffic to optimize the communication between Fog and
Cloud by using an aggregating gateway.

4.4 Handling Failure Successfully in MQTT

Even though in the last period the MQTT has gained a lot of
ground, we must analyze this protocol from the point of view
of the faults/defects that may appear and how to manage
them. Among the most serious flaws we can identify: a

message is not processed correctly, a message can never be
processed, the message queue is full.

The first question we must answer is how important the
message is and whether it is worth processing, even if it is
delivered late. If it is not important, then the worker who
consumes the message does not have to recognize it, as long
as the message was sent to a consumer, then we don’t worry
about it anymore.

In other scenarios, we want to detect and react to
faults/defects that may occur during message processing. By
adding a message-state parameter, we can ensure that
messages are removed from the queue only when a consumer
has accepted the message and notifies that it was successfully
processed. If a consumer takes a message and does not
acknowledge that it has been successfully processed within
an initially established given time, then another consumer
receives the message. This can lead to the processing of
messages several times by the same or different consumers.

For this reason, it is important to make sure that the system
can tolerate this behavior and that the expiration settings are
set properly while the worker is expected to need to process
the message. In addition, this gives us the guarantee of
message delivery because we can be sure that the message
will be processed at least once.

One of the most important scenarios we should tackle is the
case that the message can never be processed successfully.
These messages are invalid or simply contain data that the
worker does not know how to handle or to interpret it (i.e.
semantic interoperability). By always leaving them on the
queue, the queue could be blocked with these messages that
cannot be processed but are not deleted.

One solution to this problem would be to create a dead
message bin. Thus, any rejected message is sent to this bin.
The dead message bin can be processed later to find out more
information, which can help in improving the system.

If it is possible to identify which messages cannot be
processed and will never be able to be processed, then we can
simply abandon them without further processing and send
them to dead message bin. For this, we send a rejection
response. It is important to emphasize that because the
message cannot be processed, this can lead to the collapse of
our worker. For this reason, we need to create defensive
workers who respond appropriately to failure situations.

Thinking about whether the message should stay in the queue
until it can be processed, or if the system should simply work
so that it serves the immediate messages as best as possible,
is a very important step in queuing. For example, if an
application sends both email notifications and a push
message to the user’s browser, are these types of messages
equivalent if they can be delivered late? Does it matter if
someone is missed? A common setup would be to add the
reload logic to the emails so they are finally sent, even if it is
a few minutes late. If the push message to the browser fails,
the application may not bother trying to recover, because the
notification is less valuable if it is not delivered at the right
time.

66 CONTROL ENGINEERING AND APPLIED INFORMATICS

Typically, the queues are quite small, and their length only
increases if there is a problem processing messages. In this
case, it is often useful to specify a maximum queue length.
Beyond this dimension, messages are deleted or sent for the
exchange of dead letters.

When the queue receives more than the maximum number of
messages set, messages are thrown in front of the queue to
make room for new messages arriving in the queue. If the
queue also has an x-dead-letter exchange, then the thrown
messages will go there, otherwise they will be thrown.
Another option to maintain queue length is to set a TTL
(“time to live”) for messages in a given queue. After this
time, if the message has not been processed, then it destroys
itself or is sent to the dead mailbox.

For queues where timely delivery is very important, this can
be a great way to avoid the situation where the queue quickly
becomes larger than can be processed when something goes
wrong. In a scenario where the only option is to wipe the
queue completely and restart the system, then adding TTL
messages can help in keeping only current information and
delivering the unwanted messages that clog the queue. A
simplified example is presented in Fig. 2.

Fig. 2. Example failure handling algorithm.

4.5 RESTful Model

An alternative to protocols based on the MOM principle is
the RESTful model. A RESTful web service is a web API
implemented using HTTP and Representational State
Transfer (REST) principles (Bahga and Madisetti, 2014a). In
this implementation, a server is the one who knows the status
of a certain resource, and the information about it is not
transmitted further to the client during the exchange of
messages.

Another protocol capable of transmitting messages and data
in a Cloud-Fog-Edge architecture is CoAP (Constrained
Application Protocol). The protocol was implemented to
perform communication between machines (M2M), more
precisely between nodes at the Edge layer.

As the protocol evolved, the possibility of HTTP mapping
using proxies was added. Through this improvement, Internet
data transfer can be achieved. CoAP has evolved to offer
similar functionality to HTTP, but with reduced overhead and

power consumption, [39][40]. In some implementations,
CoAP can even outperform HTTP when running on the same
hardware configuration (Lea, 2018).

While for MQTT and MQTT-SN, a broker is required, for the
CoAP protocol the central server may be missing. Therefore,
two IoT devices or sensors can communicate using CoAP
even in the absence of a server (i.e. a network of sensors
without infrastructure).

As presented in the previous paragraphs, the publisher-
subscriber services are not characterized by space, time and
synchronization (Kang et al., 2012), which results in a
reduction of the time and effort needed to connect the sensors
and performing network scaling.

Also, in the case of a sensors network based on brokers and
uses of selective notifications, a reduction in the data flow
and energy consumption was observed (Bangui et al., 2018).
This last aspect is very important in IoT, where reducing
battery consumption is hoped to prolong the sensors’ activity
in the network.

Protocols such as Data Distribution Service, Extensible
Messaging and Presence Protocol or Advanced Message
Queuing Protocol are just a few of the protocols that can
interconnect IoT devices with limited resources (Nastase et
al., 2017).

Studies have shown that in IoT, a communication based on
both publisher/subscriber events needs less hardware and
electrical resources, compared to a request/response approach
(Esposito et al., 2018).

Although these protocols can ensure device interconnection,
they do not ensure interoperability. Messages can be
exchanged, but encapsulated data cannot be understood and
used without a common representation.

5. INTEROPERABILITY OF HETEROGENEOUS
SENSORS

When it comes to the interconnection of IoT sensors or
devices, in most cases, wireless technologies are used, so that
the devices' mobility is not affected.

5.1 Technical Interoperability

To ensure technical interoperability for IoT devices and
maintain compatibility with current technologies, protocols
such as TCP/IP or UDP/IP at the transport layer, and MQTT
at the application layer should be used. By using such an
architecture, compatibility with current networks is
maintained (EMQ, 2019).

Most IoT devices are powered by batteries or from renewable
energy sources, which makes them incompatible with
traditional wireless technologies. As presented in Table 1,
low power consumption solutions like NB-IoT and Cat-M1
can be used. These protocols will reach their full potential
with the deployment of 5G technology (I-SCOOP, 2019a; I-
SCOOP, 2019b). There is also the problem of already

CONTROL ENGINEERING AND APPLIED INFORMATICS 67

deployed sensors that work on non-IP wireless technologies
(Bluetooth, Zigbee, RFID).

To solve this issue, a proposed solution was to add an
intermediary node between Edge and sensors or IoT devices
to facilitate the conversion. Mujica et al. propose a platform
that realizes the transition from non-IP to IP protocols or
from technologies associated with wire sensors to wireless
data transmission (Mujica et al., 2018). Through the proposed
platform, the authors move the problem of technical
interoperability from the Edge layer to a node closer to the
sensors, which instead allows the Edge nodes to deal with
tasks such as processing or packet routing.

Other techniques propose smartphones as possible gateways
between different IoT devices. As smartphones become an
indispensable part in the daily life, encouraged the developers
and creators of new services and technologies to achieve a
close interaction with the smartphone world.

There can still be found proprietary solutions among them,
which is causing the lack of a comprehensive strategy (Aloi
et al., 2017; Dutta et al., 2019). A real advantage of
smartphone devices is the large number of radio interfaces
with which can communicate. Even if the computation
capabilities and memory space have increased, the battery life
is quickly reduced when multiple interfaces are used
simultaneously.

Messages propagation between sensors is another important
aspect of technical interoperability. A solution for this topic
proved to be publisher/subscriber protocol combos (MQTT
and MQTT-SN) (EMQ, 2019; Esposito et al., 2018). As the
central node is responsible for adding a new node in the
network, a problem with such an organization emerges from
having the node placed at the top layer.

At such a position in the infrastructure, complex
computations should be performed, not network
management. One solution is to introduce broker-type nodes
at the Fog layer, so that the central node no longer needs to
communicate with each individual sensor, but with nodes
delegated to manage the data packages. Another approach is
not to deploy broker-type nodes, but instead the
communication between the nodes to be based on routing
lists that are constantly updated within the network between
the connected devices (Esposito et al., 2018).

5.2 Syntactic and Semantic Interoperability

For achieving syntactic interoperability, the challenges
consist in identifying a mapping scheme that allows the
exchange of messages between sensors, regardless of the
protocol used and the way of transmitting the data bits.

Creating mapping schemes for every data transmission
protocol and technique would be far too complex when
updates are needed, but also because of the resources
involved. A proposed solution is to transmit the mapping
scheme from the central nodes to the sensors (publishers), so
they know what data format is recognized by the receivers
(subscribers). The technique suits an architecture centered on
a broker, but also advanced implementations, where the

mapping table is received from the neighboring nodes
(Esposito et al., 2018).

A common technique is to encapsulate the sensors’ messages
in XML or JSON. Through an intermediary platform such as
the one in (Mujica et al., 2018), it is possible to convert or
arrange the received data from the sensors into JSON
messages, which will then be understood by all the
subscribers interested in the subject.

The challenge with syntactic interoperability comes from the
tight relationship between device hardware development and
the software application. Without a close communication
between the two teams, the software application cannot
properly map the data from the sensor to the data format
recognized by subscriptions.

Even if syntactical interoperability is based on data formats
that are supported by different applications and there are
many tools capable to convert between different
representations there is still the challenge of properly lifting
the semantics from the data. For example, XML Schema
(XSD) has a close content, imposing fields explicitly allowed
by the schema.

JSON Schema is an open content, which allows items outside
the ones requested by the schema. In such a situation there
are techniques to discover the semantics, however there
might be needed a verification by the ontology engineer
(Ganzha et al., 2018).

Another approach in achieving syntactic interoperability is
through Action Oriented Programming (AcOP) (Mäkitalo et
al., 2018). With AcOP, the ways of interaction between the
devices and their operating environment is revised. The
AcOP model is realized in JavaScript and includes constructs
derived from Social Devices concept (Mäkitalo et al., 2018):

- sensation – an abstract representation of the input coming
from the physical, cyber or social world (e.g. a sensor
changing value);

- capability – physical objects are identified as JavaScript
objects that describe how a certain device can interact with
other devices or humans;

- action – modular unit describing in JavaScript how several
devices interact with each other over a certain period of time;

- collective execution – in AcOP a set of devices form a
coalition based on trust negotiations with the purpose of
sensing and acting toward a common goal.

Beside syntactic interoperability, AcOP can also serve in
achieving semantic interoperability through the abstraction of
inputs, capabilities of an object, actions performed.

All the functionalities for lifting semantics from the data
representation in a heterogeneous environment are usually
implemented centrally in the Cloud. However, this can raise
issues in a real-time IoT applications. Some solutions
propose to achieve semantics of sensory data by performing
the computations either at Fog level (Rahman and Hussain,
2019) or designing APIs for middleware that can define

68 CONTROL ENGINEERING AND APPLIED INFORMATICS

syntactic and semantic interoperability (Roy et al., 2021; Aloi
et al., 2017). To keep up with device development, APIs
should be available to download or update from data centers
as a kind of web store for application services. The
implementation and deployment of MEC will help in
facilitating API download and managing collective execution.

Intermediary platforms, like the one proposed by Mujica et
al., and MEC with AcOP solution, will bridge the gap
between non-IP sensors (both wireless and wired ones) and
the more capable IoT devices. The purpose of single board
computers as intermediary platforms will be to map the data
from non-IP heterogeneous sensors/devices and to implement
AcOP.

Semantic interoperability can also be reached through
ontology. Ontology represents the technology used in
defining a common dictionary for expressing resources,
services, APIs and related parameters, that are both human-
understandable and machine-readable (Abdelghaffar and
Abousteit, 2021; Ganzha et al., 2018). Through ontology
systems could reach semantic interoperability if the message
sent by one IoT device can be expressed in the terms of the
ontology of the receiver.

W3C proposed OWL as a semantic web language capable of
representing complex knowledge from a domain. This is
achieved by describing things and the relations between
them. Usually OWL ontologies are modular: horizontal and
vertical modules. Horizontal modules can be used in
describing instances of a physical device (e.g. weight, color,
geolocation etc.). Horizontal modules have the following
characteristic: are not tight to a specific application, can be
used for other physical entities and are not dependent on each
other.

On the other hand, vertical modules are built on top of each
other. At the top reside the most general ontologies and at the
bottom the most specific ones. High-level modules contain
general terms which are specified by the lower ontologies
(modules). For example, a sensor can be described using
“device” ontology. This ontology is later extended by other
domain-specific ontologies. For example, in eHealth domain
lower ontologies can add patient monitoring tools (Ganzha et
al., 2018).

Besides defining things, ontology also needs to establish
sematic interoperability through operations: ontology
alignment, ontology merging and ontology translation. First
two processes are intermediary steps in achieving sematic
interoperability in IoT. Ontology alignments consist in setting
a correspondence between two or more ontologies. This
process is done using predicates that describe the ontologies
similarities (Da Silva et al., 2020; Novo and Di Francesco,
2020). Ontology merging results in combining two or more
ontologies in an ontology that stores knowledge from all
participating ontologies.

All the previous steps help in realizing ontology (sematic)
translation, the process through which information described
semantically using source ontology dictionary is translated

into information described in terms of target ontology
(Ganzha et al., 2018).

To fulfill all the previous steps, automatic tools are needed to
facilitate the process. In the literature is mentioned to exist at
least 300 different ontologies for IoT (Novo and Di
Francesco, 2020). The tools/libraries are also needed to
extract ontologies from different data formats (i.e XML or
JSON schema). However, automatic ontology extraction
cannot interact with other ontologies. For this is need an
ontology expert to correct and improve the obtained ontology
(Da Silva et al., 2020; Ganzha et al., 2018).

This process can cause a lot of issues when trying to add new
devices or update a device data format, as all the relationship
between available ontologies must be updated. Beside this
issue another one is caused by the lack of support regarding
the automatic tools or libraries need to lift the ontologies
from data format (i.e. XML, JSON). Some developed tools
stopped being updated after they were completed (Novo and
Di Francesco, 2020). To prevent such situations,
standardization is needed so that the development of the tools
is also supported by the industry.

From a business point of view, things providers are adopting
IoT so that they can shift their business model from product
focus business model into service focus business model. The
four main IoT players (i.e. IoT platform provider, IoT device
provider, the service and application provider and the market
place provider) (Abdelghaffar and Abousteit, 2021) can have
a great impact in sustaining the development of a standard for
IoT environment. The developed standard should not
constrain the IoT device provider to a defined single data
element that anyone is ever going to use and then let the
particular implementations exclude things they do not use. A
better approach is to define a basic set of data and let specific
implementations add extra stuff as and when they need it
(Benson and Grieve, 2021). The extension must be done so
that the interoperability is not lost, as there is the risk of
adding proprietary fields which inhibit information exchange.
That is why extensions must be manageable, so that using
them does not affect interoperability. This issue can be solved
through a collaboration between device providers and
applications providers, by developing a platform with rich
API library that enables integration with more applications
and services in a dynamic and secure way (Abdelghaffar and
Abousteit, 2021).

W3C has tried to define Web of Things (WoT) architecture
as an independent vendor and application framework.
Through WoT IoT devices could communicate with each
other independent of their implementation. Efforts on sematic
interoperability in IoT were done also by other organizations
or projects: OneM2M, ETSI ISG CIM, Wise-IoT, BIG IoT.
However, even if some of them had the same objectives to
achieve interoperability in IoT as W3C WoT their approach
is completely different (Novo and Di Francesco, 2020), either
from API implementation or connection capabilities which
impairs interoperability, requiring more standardization and
integration efforts.

CONTROL ENGINEERING AND APPLIED INFORMATICS 69

Even if WoT architecture is mentioned as a key building
block for IoT applications, however, it still has some
shortcomings that prevented from becoming a standard in IoT
interoperability (Novo and Di Francesco, 2020; Silva et al.,
2019). One issue is related with the asynchronous mechanism
through which device services can notify clients about
updates with respect to their state (Bennara et al., 2020).
Another problem resides in semantically describing the
devices and their capability on the Web. In case the IoT
devices are using different ontologies, there is the chance of
not achieving semantic interpretation of the functions that the
devices can perform, preventing from having a meaningful
interaction.

6. CONCLUSIONS

This paper presents the complexity of connecting
heterogeneous IoT sensors or devices in a Cloud-Fog-Edge
architecture. The study focused on presenting interconnection
technologies based on wireless solutions so that the device
mobility is not affected. From the protocols analyzed, Cat-
M1 and NB-IoT proved to be the best solutions as having the
highest data bandwidth, largest coverage and small energy
consumption. The deployment of 5G will only help in
reaching the full potential of these two protocols. A feature
that distinguishes mobile network protocols from the
previous technologies is the introduction of IoT roaming by
network providers.

Although roaming has been recently introduced also in
LPWAN (Low-Power Wide-Area Network) technologies like
LoRa, even keeping the lower-level data encrypted, the sheer
size of telecom operators will grow 5G-based IoT beyond
what LoRa or Sigfox can commercially offer. An analysis of
real-life roaming support offered by old and new
technologies would be interesting, but again, when they are
not only technologically but also commercially mature,
deployment-wise.

Achieving interoperability in a heterogeneous environment,
not only from the technical and syntactic point of view but
also from the semantic level, can prove to be a real challenge.
The solution is to use innovative techniques (Esposito et al.,
2018; Mujica et al., 2018) and to resort to domain
standardization (Sabella et al., 2019; Chairman of ISG ENI,
MEC, NFV and ZSM, 2019) which will bring benefits not
only from the communication point of view but also for
security, process and time required on the development side.
As 5G and MEC will be deployed, attention should be paid
on API development to support interoperability, especially
that there will also raise the interest of IoT service and
application providers.

For IoT interoperability to become a reality, mobile carriers,
equipment vendors, and software developers will have to
work together to build a standard for APIs intended for MEC
and WoT. It does not mean to achieve all levels of
standardization at the same time, but is an essential process
that will help IoT to evolve. Let us just think where the
aircraft, navigation or automotive industry would be if it were
not for the standards from the safety and communication
point of view. As presented by the paper, research helps in

obtaining better IoT interoperability, but without the industry
support and involvement things will remain at proprietary
platform.

ACKNOWLEDGEMENTS

This research was funded by the Ministry of Education and
Research of Romania, section CCCDI - UEFISCDI, grant
number PN-III-P1-1.2-PCCDI-2017-0734 / ROBIN -
“Roboții și Societatea: Sisteme Cognitive pentru Roboți
Personali și Vehicule Autonome” (Robots and Society:
Cognitive Systems for Personal Robots and Autonomous
Vehicles) within PNCDI III, and grant SeMed
(2933/55/GNaC 2018).

REFERENCES

Abdelghaffar, H. & Abousteit, M. (2021). Internet of Things
(IoT) Interoperability Success Criteria, International
Journal of Enterprise Information Systems, 17(1), 85-
105.

Al-Fuqaha, A., Guizani, M., Mohammadi, M.; Aledhari, M.&
Ayyash, M. (2015). Internet of Things: A Survey on
Enabling Technologies, Protocols, and Applications,
IEEE Communications Surveys & Tutorials, 17(4), 2347-
2376.

Almeida, F.R., Brayner, A., Rodrigues, J.J.P.C. & Maia,
J.E.B. (2017). Improving Multidimensional Wireless
Sensor Network Lifetime Using Pearson Correlation and
Fractal Clustering, Sensors, 17(6), 1-24.

Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P.,
Russo, W. & Savaglio, C. (2017). Enabling IoT
interoperability through opportunistic smartphone-based
mobile gateways, Journal of Network and Computer
Applications, 81, 74-84.

Bahga, A. & Madisetti, V. (2014). Cloud Computing - A
Hands-On Approach. CreateSpace Independent
Publishing Platform.

Bahga, A. & Madisetti, V. (2014). Internet of Things: A
Hands-On Approach. CreateSpace Independent
Publishing Platform.

Bangui, H., Rakrak, S., Raghay, S. & Buhnova, B. (2018).
Moving to the Edge-Cloud-of-Things: Recent Advances
and Future Research Directions, Electronic, 7, 1-31.

Bennara, M., Zimmermann, A., Lefrançois, M. & Messalti,
N. (2020). Interoperability of Semantically-Enabled Web
Services on the WoT: Challenges and Prospects. In
iiWAS '20: Proceedings of the 22nd International
Conference on Information Integration and Web-based
Applications & Services (pp. 149–153).

Benson, T. & Grieve, G. (2021). Principles of Health
Interoperability – Fourth Edition, Springer.

Billion (2018), Case Study: LoRa Smart Meter, billion.com
[Online]. Available
<https://www.billion.com/upload/web/Case/Billion-
Case-Study-4700ZU-LoRa-Smart-Meter.pdf>.

Brutti, A., De Sabbata, P., Franscella, A., Gessa, N.,
Ianniello, R., Novelli, C., Pizzuti, S. & Ponti, G. (2019).
Smart City Platform Specification: A Modular Approach
to Achieve Interoperability in Smart Cities, The Internet
of Things for Smart Urban Ecosystems, 25-50.

70 CONTROL ENGINEERING AND APPLIED INFORMATICS

Cao, J., Zhang, Q. & Shi, W (2018). Edge Computing: A
Primer. Springer International Publishing, ISBN 978-3-
030-02082-8.

Chairman of ISG ENI, MEC, NFV and ZSM (2019). Network
Transformation; (Orchestration, Network and Service
Management Framework), ISBN No.979-10-92620-29-
0.

Cisco Systems (2015). Fog Computing and the Internet of
Things: Extend the Cloud to Where the Things Are,
Cisco.com [Online]. Available
<https://www.cisco.com/c/dam/en_us/solutions/trends/io
t/docs/computing-overview.pdf>.

Da Silva, J., Revoredo, K., Baião, F., & Euzenat, J. (2020).
Alin: Improving interactive ontology matching by
interactively revising mapping suggestions, The
Knowledge Engineering Review, 35, 1-22.

Duan, K., Fong, S., Zhuang, Y.; & Song, W. (2018).
Improving Oxides Gases for Occupancy Counting and
Emergency Control in Fog Environment, Symmetry,
10(3), 1-16.

Dumitrache, M., Sandu, I. E. & Barbu, D. C. (2017). An
Integrated Cloud Computing Solution for Romanian
Public-Sector Entities: ICIPRO Project, Studies in
Informatics and Control, 26(4), 481-487.

Dutta, J., Roy, S & Chowdhury, C (2019). Unified
framework for IoT and smartphone based different smart
city related applications, Microsyst Technol, 25, 83-96.

EMQ [2019], Smart China Expo – EMQ & Intel MEC IoT
Edge Solution, EMQ [Online]. Available
<https://www.emqx.io/blog/2019-smart-china-expo-
emq-intel-mec-iot-edge-solution>.

Ericsson [2019], Ericsson Mobility Report November 2019–
ericsson.com [Online]. Available
<https://www.ericsson.com/4acd7e/assets/local/mobility-
report/documents/2019/emr-november-2019.pdf >.

Esposito, C., Castiglione, A., Palmieri, F., Ficco, M., Dobre,
C., Iordache, G. V. & Pop, F. (2018). Event-based sensor
data exchange and fusion in the Internet of Things
environments, Journal of Parallel and Distributed
Computing, 118(2), 328-343.

Eugster, P. Th., Felber, P. A., Guerraoui, R. & Kermarrec, A.
M. (2003). The many faces of publish/subscribe, ACM
Computing Surveys, 35(2), 114-131.

European Commission (2012), Unleashing the Potential of
Cloud in Europe, Eur-lex.europa.eu [Online]. Available
<https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:52012DC0529&fro
m=en >

Gallis, R., (2018), First Sigfox enabled bollard. A case study
to better monitor water outlets, Thinxtra The IoT Telco
[Online]. Available
<https://library.web.thinxtra.com/2018/03/first-sigfox-
enabled-bollard/ >

Ganzha, M., Paprzycki, M.; Pawłowski, W., Szmeja, P. &
Wasielewska, K. (2018). Towards Semantic
Interoperability Between Internet of Things Platforms,
Integration, Interconnection, and Interoperability of IoT
Systems, 103-127.

Giust, F., Verin, G.; Antevski, K., Chou, J., Fang, Y.,
Featherstone, W., Fontes, F., Frydman, D., Li, A.,

Manzalini, A., Purkayastha, D., Sabella, D., Wehner, C.,
Wen, K.W. & Zhou, Z. (2018). MEC Deployments in 4G
and Evolution Towards 5G, ISBN No. 979-10-92620-18-
4.

Ha, K., Chen, Z., Hu, W., Richter, W., Pillai, P. &
Satyanarayanan, M. (2014). Towards Wearable
Cognitive Assistance. In Proceedings of the 12th Annual
International Conference on Mobile Systems,
Applications, and Services (pp. 68-81).

Hu, B., Xie, H., Ma, Y., Wang, J. & Zhang, L. J. (2018). A
Robust Retail POS System Based on Blockchain and
Edge Computing. In Edge Computing – EDGE 2018.
EDGE 2018. Lecture Notes in Computer Science (pp. 99-
110).

I-SCOOP (2019). NB-IoT explained: a complete guide to
Narrowband-IoT, i-scoop.eu [Online]. Available
<https://www.i-scoop.eu/internet-of-things-
guide/lpwan/nb-iot-narrowband-iot/ >.

I-SCOOP (2019). LTE-M roaming for North America and
several European markets, i-scoop.eu [Online]. Available
<https://www.i-scoop.eu/internet-of-things-
guide/lpwan/lte-m-roaming/ >

Jridi, M., Chapel, T., Dorez, V., Le Bougeant, G. & Le
Botlan, A. (2018). Improving SoC-Based Edge
Computing Gateway in the Context of the Internet of
Multimedia Things: Experimental Platform, Journal of
Low Power Electronics and Applications, 8(1), 1-18.

Jun, S. (2020), Challenges & Key Issues of Constructing
‘MEC-Ready’ 5G Bearer Networks for Carriers,
telecoms.com [Online]. Available
<https://telecoms.com/intelligence/challenges-key-
issues-of-constructing-mec-ready-5g-bearer-networks-
for-carriers/ >

Kahvazadeh, S., Souza, V. B., Masip-Bruin, X., Marn-
Tordera, E., Garcia, J. & Diaz, R. (2017). Securing
Combined Fog-to-Cloud System Through SDN
Approach. In Proceedings of the 4th Workshop on
CrossCloud Infrastructures & Platforms (pp. 1-6).

Kang, W., Kapitanova, K. & Son, S. H. (2012). RDDS: A
Real-Time Data Distribution Service for Cyber-Physical
Systems, IEEE Transactions on Industrial Informatics,
8(2), 393-405.

Lea, P. (2018). Internet of Things for Archtects. Packt
Publishing.

Lee, J., Su, Y. & Shen, C. (2007). A Comparative Study of
Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-
Fi, In Proceedings of the IECON 2007-33rd Annual
Conference of the IEEE Industrial Electronics Society,
Taipei, Taiwan, 46-51.

Mäkitalo, N., Ometov, A., Kannisto, J., Andreev, S.,
Koucheryavy, Y. & Mikkonen, T. (2018). Safe, Secure
Executions at the Network Edge : Coordinating Cloud,
Edge, and Fog Computing, IEEE Software, 35(1), 30-37.

Mell, P., Grance, T. (2011). The NIST Definition of Cloud
Computing, National Institute of Standards and
Technology [Online]. Available
<https://faculty.winthrop.edu/domanm/csci411/Handouts
/NIST.pdf>.

Mois, G., Stefan, I., Enyedi, S. & Miclea, L. (2010).
Reconfiguration and hardware agents in testing and

CONTROL ENGINEERING AND APPLIED INFORMATICS 71

repair of distributed systems. In 2010 East-West Design
Test Symposium (EWDTS) (pp. 195-198).

Mujica, G., Rodriguez-Zurrunero, R., Wilby, M. R., Portilla,
J., Rodríguez González, A. B., Araujo, A., Riesgo, T. &
Vinagre Díaz, J. J. (2018). Edge and Fog Computing
Platform for Data Fusion of Complex Heterogeneous
Sensors, Sensors, 18(11), 1-26.

Naik, N. (2017). Choice of effective messaging protocols for
IoT systems: MQTT, CoAP, AMQP and HTTP. In 2017
IEEE International Systems Engineering Symposium
(ISSE) (pp. 1-7).

Nastase, L., Sandu, I. E. & Popescu, N. (2017). An
Experimental Evaluation of Application Layer Protocols
for the Internet of Things, Studies in Informatics and
Control, 26(4), 403-412.

Novo, O. & Di Francesco, M. (2020). Semantic
Interoperability in the IoT: Extending the Web of Things
Architecture, ACM Transactions on Internet of Things,
1(1), 1-25.

Rachna, P. (2001). Study on the Interconnection and
Interoperability of Information Systems. In CALIBER
2001: Pune.

Roman, R., Lopez, J. & Mambo, M. (2018). Mobile edge
computing, Fog et al.: A survey and Analysis of
Security, Threats and Challenges, Future Generation
Computer Systems, 78(2), 680-698.

Roy, M., Kar, P. & Datta, S. (2021). Interoperability in IoT
for Smart Systems. CRC Press.

Sabella, D., Sukhomlinov, V., Trang, L., Kekki, S.,
Paglierani, P., Rossbach, R., Li, X., Fang, Y., Druta, D.,
Giust, F., Cominardi, L., Featherstone, W., Pike, B. &
Hadad, S. (2019). Developing Software for Multi-Access
Edge Computing, ISBN No. 979-10-92620-29-0.

Sharma, P. K., Chen, M. Y. & Park, J. H. (2017). A Software
Defined Fog Node Based Distributed Blockchain Cloud
Architecture for IoT, IEEE Access, 6, 115-124.

Siira, M. (2014). Interconnection, interoperability for
integration in the Smart Grid, Consulting-Specifying
Engineer (CSEMAG) [Online]. Available
<https://www.csemag.com/articles/interconnection-
interoperability-for-integration-in-the-smart-grid/>.

Silva, A. L. M., Pérez-Alcázar, JJ & Kofuji, S. T. (2019).
Interoperability in semantic Web of Things: Design
issues and solutions, International Journal of
Communication Systems, 32(6), 1-27.

Thangavel, D., Ma, X., Valera, A., Tan, H. & Tan, C. K.
(2014). Performance evaluation of MQTT and CoAP via
a common middleware. In 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP) (pp. 1-
6).

Veer, H. & Wiles, A. (2008). Achieving Technical
Interoperability - the ETSI Approach, European
Telecommunications Standards Institute (ETSI) [Online].
Available
<https://portal.etsi.org/Portals/0/TBpages/CTI/Docs/IOP
%20whitepaper%20Edition%203%20final.pdf>.

Wang, X., Chen, X., Wang, Y. & Ge, L. (2019). An efficient
scheme for SDN state consistency verification in cloud
computing environment, Concurrency and Computation:
Practice and Experience.

Yi, S., Hao, Z., Qin, Z. & Li, Q. (2015). Fog Computing:
Platform and Applications. In 2015 Third IEEE
Workshop on Hot Topics in Web Systems and
Technologies (HotWeb) (73-78).

Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless
Sensor Network Survey, Computer Networks, 52(12),
2292-2330.

