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Abstract: In this paper, the robust fault-tolerant control for a class of uncertain Markov switching 
singular complex systems with mixed time-delays is studied. It is assumed that there are multiple fault 
conditions such as sensor faults, actuator faults, and external disturbances. Under sensor faults and 
actuator faults, the estimated states can be achieved by building the adaptive observer, which can detect 
system states in real time. In order to enable Markov systems to be well controlled in the event of various 
faults, a robust fault-tolerant controller based on control law compensation and fault signal reconstruction 
is designed to ensure the stability of Markov switching singular complex systems. Finally, the feasibility 
of the method designed is proved by a numerical simulation example, and it is applied to the UAV 
motion system to verify the effectiveness.    
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1. INTRODUCTION 

Time-delay often appears in the control system. The mixed 
time-delay is a combination of discrete time-delay and 
distributed time-delay, and it is also one of the important 
reasons that lead to system instability. Singular system, also 
known as generalized system, or description system, or semi-
state system, or differential algebra system, is a natural 
dynamic system. Compared to linear systems, singular 
systems describe a larger range of systems. Because singular 
systems are widely used, they have attracted the attention of 
some scholars (L. Yulianti et al., 2019; Li Li et al., 2016; 
Ding C et al., 2013; Ma Y et al., 2017).  

The fault-tolerant control is a method that can maintain 
system performance when the system's sensors, actuators and 
other components fail (Wenhui Liu et al., 2019; Xue Liu et 
al., 2018; Libing Wu et al., 2018; Chao Huang et al., 2018; 
Zheng Wang and Yanpeng Pan, 2017; Imen Haj Brahim et 
al., 2016). In the actual control system, the sensors and 
actuators may have sudden failures individually or at the 
same time during operation, and the system has disturbances 
from the external environment. In order to improve the 
reliability and safety of the system, a robust fault-tolerant 
controller needs to be designed to compensate for the adverse 
effects caused by the fault (Yan Liu et al., 2016; Libing Wu 
et al., 2016; Huaming Qian et al., 2015; Lili et al., 2019). The 
problem of sensor fault control is studied in the literature 
(Imen Haj Brahim et al., 2016). For actuator failure, an 
observer-based active fault-tolerant controller is proposed in 
(Xue Liu et al., 2018). For parameter uncertainty, external 
disturbances and actuator failures, the adaptive H∞ fault-
tolerant control for uncertain switched nonlinear time-delay 
systems has been studied in (Libing Wu et al., 2018 and 
Libing Wu et al., 2016). 

Markov switching systems are hybrid and random systems 
that can be used to describe systems affected by random 
mutations and environmental changes, so it can describe a 
wide range of practical systems, including aerospace systems, 
manufacturing systems, and network control systems, etc. 
(Feifei Chen et al., 2019). In recent years, the research on 
Markov switching systems has become a hot topic. The main 
research includes stability and control design in 
(Rathinasamy Sakthivel et al., 2015; Mohsen Bahreini et al., 
2018; Kaiyan Cui et al., 2019; Marcos G et al., 2016; Deyin 
Yao et al.,2018), robust filtering in (Tohidi H et al., 2017; 
Tianliang Zhang et al., 2019; Mouquan Shen et al., 2017; 
Lijie Zhu et al., 2019; Huijiao Wang et al.,2017), state and 
fault estimation in (Lu Dong et al., 2018); Zhang Y et al., 
2016; Chunyan Han et al., 2019; Liwei Li et al., 2016), fault 
detection and fault tolerance control, etc. in [30-36]. In 
(Kaiyan Cui et al., 2019), the exponential stability of the 
mean square of a stochastic Markov jump system with mixed 
time-varying delays and partially unknown transfer rates is 
discussed. In (Mouquan Shen et al., 2017; Lijie Zhu et al., 
2019), the H∞ filtering problem of unknown transition 
probability of the system is studied. In (Lu Dong et al., 
2018), the problem of fault estimation for Markov jump 
systems based on adaptive observers is discussed. In 
(Chunyan Han et al., 2019), the minimum mean square error 
estimation of linear Markovian jump systems with unknown 
transition probability, multi-channel mode and observation 
delay, packet loss, etc. is studied. In (Xiaohang Li et al., 
2019), the simultaneous estimation and fault-tolerant control 
problem of actuator failure and sensor failure of Markov 
jump system are studied. The sensor fault is extended to a 
part of the state vector, the original system is transformed 
into a singular system and an adaptive observer is designed.  
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At present, the research on singular Markov jump systems 
with both actuator and sensor failures needs to be improved, 
and the research on simultaneous estimation of system states, 
actuator failures and sensor failures is rare. In practical 
application systems, there are uncertainties in system 
parameters and random time-delays are common. Therefore, 
it is of great value to study the robust fault-tolerant control 
for singular Markov jump systems with mixed time-delays. 

This paper focuses on a class of singular Markov switching 
complex systems with mixed time-delays. The problems of 
comprehensive fault states estimation and fault-tolerant 
control in the presence of sensor faults, actuator faults, and 
external disturbances are studied. By designing adaptive 
observers, the states are estimated. By constructing a robust 
fault-tolerant controller, the effects of faults and disturbances 
are eliminated to ensure the stability and reliability of the 
system. The feasibility of the method is proved by numerical 
simulation, and it is also applied to the four-rotor UAV 
motion system to prove the applicability. Compared with the 
fault-tolerant control strategies in other references (Xiaohang 
Li et al., 2017; Shidong Xu et al., 2017; Dunke Lu et al., 
2017), the FTC in this paper is active fault-tolerant control 
with more advantages. The active fault-tolerant control is a 
strong robust control under the fault conditions. When the 
system fails, the fault-tolerant controller can be solved 
immediately according to the type of failures to ensure the 
stability performance of the system. Moreover, in this paper, 
for the uncertain state transition probability, the fault-tolerant 
control strategy is provided for a Markov singular jump 
system with both actuator and sensor failures, which is more 
practical.  

 

Fig. 1. The process figure. 

The process figure is shown in Fig.1. This paper mainly 
includes 6 sections. In the first section, the current research 
progress and main conclusions of Markov system and fault-
tolerant control are analysed. And the main novelty research 
work of this article is described. In the second section, system 
modelling is presented. The four-rotor UAV model and the 
complex singular Markov switching system model are 
established. In the third section, in order to estimate the 
system states under the sensor or actuator failures, a robust 

adaptive observer design is given. In the fourth section, the 
active fault-tolerant controller is designed to make the system 
stable when the sensors and actuators fail. In the fifth section, 
the research results of this paper are verified by simulation. 
The feasibility is verified by numerical simulation and 
application simulation of UAV motion. The sixth section is 
conclusions.  

2. SYSTEM MODELING 

2.1  Four-rotor UAV Modeling 

By adjusting the speed of the four rotors, the four-rotor UAV 
can complete the flight attitude conversion. The attitude 
control mainly includes three parts, namely the roll angle  , 

the pitch angle   and the yaw angle  . The pitch attitude is 

achieved by controlling the speed difference between the two 
rotors in the forward and backward directions of the UAV. 
The roll angle attitude is determined by controlling the speed 
of the two rotors in the left and right directions. The yaw 
angle attitude is achieved by adjusting the speed of the two 
pairs of rotors. 

The carrier coordinate system oxyz  is corresponding to the 

ground coordinate system OXYZ , the rotation angle vector is 

 T    , and the rotation attitude matrix is 

 
1 0 0

, 0 cos sin

0 sin cos

R x   
 

 
   
  

                                             (1) 

 
cos 0 sin

, 0 1 0

sin 0 cos

R y

 


 

 
   
  

                                             (2) 

 
cos sin 0

, sin cos 0

0 0 1

R z

 
  

 
   
  

                                           (3) 

The rotation transformation matrix  , ,R     is 

       , , , , ,R R x R y R z     
 
                                 (4) 

The relationship between the carrier coordinate system and 
the airflow coordinate system is as follows. 

The carrier coordinate system can be rotated by   angle 
(angle of attack) to obtain a stable coordinate system. 

  
cos 0 sin

0 1 0

sin 0 cos

S

 


 

 
   
  

                                              (5) 

Turn the   angle (side slip angle) of the stable coordinate 

system to get the air current coordinate system 

 
cos sin 0

sin cos 0

0 0 1

S

 
  

 
   
  

                                               (6) 
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The transformation matrix S between the coordinate 

systems is 

cos sin sin cos

cos sin cos sin sin

sin 0 cos

S

   
    
 

 
    
  

                         (7) 

According to Euler's kinetic equation and the centroid motion 
theorem, the dynamic equilibrium equation and moment 
equilibrium equation for the UAV in the carrier coordinate 
system can be obtained (Zhao Xingcheng, 2019). 

x

du
F m wq vr

dt
    
 

                                                         (8) 

y

dv
F m ur wq

dt
    
 

                                                         (9) 

z

dw
F m vp uq

dt
    
 

                                                        (10) 

 x x y z

dp
M I I I qr

dt
                                                      (11) 

 y y z x

dq
M I I I rp

dt
                                                      (12) 

 z z x y

dr
M I I I pq

dt
                                                      (13) 

where xI , yI  and zI  are the moments of inertia of the three 

axes, respectively. p , q and r  are the angular velocities of 

the three axes, respectively. u , v and w are the linear 
velocities of the three axes. xF , yF and zF  are the combined 

external forces in the triaxial direction. xM , yM and zM  are 

the combined external moments in the triaxial direction. 

The angular velocity and the Euler angle in the carrier 
coordinate system corresponding to the ground coordinate 
system have the following relationship 

1 0 sin

0 cos sin cos

0 sin cos cos

p

q

r

 
   
   

    
         
         





                                (14) 

Assuming that there is no frictional resistance in the air, 
ignoring the spiral gyro effect, the center of the rotor is the 
center of mass of the UAV, and regardless of its inertia, the 
dynamic model of the four-rotor UAV can be approximated 
as: 
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where xa , ya
 
and za  are the acceleration of the three axes in 

the coordinate system, l  is the arm length from the rotor to 
the center of gravity.  1 2 3, ,u u u  and 4u is control input. 1u  is 

the roll input. 2u  is the pitch input. 3u  is the yaw input. 4u  is 

the vertical speed change which means the throttle input. 

2.2  Singular Markov Switching System Statement 

Considering the component failure, the complex external 
environment and disturbances in the actual system, the 
motion state model containing sensor and actuator failures is 
represented as the following singular Markov switching 
system with mixed time-delays: 
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1,

, ,0

r t

r t

a

t

t

s

Ex t A r t A r t x t

A r t A r t x t

B r t u t D r t f t

H r t f x s ds W r t t

y t C r t x t

G r t f t x t t t

 







 



     
      
 

 

 

   





，

                  (16) 

This is a singular Markov switching system with mixed time-

delays in probability space.   , 0r t t   is a right continuous 

Markov process, which takes values in the finite set 

 1,2, ,S s  , and its state transition probability is as 

follows 

    
 

 
,

:
1 ,

ij

ij

t t j i
P r t t j r t i

t t j i





       
    

 

where 0t  ,  
0

lim 0
t

t t
 

    and 0ij   are transition 

probabilities from state i  to state j . If j i  then 0ij  , 

otherwise 
1,

S

ii ij
j j i

 
 

   . In the system model,   nx t   is 

the state vector.   mu t   is the control input.  y t is the 

output vector.   p
af t   and   q

sf t   are unknown faults 

of the system actuator and sensor, respectively (Xiaohang Li 

et al., 2018; Li H Y et al., 2014).    2 0,t L    indicates 

the external disturbance of the system.   : n nf     is a 

non-linear function vector. E ,   A r t ,   A r t ,   B r t , 

  C r t ,   D r t ,   H r t ,   G r t and   W r t  are 

constant matrices with appropriate dimensions, and it is 

assumed that   G r t  is a column full rank.   A r t  and 

  A r t  are unknown matrices and represent the 

uncertainty of state parameters.For   ,r t i i S  , the 

uncertain term is  i iA A  
   1 2i i i iU F t V V , where the 
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matrices iU , 1iV  and 2iV  are known constant matrices with 

appropriate dimensions.  iF t  is an unknown time-varying 

matrix that satisfies     .T
i iF t F t I  In the mixed time-

delay,  1,r t  represents the  mode-dependent discrete time-

delay,  2,r t  represents the mode-dependent distribution time-

delay, max    , 1,2, 1,2, ,i j i j s    , and the function 

 t  is the initial condition on  ,0 . 

Assumption 1 Let the nonlinear function  f x  satisfies 

     1 2 0 0 0
T

f x Z x f x Z x f          ，                  （17） 

where 1Z  and 2Z  are known constant matrices, which can be 

obtained from the above formula 

      
  

1 2

2

0
x tZ Z

x t f x t
f x tZ I

             

 
               （18） 

Where    1 1 2 2 1 2 1 22 2.T T T TZ Z Z Z Z Z Z Z   
 

，  

Definition 1 for singular Markov switching systems 

            
         

           

1,r tEx t A r t x t A r t x t

B r t u t W r t t

y t C r t x t D r t u t

 



   

 


 



             （19） 

where  t  is the external disturbance. For any  0 nx   

and  0r S , there exist constants     0 , 0M x r  and 

0,   so that the following inequality 

        
      

1
2

1
2

0

2

2

lim | 0 , 0

0 , 0

t T

t
y s y s ds x r

t M x r



 



  
 


 

holds, then the system (19) is randomly stable and has robust 
H   performance index .  

Lemma 1 (Schur complement)  For the symmetric matrix 

11 12

21 22

S S
S

S S

 
  
 

, where 11S  is r r -dimensional, the  foll- 

owing three conditions are equivalent: 

0;S      
1

11 22 12 11 120, 0;TS S S S S      

 
1

22 11 12 22 120, 0.TS S S S S    

Lemma 2 For any positive definite symmetric matrix 
n nW R  , TW W , parameter 0 M    and vector 

function  : 0  n
Mx R , the following integral 

inequality holds 

   

     
 

0

*

T

T T

x t s Wx t s ds

x tW W
x t x t

x tW








  

            

    

Lemma 3  Given symmetric positive definite matrix 0Y  , 

matrices D  and E  with appropriate dimensions, 

then ( ) ( ) 0T T TY DF k E E F k D       ,for all F  satisfying 
TF F I , if and only if there exists a scalar 0  such that 

1 0T TY DD E E         . 

Lemma 4 For any positive definite matrix R , the integrable 
vector function  : 0, nf t   , the following inequality holds 

       
0 0 0

      
Tt t t Tf s ds R f s ds t f s Rf s ds  

In order to be able to consider both sensor failure and 
actuator failure, and treat sensor failure and actuator failure 
as state vectors, a new augmentation system is constructed as 
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      （20） 

where    0 , 0i i i i i iA A D C C G   
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t f t E E
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3. ESTIMATION OF ACTUATOR AND SENSOR 
FAILURES 

In order to effectively estimate the system states under sensor 
or actuator failures, a robust adaptive observer of the 
following form is constructed 

       
    

     
2,

1,
ˆ ˆ

ˆˆ ˆ

ˆ
i

i i g i i i

t

i i i i t

i g

z t M z t L y t T A t

T B u t T H f s ds

t z t N y t





 







    

 

  





                   （21） 

where  z t  is the observer variable,  ˆ t ,  1,
ˆ

it  , and 

 ˆ s  are the state estimates,  ˆ 0 0i iA A  , 

 ˆ 0 0i iB B ,  ˆ 0 0i iH H  are the estimated 

parameters, and iM , iL , iT , and iN  are the matrices 

required by the observer design. 
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Define the observation error as 

           ˆ = ie t t t I N C t z t     
 

 and let iI N C   , then the observation error system is 
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let 0 0,       i i i i iT A L C M ,then 

i i iI N C T E                                                                （23） 

 i i i i i i iM T A L M N C                                               （24） 

Because iG  is full rank, a set of special solutions can be 

obtained according to formula (23) 

1 1
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,
0
n

i i
ni i

IE E
T N
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                                （25） 

Assuming i i i iL M N K  , then 

,   i i i i i i i i iM T A K C L K M N                                  (26) 

where iK  is matrix with appropriate dimensions. The 

observer error system (22) can be simplified as 
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where ˆ ˆ,   i i i i i iA T A H T H . 

Theorem1 Defines    max , , min , ,i ij i ijj S j S      
 

 max ,ii i S   . If exist the constant 0  , 0  , 
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so that the following linear matrix inequality  

1 1
99

1

0

*

* *
0

* * *

0
*

*

e e e

x x x T

o

U V

I

I












   
    
  

   
 

  
  







 

           （28） 

holds. Then observer error system (27) is robust 
asymptotically stable and satisfies H∞ performance  . 
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Proof: Choose the Lyapunov-Krasovskii function as follows 

                , , , ,V e t x t r t V e t r t V x t r t       （29） 
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For   ,r t i i S  , the weak infinitesimal operator   with a 

Markov process 
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From the Lemma 4, we get 
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From the Lemma 2,we get 
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             （36） 

Substituting the equation (31)–(36) into the equation (30) 
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then  
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Let    T
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and  xEx t  , the inputs, disturbances 

and faults are expressed as
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3, the uncertain terms in the matrix are eliminated. 
Combining the formula (26), and using the schur 

complement, it can get the 1
1 1 1 1

ˆ T TU U V V      
   

, 

where the V 


  1 20 0 0 0 0 0 0 0 0V V , 

1
TU 


 

1 2 1, 1 1, 20 0 0 0 0 0 0T T T T
i i i i iU P T U P U O U O     

99

ˆ ˆ0

ˆ 0

*







   
 

       
 

  







e e e

x x x

o

                                  （40） 

11 1 1 2

1 1

1
2,

44

ˆ

* 0 0
ˆ 1

* * 0

* * *

i i i i

e

i

P A P H Z

Q O

R





 
 

  
  

 
 
  



,

110

1, 1

1, 1

ˆ 0

0

0

0 0

T
i i

e T
i i

A O

H O




 
 
    
 
  

  

   11 1 1 1 1
ˆ T T

i i i i i i i i i i i iP T A T A P P K C K C P    

  1 1 1 1 1 1
1

1
S

ij j
j

P Q O Z I   


      


 

 110 1, 1 1, 1=
T T T

i i i i iTA O C K O    

let 1Pi i iY P K , 1Oi iY O K . Then 

             2, , 0T T TV e x i e t e t t t t t        
 

According to the Dynkin formula, there is 
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The following inequality can be get 
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                        （41） 

The proof is completed. 

4. ROBUST FAULT-TOLERANT CONTROL DESIGN 

For the control strategy of the system, the output feedback 
controller is used as the basic controller. The output feedback 
controller is highly adaptable and not sensitive to the 
presence of faults and disturbances in the system. In order to 
make the system still have good stability in the event of 
sensor or actuator failure, a fault tolerance algorithm based 
on control law compensation and fault sensor signal 
reconstruction is designed to achieve fault tolerant control. 
Suppose that the output feedback controller gain is cK  and 

the control input is 

   cu t K y t                                                                （42） 

4.1  Fault-tolerant Control for Simultaneous Actuator and 
Sensor Failure 

In the case of actuator failure, assuming ( , )i irank B D   
( )irank B , the compensation controller based on the output 

feedback controller is designed as follows 

1
a i i au B D f                                                                （43） 

When there is an actuator failure in the system, the fault-
tolerant control is 

c au u u                                                                      （44） 

When a sensor failure occurs in the system, it is assumed that 
the output signal is sy , and the output signal can be 

reconstructed as 

r s i sy y G f                                                                 （45） 

Then in the output feedback control, the signal reconstruction 
fault-tolerant control is 

   ci s i su t K y G f                                                     （46） 

Considering both sensor and actuator failure conditions, the 
fault-tolerant controller is designed as 

  1
c ci s i s i i au K y G f B D f                                          （47） 

4.2  Robust fault-tolerant Controller Design 

The closed-loop control system with the fault-tolerant control 
is 
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Theorem2 Defines  max ,i ij j S   , 
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(49) 

holds. Then the designed fault-tolerant controller is 
1 1=ci i i iK B P X  . The system (48) is robust asymptotically 

stable and meets the H  performance index  . 
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Proof:  Choose the Lyapunov-Krasovskii function as follows 
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For   ,r t i i S  , a weak infinitesimal operator is   with a 

Markov process. get 
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Then 
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The proof is completed. 

In summary, the design of the system structure figure is 
shown in Fig. 2. 

 

Fig. 2. System structure figure. 

5. SIMULATION APPLICATION 

5.1  Numerical Simulation 

In order to verify the effectiveness of the observer designed 
in this paper, a numerical simulation is done.  

Consider a Markov switching system (16) with two modes 

 1,2S  , according to some references (Lili Zhang et al., 
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2019; Feifei Chen et al., 2019; Rathinasamy Sakthivel et al., 
2015), the following parameters are selected. 

The state probability transition matrix 
0.4 0.4

0.3 0.3
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0 1 0

0 0 1
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The uncertain matrices A  and iA  satisfy 

    1 2iA A UF t V V    

where choosing 
0.2

0.1

0.1

U

 
   
  

,  1 0.1 0.1 0.3V  ,  2 0.2 0.1 0.2V  ,

  sinF t t ,  =0.02cost t . 

Non-linear function parameters are 

1 2

1.6 0.2 0.4 0.2

0.2 1.7 0.2 0.3
Z Z

   
       

，  

According to references (Xiaohang Li et al., 2018; Li H Y et 
al.,2014), the actuator failure is assumed to be 

   2sin 5 2cost
af t e t   , and sensor failure is assumed 

to be    sin 2cos 5sf t t  . In the simulation, the initial 

states are  0 3 0 1
T

x   and  0 0 2 0
T

z  , the mixed 

time-delay  0.1,0.4i  , and =0.2  and =1.4 . 

From equation (25), Theorem 1 and equation (26), we can get 
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The observer matrixes are as follows 

1

116.2528 135.7762 145.5191

12.6831 23.1726 28.4145

33.3682 29.376 27.376

4.9698 2.7024 1.568
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According to Theorem 2, the robust fault-tolerant controller 
can be obtained. 

1

7.9832 4.8072 3.7404

2.9263 18.0089 3.7485

7.389 49.8477 8.1019
cK

  
   
   

,  

2

0.6245 6.9672 15.0092

5.191 12.1203 7.9273

5.0437 4.4937 10.2476
cK

 
    
   

 

If the system is normal, that is, no fault is considered in the 
system. The states estimation of the designed observer is
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shown in Fig.3 to Fig.5. The simulation results show that the 
estimated states of the observer can better track the actual 
states. 

 

Fig. 3. State x1 curves without failure. 

 

Fig. 4. State x2 curves without failure. 

 

Fig. 5. State x3 curves without failure. 

 

Fig. 6. State x1 curves with failure. 

If there are actuator failure and sensor failure in the system, 
the states of the observer are shown in Fig. 6 to Fig. 8. The 
simulation results show that the observer can still estimate 
the system states, and the robust fault tolerance is relatively 
strong, which is effective. 

 

Fig. 7. State x2 curves with failure. 

 

Fig. 8. State x3 curves with failure. 

 
Fig. 9. State x1curves with failure (other reference). 

 
Fig. 10. State x2 curves with failure (other reference). 
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Fig. 11. State x3 curves with failure (other reference). 

As a comparison, under the same condition of actuator failure 
and sensor failure, according to the method in the reference 
(Xiaohang Li et al., 2017), the state of the observer is shown 
in Fig.9 to Fig.11. It can be seen that the method in this paper 
is more accurate for states estimation. 

5.2 UAV Application Simulation 

Through the Linear parameter varying (LPV) method(GAO 
Zhenxing, 2018), the dynamic model of the four-rotor UAV 
can be transformed into a nominal linear space equation, as 
shown in the following equation (57). 

=

=C

x Ax Bu

y x Du


 


                                                                     

(57) 

Now, consider a UAV motion system. The system state is 

 x t   1 2 3

T
x x x

  T      . Where   is the 

roll rate,   is the yaw rate, and   is the pitch angle rate. 

The main parameters are referenced in (Zhao Xingcheng, 
2019). 
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0 0 1

C

 
   
  

 

Refer to other methods in (Xiaohang Li et al., 2017; Zhao 
Xingcheng, 2019; Lu Dong et al., 2018), other parameters are 
selected as follows 

1
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,

0.008

0.002

0.006

G

 
   
  

 

The state probability transition matrix is 
0.4 0.4

0.3 0.3


 
   

, 

and other parameters value and the failure mode ( af and sf ) 

are the same as section 5.1. 

The robust fault-tolerant controller is 

 0.1309 1.1515 0.5285cK 
 

From Fig. 12 to Fig. 15, it can be seen that even if the UAV 
system has the faults, the UAV attitude can still maintain 
stability.  

 

Fig. 12. The roll angle curve   (x1). 

 

Fig. 13. The yaw angle curve   (x2). 

 

Fig. 14. The pitch angle curve   (x3). 

In order to compare the results with similar control strategy, 
the simulation is studied according to the control method in 
the reference (Zhao Xingcheng, 2019). When there is the 
same actuator and sensor failure as this paper, the UAV 
attitude angles change as shown in Fig.15-Fig.17. It can be 
seen that the attitude angle curves can reach stability, but 
there are fluctuations, and the fluctuations will last a long 
time. This is because when the UAV system fails, the control 
system lacks fault tolerance to the external environment or its 
own failure. Using the control method in the reference (Zhao 
Xingcheng, 2019), the system can correct this uncertainty to 
a certain extent, but cannot continuously adjust and correct 
the failure effect, so the final control result will fluctuate. By 
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comparison, it shows that the fault-tolerant control method in 
this paper is effective.  

 
Fig. 15. The roll angle curve   (x1) (other reference). 

 
Fig. 16. The yaw angle curve   (x2)(other reference). 

 

Fig. 17. The pitch angle curve   (x3)(other reference). 

6. CONCLUSIONS 

This paper focuses on a class of singular Markov switching 
complex systems with the mixed time-delays, and discusses 
the states estimation and fault-tolerant control of the system 
in the event of sensor failure, actuator failure, and external 
disturbances. Sensor and actuator faults are combined with 
system states to form a singular system. By designing 
adaptive observers, under sensor and actuator faults, the 
estimation of system states are achieved. In addition, for 
sensor and actuator failures, a fault-tolerant controller is 
designed to eliminate the effects of failures and disturbances 
to ensure the stability of the singular Markov switching 
system. The fault-tolerant control scheme based on control 
law compensation and fault signal reconstruction is adopted 
in this paper. The feasibility of the method is verified by 
numerical simulation. The conclusion is applied to the UAV's 
lateral motion system to prove the effectiveness of the 
method. 
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