CEAL Vol.23, No.2, pp. 53-66, 2021

Printed in Romania

Fault Estimation and Robust Fault-tolerant Control for Singular Markov
Switching Systems with Mixed Time-Delays and UAV Applications

Fu Xingjian, Geng Xinyao

School of Automation, Beijing Information Science and Technology University, 100192, Beijing, China
(e-mail: fxj@bistu.edu.cn, koala823@163.com)

Abstract: In this paper, the robust fault-tolerant control for a class of uncertain Markov switching
singular complex systems with mixed time-delays is studied. It is assumed that there are multiple fault
conditions such as sensor faults, actuator faults, and external disturbances. Under sensor faults and
actuator faults, the estimated states can be achieved by building the adaptive observer, which can detect
system states in real time. In order to enable Markov systems to be well controlled in the event of various
faults, a robust fault-tolerant controller based on control law compensation and fault signal reconstruction
is designed to ensure the stability of Markov switching singular complex systems. Finally, the feasibility
of the method designed is proved by a numerical simulation example, and it is applied to the UAV

motion system to verify the effectiveness.
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1. INTRODUCTION

Time-delay often appears in the control system. The mixed
time-delay is a combination of discrete time-delay and
distributed time-delay, and it is also one of the important
reasons that lead to system instability. Singular system, also
known as generalized system, or description system, or semi-
state system, or differential algebra system, is a natural
dynamic system. Compared to linear systems, singular
systems describe a larger range of systems. Because singular
systems are widely used, they have attracted the attention of
some scholars (L. Yulianti et al., 2019; Li Li et al., 2016;
Ding C et al., 2013; Ma Y et al., 2017).

The fault-tolerant control is a method that can maintain
system performance when the system's sensors, actuators and
other components fail (Wenhui Liu et al., 2019; Xue Liu et
al., 2018; Libing Wu et al., 2018; Chao Huang et al., 2018;
Zheng Wang and Yanpeng Pan, 2017; Imen Haj Brahim et
al., 2016). In the actual control system, the sensors and
actuators may have sudden failures individually or at the
same time during operation, and the system has disturbances
from the external environment. In order to improve the
reliability and safety of the system, a robust fault-tolerant
controller needs to be designed to compensate for the adverse
effects caused by the fault (Yan Liu et al., 2016; Libing Wu
et al., 2016; Huaming Qian et al., 2015; Lili et al., 2019). The
problem of sensor fault control is studied in the literature
(Imen Haj Brahim et al., 2016). For actuator failure, an
observer-based active fault-tolerant controller is proposed in
(Xue Liu et al., 2018). For parameter uncertainty, external
disturbances and actuator failures, the adaptive Hoo fault-
tolerant control for uncertain switched nonlinear time-delay
systems has been studied in (Libing Wu et al., 2018 and
Libing Wu et al., 2016).

Markov switching systems are hybrid and random systems
that can be used to describe systems affected by random
mutations and environmental changes, so it can describe a
wide range of practical systems, including aerospace systems,
manufacturing systems, and network control systems, etc.
(Feifei Chen et al., 2019). In recent years, the research on
Markov switching systems has become a hot topic. The main
research includes stability and control design in
(Rathinasamy Sakthivel et al., 2015; Mohsen Bahreini et al.,
2018; Kaiyan Cui et al., 2019; Marcos G et al., 2016; Deyin
Yao et al.,2018), robust filtering in (Tohidi H et al., 2017;
Tianliang Zhang et al., 2019; Mouquan Shen et al., 2017,
Lijie Zhu et al., 2019; Huijiao Wang et al.,2017), state and
fault estimation in (Lu Dong et al., 2018); Zhang Y et al.,
2016; Chunyan Han et al., 2019; Liwei Li et al., 2016), fault
detection and fault tolerance control, etc. in [30-36]. In
(Kaiyan Cui et al., 2019), the exponential stability of the
mean square of a stochastic Markov jump system with mixed
time-varying delays and partially unknown transfer rates is
discussed. In (Mouquan Shen et al., 2017; Lijie Zhu et al.,
2019), the Hoo filtering problem of unknown transition
probability of the system is studied. In (Lu Dong et al.,
2018), the problem of fault estimation for Markov jump
systems based on adaptive observers is discussed. In
(Chunyan Han et al., 2019), the minimum mean square error
estimation of linear Markovian jump systems with unknown
transition probability, multi-channel mode and observation
delay, packet loss, etc. is studied. In (Xiaohang Li et al.,
2019), the simultaneous estimation and fault-tolerant control
problem of actuator failure and sensor failure of Markov
jump system are studied. The sensor fault is extended to a
part of the state vector, the original system is transformed
into a singular system and an adaptive observer is designed.
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At present, the research on singular Markov jump systems
with both actuator and sensor failures needs to be improved,
and the research on simultaneous estimation of system states,
actuator failures and sensor failures is rare. In practical
application systems, there are uncertainties in system
parameters and random time-delays are common. Therefore,
it is of great value to study the robust fault-tolerant control
for singular Markov jump systems with mixed time-delays.

This paper focuses on a class of singular Markov switching
complex systems with mixed time-delays. The problems of
comprehensive fault states estimation and fault-tolerant
control in the presence of sensor faults, actuator faults, and
external disturbances are studied. By designing adaptive
observers, the states are estimated. By constructing a robust
fault-tolerant controller, the effects of faults and disturbances
are eliminated to ensure the stability and reliability of the
system. The feasibility of the method is proved by numerical
simulation, and it is also applied to the four-rotor UAV
motion system to prove the applicability. Compared with the
fault-tolerant control strategies in other references (Xiaohang
Li et al., 2017; Shidong Xu et al., 2017; Dunke Lu et al.,
2017), the FTC in this paper is active fault-tolerant control
with more advantages. The active fault-tolerant control is a
strong robust control under the fault conditions. When the
system fails, the fault-tolerant controller can be solved
immediately according to the type of failures to ensure the
stability performance of the system. Moreover, in this paper,
for the uncertain state transition probability, the fault-tolerant
control strategy is provided for a Markov singular jump
system with both actuator and sensor failures, which is more
practical.
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Fig. 1. The process figure.

The process figure is shown in Fig.1. This paper mainly
includes 6 sections. In the first section, the current research
progress and main conclusions of Markov system and fault-
tolerant control are analysed. And the main novelty research
work of this article is described. In the second section, system
modelling is presented. The four-rotor UAV model and the
complex singular Markov switching system model are
established. In the third section, in order to estimate the
system states under the sensor or actuator failures, a robust

adaptive observer design is given. In the fourth section, the
active fault-tolerant controller is designed to make the system
stable when the sensors and actuators fail. In the fifth section,
the research results of this paper are verified by simulation.
The feasibility is verified by numerical simulation and
application simulation of UAV motion. The sixth section is
conclusions.

2. SYSTEM MODELING
2.1 Four-rotor UAV Modeling

By adjusting the speed of the four rotors, the four-rotor UAV
can complete the flight attitude conversion. The attitude
control mainly includes three parts, namely the roll angle ¢,

the pitch angle € and the yaw angle i . The pitch attitude is

achieved by controlling the speed difference between the two
rotors in the forward and backward directions of the UAV.
The roll angle attitude is determined by controlling the speed
of the two rotors in the left and right directions. The yaw
angle attitude is achieved by adjusting the speed of the two
pairs of rotors.

The carrier coordinate system oxyz is corresponding to the
ground coordinate system OXYZ , the rotation angle vector is

e=[¢ 6 1//]T , and the rotation attitude matrix is

(1 0 0

R(x,4)=|0 cos¢ —sing (1)

|0 sing cosg |

[ cos® 0 siné]
R(».0)=| 0 1 0 @)

|—sin€ 0 cosd |

cosy —siny 0
R(z,y)=|siny cosy 0 3)

0 0 1

The rotation transformation matrix R(¢,6,y) is

R(¢,t9,l//):R(x,¢)R(y,t9)R(z,l//) @)

The relationship between the carrier coordinate system and
the airflow coordinate system is as follows.

The carrier coordinate system can be rotated by « angle
(angle of attack) to obtain a stable coordinate system.

cosa 0 sina
S(a)=| 0 1 0 (5)
—sinaa 0 cosa

Turn the £ angle (side slip angle) of the stable coordinate
system to get the air current coordinate system

cosff sinff 0
S(B)=|-sinfB cosfB 0 (6)
0 0 1
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The transformation matrix S,, between the coordinate

systems is
cosa sinff sinacosf
S, =|—cosasinf cosf —sinasinf @)
—sinx 0 cosa

According to Euler's kinetic equation and the centroid motion
theorem, the dynamic equilibrium equation and moment
equilibrium equation for the UAV in the carrier coordinate
system can be obtained (Zhao Xingcheng, 2019).

F, —m(d—+wq vr) ()
d

F, = (—+ur wq) 9)

F, :m(—+vp uq (10)

M, =1 (1 -1.)qr (11)
dq

M, :IyE—(IZ—IX)rp (12)

M. =1 ﬂ—([ -1,) (13)

z z dZ X y pq

where [, 1, and [, are the moments of inertia of the three
axes, respectively. p,q and * are the angular velocities of

the three axes, respectively. u , v and w are the linear
velocities of the three axes. F,, F,and F, are the combined

external forces in the triaxial direction. M, M and M, are
the combined external moments in the triaxial direction.
The angular velocity and the Euler angle in the carrier

coordinate system corresponding to the ground coordinate
system have the following relationship

p 1 0 —sin@ ¢
g|=|0 cos® singcosd | O (14)
r 0 —sin@ cosgcosl ||y

Assuming that there is no frictional resistance in the air,
ignoring the spiral gyro effect, the center of the rotor is the
center of mass of the UAV, and regardless of its inertia, the
dynamic model of the four-rotor UAV can be approximated
as:

L=0y(1,~1)+Mm,
10=y (I, —1)+1u,
Ly =g0(1,—1,)+u, as)
ma, = (cosy sin @ cos ¢ +siny sin @) u,

ma, = (sin!// sin @cos @ — cosy sin ¢)u4

ma_ =mg —(cos@cosp)u,

wherea, ,a, and a, are the acceleration of the three axes in

the coordinate system,/ is the arm length from the rotor to
the center of gravity. u,,u,,u, and u,is control input. u, is

the roll input. u, is the pitch input. u, is the yaw input. u, is
the vertical speed change which means the throttle input.

2.2 Singular Markov Switching System Statement

Considering the component failure, the complex external
environment and disturbances in the actual system, the
motion state model containing sensor and actuator failures is
represented as the following singular Markov switching
system with mixed time-delays:

Ex(0)=[ A(r (1) + A (r(0) x(0)

+[A,(r(t )+AA (r t )Jx(t—r ) )

+B(r(1))u(e)+ D(r(1))£.(

, (16)
+H(r(t))f, At S))dS+W( 1))
y(t)=C(r(f))X(f)

+G(r(t))fs(t),x(t):¢(t), te[-7,0]

This is a singular Markov switching system with mixed time-

delays in probability space. {r(t),t > 0} is a right continuous

Markov process, which takes values in the finite set

S ={l,2,~~,s} , and its state transition probability is as
follows
O.At+O(At), E3)
Plr(t+At)=j:r(t)=if={ " (&) ’
1+5,At+0(Ar),  j=i

where At>0 , iin}JO(At)/ At=0and 5, >0 are transition

probabilities from state i to state j. If j#i then 5, >0,

S
otherwise &, =— D &, . In the system model, x(1)eR" is

=l

the state vector. M(l) €R" is the control input. y(t) is the
output vector. £, (¢) €R” and f,(f) €R? are unknown faults
of the system actuator and sensor, respectively (Xiaohang Li
etal, 2018; Li HY et al,, 2014). @() € L,[0,%0) indicates
the external disturbance of the system. f(-):R' >R" is a
non-linear function vector. E , A (r (t)) A, (r(t)) ,B (r (t)) ,

C(r(t)) s D(r(t)) s H(r(t)) , G(r(t)) and W(r(t)) are

constant matrices with appropriate dimensions, and it is
assumed that G (r(¢)) is a column full rank. A4(r(¢)) and

AA, (r(t)) are unknown matrices and represent the

uncertainty of state parameters.For r(t):i,ieS , the

uncertain term is [Ad, A4 |= U,F,(¢)[V;, V,,], where the



56

CONTROL ENGINEERING AND APPLIED INFORMATICS

matrices U, V;, and V,, are known constant matrices with
appropriate dimensions. £ (t) is an unknown time-varying
matrix that satisfies F (t)F;(t)SI. In the mixed time-
delay, 7, represents the mode-dependent discrete time-
delay, 7, represents the mode-dependent distribution time-

delay, 7 =max {Tl.,j|i:1,2,j—1,2,---,s}, and the function

@(1) is the initial condition on [~7,0].

Assumption 1 Let the nonlinear function f (X) satisfies

[/ (x)-2] [1(x)-2:x] <0 £ (0)=0 an

where Z, and Z, are known constant matrices, which can be
obtained from the above formula

o s,

Where 21 =(ZITZZ+ZZTZI)/2’ Zz =(Z1T +ZZT)/2.

(18)

Definition 1 for singular Markov switching systems
Ex (1) = A(r (1)) x(6) + 4. (r(6)x(t =7,

(r(#)u(e)+ W (r(1) (1)

)= C(r(2))x(e)+ D(r(e))u(r)

where @() is the external disturbance. For any x(0)€R"

+B (19)
y(t

and r(O) €S, there exist constants M(x(O),r(O)) and
¥ >0, so that the following inequality

limg{ﬂyr (s)y(s)ds | x(O),r(O)}%

<[l 8 (x(0).r(0)) |

holds, then the system (19) is randomly stable and has robust
H_ performance index y.

Lemma 1 (Schur complement) For the symmetric matrix

_ Sy S, . . .
S= , where S|, is r x r -dimensional, the foll-
S21 SZZ

owing three conditions are equivalent:
S<0;

8, <0, S, =8",87,S, <0;

Szz <0, Sll _S12S_122ST12 <0.

Lemma 2 For any positive definite symmetric matrix
WeR™ , w=w", parameter 0<7r<7, and vector

function x:[—rM 0]—>R” , the following integral

inequality holds

o[ 5 (e +sYPi(1+5)ds
T AR

Lemma 3 Given symmetric positive definite matrix ¥ > 0

matrices D and E  with appropriate  dimensions,
then Y + DF(k)E + E"F"(k)D" <0 ,for all F satisfying
F"F <1, if and only if there exists a scalar & > 0 such that
Y+eDD" +&'E"E<OQ.

Lemma 4 For any positive definite matrix R, the integrable
vector function f:[0,/] - R", the following inequality holds

I f(s)dsT R[' £ (s¥ds <] £ (s)Rf (s)is

In order to be able to consider both sensor failure and
actuator failure, and treat sensor failure and actuator failure
as state vectors, a new augmentation system is constructed as

Ef(t)zlzié(t)+AAix(t)+(Ari+AATi)x(t_T1,i)
+Bu(t)+H, [ S (x(s))ds+Woo(c)
v, (1)=C& (1)
where 4, =[4 D, 0].C,=[C, 0 G]
x(1)

E(t)=|f,(t)|eR"" E=[E 0 0]
(1)

3. ESTIMATION OF ACTUATOR AND SENSOR
FAILURES

(20)

In order to effectively estimate the system states under sensor
or actuator failures, a robust adaptive observer of the
following form is constructed

2(t)=Mz(t)+ Ly, (t)+T,4,E(t-7,,)
+TBu(t)+TH, J.;TZJ f(é(s))ds
() ==2(0)+ Ny, (1)

2D

where z(¢) is the observer variable, &(), é(t—z']‘l.) , and

state  estimates, A4, =[4, 0 0] ,
B =[B 0 0], H=[H, 0 0] are the estimated

parameters, and M, , L ,

E(s) are the

T, , and N, are the matrices

i

required by the observer design.
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Define the observation error as
e(t)=¢&(t)-&(t)=(1-N,C)&(t)-=z(¢)

and let Z=1-N.C, then the observation error system is

¢=Me+(E4,-LC -ME)E —TI.H,,J.LTZ £ (3(s))ds
+EALx (t)+ E(Al.+AATI.)x(t—rll.)+(E‘i—TI.)Bl.u(t) (22)
VA7 (e(s)ds - ZWa() T A (-,
let=—~7 =0,24, — L,C,— M,E = 0 ,then

I-N.C =TE (23)
M, =T 4 -(L-MN,)C, (24)

Because G, is full rank, a set of special solutions can be
obtained according to formula (23)

— — -1
E| |1 E 0

Tz" = = ! 9 N,‘ =l = (25)
C[ O Ci In

Assuming L, —M N, = K, then

M,=T4-KC L =K+MN, (26)

where K, is matrix with appropriate dimensions. The

observer error system (22) can be simplified as

. — — t

e=M’,e+Aﬂ.e(t—ru)+Hi_[H2 f(e(s))ds 7

HTAMX+TAMx(t =7, )+ T W

A -

where A, =T A, H =TH_, .

7i 2 i i

Theorem] Defines 7, = rnax{r,.j,j € S},

g:max{éﬁ,ie St .

T, :min{rij,jeS},

If exist the constant >0, y>0

positive definite symmetric matrices
b,,P,,0,,0,0,,0,,R and R,, matrices Y,,, Y, andK,,
so that the following linear matrix inequality
(@, 0 @, o, ]
* cDx cDxtzr ®‘C 7 T
* * o, D, v, 1
o= ., ® <0 (28)
" -a'1 0
. * _al_
holds. Then observer error system (27) is robust

asymptotically stable and satisfies H- performance } .

57
_q)]l PliZ‘ri Rl _i 22
* -0 -0, 0 0
o =
S R
TZ,i
% % £ CD44
(DSS q)56 PZiHi ZZ (D
* O 0 0 "
66 0
b = b =
x * * _LRZ 0o\ ¢ 0
Ty
L cst
0.
05) -7’0 0
OJE 0 ,Dy=| 0 -1 0 |,
0 (VR
Dy 0 0 Tl:Az 0,
- T
o = Tl,i‘A_Ti O 0 O = 0 leAnTOZ
e HTO 0 T 0 7 HO,
L 0 0 10 0
0 7,80,
’ T _01 0
®, = 0 0,00, D, = % 0
Y
. (Tw) o W0,

S p—
O, =PA+ATP, + Z@ETPZJ.E+(1+5(?1 7))o,
~E'"O,E~Z7,,®,, = P,A,+E"O,E
CDSQ [IJZLBL I)ZIDL IJZLVVL] = _QZ _ETOZE

66 — _Qz —ETozE’(Dxx = |:Tz” +7<Z_-22 _222 ):|R2 -1

Proof: Choose the Lyapunov-Krasovskii function as follows

V(e(e).x(e).r (1)) =V (e(t)r(6)+ (x().r (1))

where

29

t

V(e(f%r(f))=eT(r)&e(r)%,ﬁ_,eT(e)Qle(e)dg
+5[[ & (0)Qe(0)dods

va, ][ & (0)0,6(0)dovds

H L (e0) le(e(é’))dﬁds
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+5j [N 1 (e(0))d0dsda
V(x(t),r(t)):x ()P.x( )+ji X" (6)0,x(6)d6
+5j [ ¥ 0)dods +

ol gL
Hf
+5HLf

E OEx H)des

(x(0 ))dads

(x(0))dbdsda

For r(t)=i,ie S, the weak infinitesimal operator ¢ with a

Markov process

EV(e z) =2¢" Pe+e Zé'

+z5 I eT

et+e'Qe-e Qe
Oe(s)ds +3 (7~ 1) Qe
—5j (t-5)Qe(t-s)ds +1,2¢ O¢
7, jf’ & (s)0e(sps +,,
[ (el =s) R f (e =s)lds
+Za‘j j 17 (e(0))R £ (e(0))dods

+5_[ If e t))dsda
—5.[ .[f e(t- S)Rf( t—s)dsda

0V (x,i)=2x" P Ex+x Z S,E"

J=1

szEx+xTQ2x

S
_XTTl,QTx’n +Zé‘l]J.t,
+5(rl -7,)x' Oyx— 5I
+rl’[2xTE OzEx—z'L,.J-H X

+2,, 7 (x(0) R, f (x(1))

y x" (5)0,x(s)ds
t §)0,x(t—s)ds
"(s)E"O,Ex(s)ds

[ (=) Ro (x(e5) s
+Z§j T 17 (x(0) R, f (x(0))d0ds
+5j [ (x( x(t))dsda
B[ ()R <x<r—s>>dsda

where

ST (e()R S (e(1))

(30

ZS: I 5)Qe s)ds<5j )Q.e(s)ds
. 31
; j )ds<§j )ds
—5]' "(t—s5)Qe(t—s ds——o"j 5)Oe(s)ds

(32)
—é'j (1—5)Oyx(t—s ds——é'J. O,x(s)ds

s (33)

<5[°[ /7 (x(0)) RS (x(0))0da

5[ [0 (ele=5) R S (el ) Yisda
5] Iff (e(6))R ./ (¢(0))d0da

SB[ (v(e=5)) Rt (x(e - 5)Kisda
<57 17 (x(0))R.f (x(0))d0da

From the Lemma 4, we get

7S (elt=5)) R f (el =s5)s

<= ([ r(ems) & (et

7 ()R (=)
S_Z(It-a‘,f X s s) RZJ-’_TZJf(x(g))d

From the Lemma 2,we get

—7,; J':im e’ (S) Olé(s)ds

a T T a
<-e Oe+e Oe+e Oe —e Oe,

t
T
-, ,J X
i

T T T T T T
+x, E"O,Ex+x E O,Ex, —x, E O,Ex,

(34

(35)

(36)
(s)E"O,Ex(s)ds < —x"E"O,Ex

Substituting the equation (31)—(36) into the equation (30)
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N
0V (e,x,i)<2e' Be+e [Zé‘ljﬁj +<1+5(F1 —5))Q1 —OI}e
I=

T 2.T . T
—e, (Q1 +0, )er.,, +7,€ Ole-i-erly’ O

+e' O, +{z’2,i +%(722 -z )}fT (e()) R f (e(1))
TP

+x7 {ZS: 8,E"P E+(1+0(7,-1))0, - ETOZE}C
+2xfz;x -x! (O, +E"OE)x, +1,’%" E"O,Ex

+x; E'O,Ex+x"E"O,Ex,

{ - )} £ () R (x(0) 67
I ] R (s

then
vV (e,x,i)+e (t)e(t)-ry'a’ (1)a (1)

- (38)
<n' (t)[(l) + Tl,iz(/’eoﬂ’e + Tl,iZ(osz(Px]ﬂ(t)

Let ¢’ (1)=¢,n(t) and Ex =¢n(r), the inputs, disturbances

and faults are expressed as
T
a=[u(t) 1,(1) o],
g=[M 4, H 0 TAM TA, 00 0 0 TW]
$=[0 0 0 0 A+Ad A,+Ad, H 0 B D, W]

2(0)=[et) n. n Fle() x() n n f(x(1) @]

nel rle)ds nf (o)

me=e(t=n,).m, =x(t-7,)

where
(i)e éEX (Deﬂ

o= * D D _|<0 (39)
*k * (D()()

where

O = s
¢ * * b R 0
Toi
* * * (D44

d)55 d356 PZiHi ZZ
* D 0 0

(b =
Sl e e

TZ,i

* * * (Dgg
RTAA RTA4, 0 0
- | o 0 0 0
“ 1 0 0 0 0
0 0 00

S —_— —
(i)u =RM, +M1'TP11' +Z§ijﬁj +(1+5(2_'1 _5))Q1 -0 -Z+1
=

(i)ss =P, (Ari +AAn‘)+ET02E ’
D55 =5 (

55 — I

S
A+AM)+(4 +A4) B+ 8,E'RE

J=1
+(146(z,-1))0, -E"0,E-Z,

letd=d+7,’4 04, +1,,°4.0,4,, according to the Lemma

3, the uncertain terms in the matrix are eliminated.
Combining the formula (26), and wusing the schur

complement, it can get the CD:(i)+aUIUIT+a']I71TI71 ,
where the V= [0 0 0 0 ¥, ¥, 0 0 0 0 0],
0y =

[U'RT 0 0 0 U'B, 0000 U0 7,U0,]

d, 0o o, b
. O D O,
q) _ x x@ X < 0 (40)
D, (Dw
* (O]
qB]] EiAri Ei _l Zz d) 0
* -0-0 0 0 10 0
é) = 1 b, = rl’i —Ti '
=] x * ——R 0 “|r.HTO 0
2,i
% % * q)44 0 0
A - T C c\
CDII = Plz'Y:Ai +(7;AL) Pli _PILK[ i _(K" ‘) P”

D,,=1,; (TZ )T 0, _Tl,fEiTKiTOl
let Y, = B,K,, Y,, =0OK,. Then

v (ex,i)+e (t)e(t)-y’a’ (1)a(t)<n" (1)Pn(t)<0

According to the Dynkin formula, there is
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{V(e,x,i)}—{V(e(O),x(O),r(O))}
<—{I "(s)e s)ds}+7 {I a’
The following inequality can be get
{I:eT (s)e(s)ds} -7’ {J‘:wT (s)w(s)ds}
< {V(e(O),x(O),r(O))}

By the definition 1

lim{J:eT (s)e(s)ds};

t—o

) (s)is| <0

(41>

<[Pl )+ (6(0)x(0).r(0)]

The proof is completed.
4. ROBUST FAULT-TOLERANT CONTROL DESIGN

For the control strategy of the system, the output feedback
controller is used as the basic controller. The output feedback
controller is highly adaptable and not sensitive to the
presence of faults and disturbances in the system. In order to
make the system still have good stability in the event of
sensor or actuator failure, a fault tolerance algorithm based
on control law compensation and fault sensor signal
reconstruction is designed to achieve fault tolerant control.
Suppose that the output feedback controller gain is K, and

the control input is
u (t) =K.y (t)

4.1 Fault-tolerant Control for Simultaneous Actuator and
Sensor Failure

(42)

In the case of actuator failure, assuming rank(B,,D,)=
rank(B,), the compensation controller based on the output
feedback controller is designed as follows

u,=-B'D,f, (43)

When there is an actuator failure in the system, the fault-
tolerant control is

u, =u+u, (44)

When a sensor failure occurs in the system, it is assumed that
the output signal is y, , and the output signal can be

reconstructed as
- thx

Then in the output feedback control, the signal reconstruction
fault-tolerant control is

u(t) =K, (yx - Gifx)

Considering both sensor and actuator failure conditions, the
fault-tolerant controller is designed as

(45)

(46>

47

uc :Kci (ys

4.2 Robust fault-tolerant Controller Design

-G, f.)-B'D,f,

The closed-loop control system with the fault-tolerant control
is
Ei(1)= (4 +M +BK,C)x(1)+ (AT[+AAT[)x(t—rLr([))

ci i

+H, j() £ (x(s))ds +Wa(t) (48)

y(t)=Cx(1)+G.f. (1)

{Tif’jes} ’
Ezmin{rij,jeS} , gzmax{é'ﬁ,ieS} .

Theorem?2 Defines T, = max

If exist the

constants >0 , y >0 and positive definite symmetric
matrices P, X,,0,0 and R . Let make the following linear

i

matrix inequality

¥, ¥, PBH Z, BV, ]
Y, 0 0 0
1
* * —R 0 0 Y. - o,
Ty, v, 7,
Y= * * * Y, 0 <0(49)
* * * * _72[
* -0
-1
« -a I 0
(. * _al_

holds. Then the designed fault-tolerant controller is
K,=B'P'X, . The system (48) is robust asymptotically

stable and meets the H_, performance index 7 .

where ¥, =[7,470 7,40 1,H'O 0 7 w'0]

N
_ T Ty T T
¥, =PA4+XC+A'P+C'X"+) 5,E'PE

14507 7

5))Q-E'OE-Z +1
¥,=PA,+E'"OE, ¥,,=-Q-E'OE,

v, = [72‘, +%(?j —52)}3 -1
Proof: Choose the Lyapunov-Krasovskii function as follows
V(X(f)ar(t)) "(0)px(t)+ ]+ (0)0x(0)d0

+5 j i j 0)dods +

nl, .40
[T 17 (x(0)) Rr (x(0))d6ds +

SICI S (x(0)Rr

For r(¢)=i,ie S, a weak infinitesimal operator is ¢ with a

Ty,

E"OEx(0)d0ds
(50)

(x(0))dbdsda

Markov process. get
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S
x,i) = 2xTP,.E5c+ xTZé)'ﬁETP/Ex+ xTQx—xTTIJ Qx,“

Jj=1

o

Al ¢
—5L‘x7 (t—5)Ox(t—s)ds+1, %" E"OEx
o[ & (s)ETOEx(s)ds
-%JWAWMQM%VVWAFS
2oL (x(0)
+5j ARES
—5.[;2.[0]‘ x(t-s)

Then

Qx )ds+5( g)xTQx

Rf(x(t—s))ds

(x(6))dods D

)dsda
R (x(t —s))dsda

S
oV (x,i) < 2x" PEi+x" {ZQJETP],E+(1+5 (7

J=1

—5))Q—ET0E}C
- (Q+ET0E) x, +7,/% E"OEx

5 52
+x; E'OEx+x'E' OEx, J{Q, +%(?22 —52)}’7 (x(2))Rr (x(2)) 2

_1§i(L[hﬁf(x(s)yb)TRifQﬁf(x(s)yh
Let Ex = gu(t), where

y(t):[x(t) x(t—z'l’,) J.’;l‘f(x(s))ds f(x(t)) w}r’

=[4+A4 +K,C, A, +AA, H O W]

then
oV (x,i)+x" (t)x(t)-ry’e" (1) o(r)
’ - , (53)
<u () ¥+, 0p ] u(t)
where
W, W, PRH Z, PW|
£ 9w, 0 0 0
2 R N 0 [<0 (54)
T2,i
* * * ¥, 0
* * * * _},2[

¥, =P (4 +AM +BK,C)+(4+A4 +BK.C) P

i~ i

M
+> S,E"PE+(1+5(7,-1))Q-E'OE-Z,+1
j=1

W, =P(4,+A4,)+E"OE

Let the W =¥ +7 0 0p , according to Lemma3, the
uncertainties are eliminated and ¥ =¥ +aU,U,” +a 'V,"V,
can be obtained, where the /;=[)] % 0 0 0 0], U," =

[U"R 0 0 0 0 TLI.UTO:|,

W, ¥, BH Z, EW, ¥,
* \Pzz ‘1126
T .
Y= 7, *l<0 (55
* * * Y., 0
* * * * _7/21 ‘P56
* * * k * _0

¥, =P(4,+BK,C)+(4,+BK,C,)

i tei i i~ rci

S
"B4Y.0,EPE
j=1
+(1+6(7,-5))Q-E"OE -7, +1
¥, =PA,+E"OF
and let PB,K_ =X, .Then

oV (x,i)+x" (0)x(t)-r*0" (o(t) < u’ (1)Pu(t)<0

According to the Dynkin formula, there is

 (enf={r (x(0).r(0)))

< _{J‘:xr (S)x(s)ds} +7” {J:WT (S)w(S)dS} <0

We can get

{,[:xr (S)X(S)ds}—yz{fwr (S)a)(s)ds} <{V(x(0),r(0))}

By the definition 1

im ([ () (k| <[ o)+ (x(0).(0)] 50
The proof is completed.

In summary, the design of the system structure figure is
shown in Fig. 2.

Reconstruction unit

I
)

Observer

Given »
input - : ‘\ Output
> »| Reconstruction fault- Actuator Controlled >
i tolcrar}i controller \ objccf\\
= 1 \
[ 4 » Failure Bailuie
Sensor
L
\ Failure

Fig. 2. System structure figure.
5. SIMULATION APPLICATION
5.1 Numerical Simulation

In order to verify the effectiveness of the observer designed
in this paper, a numerical simulation is done.

Consider a Markov switching system (16) with two modes
S = {1,2}, according to some references (Lili Zhang et al.,
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2019; Feifei Chen et al., 2019; Rathinasamy Sakthivel et al.,
2015), the following parameters are selected.

-04 04 }

The state probability transition matrix O =
03 -03

1 00
Mixedtime—delayz':[0'4 0'3} Let E=|0 1 0
0.55 0.5

000
-5 0 1 47 0 =2
A4=|0 -75 0|, 4= 0 -8 -3
2 0 -5 0 4 -3
0.2 0.1 -0.1 0 02
D =|01|, D,=| 0 |,4 =] 0 02 0
0.1 0.2 0.1 02 0.1
-1 0 0.05 1 00
4, =005 0 0 [,B=|0 1 0f,
0 005 0 0 0 1
1 0 0 0.2 —0.1]
B,=|0 08 O|,W, =W,= O.l],Gle 0.3
0 0 1 0.3 0.2 |
001 0 0 1 0 0]
H=H,=| 0 001 0 |[,C=C,=[0 1 0},
0 0 002 00 1]

The uncertain matrices A4 and A4, satisfy
(A4 a4, ]=UF(0)[V; 7]
where choosing
0.2
U=|0.1
0.1
F(t)=sint,w(t)=0.02cost .

vi=[01 01 03] , ¥,=[02 0.1 02]

Non-linear function parameters are
-1.6 0.2 04 02
Z] = ’ 22 =
02 -1.7 02 03
According to references (Xiaohang Li et al., 2018; LiH Y et
al.,2014), the actuator failure 1is assumed to be

f, =sin(5¢)+e™ +2cos(), and sensor failure is assumed

to be f, =sin(¢)+2cos(5¢) . In the simulation, the initial
states are x,=[3 0 1] andz,=[0 2 0], the mixed

time-delay 7; 6[0. 1,0.4] ,and ¢=0.2 and y=1.4.

From equation (25), Theorem 1 and equation (26), we can get

0.5357 -0.1071 -0.0714
-0.1071 0.8214 0.2143
1,=T,=|-0.0714 0.2143 0.6429
0 0 0
0.7143 -2.1429 -1.4286
0.4643 0.1071 0.0714
0.1071 0.1786 —0.2143
N,=N,=| 0.0714 -0.2143 0.3571
0 0 0
-0.7143 2.1429 1.4286
[-317.4898 -32.0052 451.4227 0.0893
—45.484 7.4505  98.5425  0.0822
M, =| -74.5284 -28.7417 70.3273  0.0714
-10.483  -3.7743 4.223 0
| —4.7499 9.619 3.6892 —-0.2143
[77.7933 —331.6777 —172.7396  0.0393
9.5766  —64.042  -36.8562 0.0321
M, =|232395 —664593 -16.6112 0.1214
-5.2023  6.5623 13.0979 0
| —9.4725  16.8842 6.5527  —0.2143
The observer matrixes are as follows
116.2528 135.7762 -145.5191
12.6831 23.1726 -28.4145
L =| 333682 29376 -27.376 |,
4.9698 2.7024 —1.568
—-0.4924 0.577 -1.1112
9.4873 13.7552 -15.9192
3.8818 1.8156 —0.7873
L,=|-2.3303 7.2335 -12.0227
0.7759  2.1927 -2.9004
2.778 -1.2125 3.2093

111.7303
28.6723
14.1994
0.7606
—2.9373 |

—142.1465 |

—25.1982

253218
5.1085
1.7015 |

According to Theorem 2, the robust fault-tolerant controller

can be obtained.

~7.9832
2.9263
~7.389
0.6245
L =| -5.191
-5.0437

-4.8072 3.7404

18.0089

3.7485 |,

-49.8477 8.1019

6.9672
12.1203
4.4937

—-15.0092

-7.9273

—10.2476

If the system is normal, that is, no fault is considered in the
system. The states estimation of the designed observer is
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shown in Fig.3 to Fig.5. The simulation results show that the
estimated states of the observer can better track the actual

states.

eal x1
Estimated x1

251

NVANVAVAN

0 5 0 15 20 25 30 35 40 45 50
Time(sec)

Fig. 3. State x; curves without failure.

25 T T T
— — Realx2
slimated x2
2 i
1.5
*
]
g 1
4]

0 5 1 15 20 25 30 35 40 45 50
Time(sec)

Fig. 4. State x, curves without failure.

15

Estimated x3

State x
=)
g -4

0 5 10 15 20 25 30 35 40 45 50
Time(sec)

Fig. 5. State x3 curves without failure.
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— — Realx1
3 stimated x1| -
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>
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T 15
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Fig. 6. State x| curves with failure.

If there are actuator failure and sensor failure in the system,
the states of the observer are shown in Fig. 6 to Fig. 8. The
simulation results show that the observer can still estimate
the system states, and the robust fault tolerance is relatively
strong, which is effective.

25
— — Realx2
Estimated x2
2 1
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0 5 10 15 20 25 30 35 40 45 50
Time(sec)

Fig. 7. State x, curves with failure.

15

State x
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Time(sec)

Fig. 8. State x3 curves with failure.
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Fig. 9. State x1curves with failure (other reference).
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Fig. 10. State x2 curves with failure (other reference).
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Fig. 11. State x3 curves with failure (other reference).

As a comparison, under the same condition of actuator failure
and sensor failure, according to the method in the reference
(Xiaohang Li et al., 2017), the state of the observer is shown
in Fig.9 to Fig.11. It can be seen that the method in this paper
is more accurate for states estimation.

5.2 UAV Application Simulation

Through the Linear parameter varying (LPV) method(GAO
Zhenxing, 2018), the dynamic model of the four-rotor UAV
can be transformed into a nominal linear space equation, as
shown in the following equation (57).

{)'FA)C + Bu

(57)
y=Cx+Du

Now, consider a UAV motion system. The system state is
x()=[x x x] =[A¢ Ay A6] . Where Ag is the
roll rate, Ay is the yaw rate, and A& is the pitch angle rate.

The main parameters are referenced in (Zhao Xingcheng,
2019).

-84 219 0 23.09 1 00
A=|-035 -0.761 0|,B=|-416|,C=|0 1 O
1 0 0 0 0 0 1

Refer to other methods in (Xiaohang Li et al., 2017; Zhao
Xingcheng, 2019; Lu Dong et al., 2018), other parameters are
selected as follows

0O 0 0 0.003 0 0

A,=|05 -002 0|,H=| 0 0001 O |,
006 0 0 0 0 0.002
0.001 0 0.008

W =0.002|,D=|-0.004|,G =|0.002
0.004 0.001 0.006

03 -03

and other parameters value and the failure mode ( f, and £, )

. . . -04 04
The state probability transition matrix is & = s

are the same as section 5.1.

The robust fault-tolerant controller is

K. =[0.1309 1.1515 0.5285]

From Fig. 12 to Fig. 15, it can be seen that even if the UAV
system has the faults, the UAV attitude can still maintain
stability.

5 “\ — — —system state x1
! \ FTC syslem state x1
i \
J’r ! B
] ) —_—
N | N =
@ /
:‘i ~
w -5 |
1!
1
I
“100 |
vl
] 5 10 15
Time(sec)

Fig. 12. The roll angle curve A¢ (x1).

— — — system state x2
FTC system state x2

State x

Time(sec)

Fig. 13. The yaw angle curve Ay (x»).

— =— — syslem stale x3
FTC system statex3d
= -
o — —
T s
bt —
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] L
vy
-6 w
0 5 10 15
Time(sec)

Fig. 14. The pitch angle curve A (x3).

In order to compare the results with similar control strategy,
the simulation is studied according to the control method in
the reference (Zhao Xingcheng, 2019). When there is the
same actuator and sensor failure as this paper, the UAV
attitude angles change as shown in Fig.15-Fig.17. It can be
seen that the attitude angle curves can reach stability, but
there are fluctuations, and the fluctuations will last a long
time. This is because when the UAV system fails, the control
system lacks fault tolerance to the external environment or its
own failure. Using the control method in the reference (Zhao
Xingcheng, 2019), the system can correct this uncertainty to
a certain extent, but cannot continuously adjust and correct
the failure effect, so the final control result will fluctuate. By
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comparison, it shows that the fault-tolerant control method in
this paper is effective.

6 r

.

ra

=]

system state x1 frad

'
&

0 5 10 15
time(sec)

Fig. 15. The roll angle curve A¢ (x1) (other reference).

system state x2 frad

0 5 10 15
time(sec)

Fig. 16. The yaw angle curve Ay (x2)(other reference).

system state x3 frad

0 5 10 15
time(sec)

Fig. 17. The pitch angle curve A8 (x3)(other reference).

6. CONCLUSIONS

This paper focuses on a class of singular Markov switching
complex systems with the mixed time-delays, and discusses
the states estimation and fault-tolerant control of the system
in the event of sensor failure, actuator failure, and external
disturbances. Sensor and actuator faults are combined with
system states to form a singular system. By designing
adaptive observers, under sensor and actuator faults, the
estimation of system states are achieved. In addition, for
sensor and actuator failures, a fault-tolerant controller is
designed to eliminate the effects of failures and disturbances
to ensure the stability of the singular Markov switching
system. The fault-tolerant control scheme based on control
law compensation and fault signal reconstruction is adopted
in this paper. The feasibility of the method is verified by
numerical simulation. The conclusion is applied to the UAV's
lateral motion system to prove the effectiveness of the
method.
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