
CEAI, Vol.22, No.4, pp. 43-51, 2020                                                                                                                 Printed in Romania 

An Adaptive Fuzzy Self-Tuning Inverse Kinematics Approach  
for Robot Manipulators  

 
Ahmed Elmogy *,**, Yassine Bouteraa *,***, Wael Elawady ** 

 
* Computer Engineering Department, Prince Sattam Bin Abdelaziz University, KSA (email:a.elmogy@psau.edu.sa) 

**  Department of Computers and Control Engineering, Tanta University, Egypt 
(email: wael_ahmed@f-eng.tanta.edu.eg) 

***  University of Sfax, Tunisia (email:y.bouteraa@psau.edu.sa) 

Abstract: In order for a robot manipulator to reach a desired position, an accurate knowledge of kinematics 
is required. Also, the Jacobian matrix of the robot manipulator should be nonsingular. However, when the 
robot deals with objects of unknown parameters, the overall kinematics becomes uncertain and changing. 
Furthermore, the non-singularity of the Jacobian matrix cannot be guaranteed. Fuzzy logic control is a good 
candidate technique to deal with uncertain kinematics, and Jacobian matrix. Nevertheless, the conventional 
fuzzy logic control is not adequate to develop a robust and efficient solution for the inverse kinematic 
problem. In this paper, a new adaptive fuzzy self-tuning control system for robot manipulators is developed.  
The developed system proposes two methods for reducing the numbers of rules and number of fuzzy inputs 
which significantly reduce the computational complexity.  The developed simulations conducted on 2 and 
3 DOFs robot manipulators show the effectiveness of the proposed approach. 
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1. INTRODUCTION 

A robot manipulator is like a human arm. It consists of a series 
of links connected together by joints (Adelhedi et al., 2015; 
Zhou et al., 2019). When it comes to control or motion 
planning of robot manipulators, two main problems must be 
considered; forward and inverse kinematics (Elawady et al., 
2020; Kutuk et al., 2017; Batista et al., 2020). In the forward 
kinematics, the position and orientation of the robot end 
effector is determined given the joint variables; namely joint 
angles for revolute joints, and link extensions for prismatic 
joints. While in inverse kinematics, the joint variables are 
computed to position the manipulator end effector at a desired 
location. Thus, the forward and inverse kinematics tackles the 
mapping between joint space and the Cartesian space. The 
forward kinematic solution is simple and straightforward, 
while the solution of inverse kinematics is nonlinear, uncertain 
and impossible to find unique solution in many cases. Thus, 
many efforts have been seen in the literature working towards 
finding the approximate inverse kinematics model (Tarokh et 
al., 2007; Raheem et al., 2016; Dinh, 2009). However, this is 
neither efficient nor sufficient for many robotic applications. 
When it comes to deal with certain type of applications that 
require tracking complex paths, finding an accurate inverse 
kinematics model of robot manipulators becomes a must 
(Xanthidis et al., 2018) 

The complexity of inverse kinematics problem (IKP) depends 
mainly on the robot manipulator geometry and its nonlinear 
model. The nonlinear model of the robot manipulator 
represents the mapping relationship between Cartesian space 
and joint space. In spite of the complexity of the IKP, many 
robotic applications need a very accurate solution in order to 
achieve the required tasks efficiently and reliably (Hasan et al.,  
2011). Many methods have been developed in the literature 
working towards the solution of the IKP.  These methods may 

be mainly categorized as algebraic methods (Perez et al., 2005; 
Selig, 2013), numerical methods (Xu et al., 2010; Olsen et al., 
2011), and iterative methods (Manan et al., 2018; Ignacy et al.,  
2013). The algebraic methods work on finding closed form 
solution for the IKP which is considered the most effective 
one. However, the closed form solution can be obtained only 
for non-redundant robots with special geometry. For general 
serial manipulators, the closed form solutions are very difficult 
or impossible to guarantee (El-Sherbiny et al., 2017).   Also, 
the numerical methods are very slow especially for high DOFs 
robot manipulators. On other hand, the iterative methods work 
on finding an approximate mapping between the robot 
Cartesian and joint spaces.  The most important advantage of 
iterative methods over closed form and numerical methods is 
that they can provide the joint-Cartesian mapping fast and thus 
are best suited for many applications.  

Soft computing techniques are among the popular iterative 
approaches. Much attention has been paid to solve IKP for 
robot manipulators using soft computing techniques (Hasan et 
al., 2011; Koker, 2013; Alavandar et al., 2008) as they provide 
good solutions without the need for complex calculations. This 
includes fuzzy logic, neural networks, and genetic algorithms 
approaches.  

Generally, the ability of neural networks to provide the 
nonlinear Input and output system model makes it a good 
candidate to solve the IKP. Thus, the neural networks can be 
used to provide a good mapping between the joint space and 
the Cartesian space. Several neural networks structures have 
been used to deal with the IKP (Hasan et al., 2011; Koker et 
al., 2013; Duka, 2014). However, the main disadvantage of 
using neural networks to solve the inverse kinematics problem 
is that the training of the designed network is done based on 
the data collected from the robot forward kinematics. 
Collecting the forward kinematics data is done offline before 
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incorporating the robot in the required task. This puts some 
constrains on using such type of approaches in the real time 
applications or in applications that require fast adaptation of 
the robot controller to the environment changes. 

Also, Fuzzy logic has been extensively used in many robotic 
applications including the robot manipulators (Ching et al., 
2017).  This mainly comes from the powerfulness of fuzzy 
logic in dealing with uncertain and inaccurate data. The main 
core of the fuzzy controller is the rule database which should 
be built very carefully as it produces the required robotic 
behaviors. In order for the fuzzy controller to generate 
decisions, it goes through main processes; fuzzification, rules 
inference and aggregation, and defuzzification. For the inverse 
kinematics problem, some fuzzy like controllers have been 
developed (Mahmoodabadi et al., 2019; Mary et al., 2016). 
Although fuzzy controllers are effective in modeling nonlinear 
and complex systems, they depend mainly on developing a list 
of rules which is very challenging as it depends on human 
experiences. Choosing the inputs, outputs, and the rule base of 
the fuzzy system is very essential to get an efficient fuzzy 
control system. In order to alleviate the difficulty of dealing 
with the IKP of robot manipulators, hybrid approaches that 
combine neural networks and fuzzy logic are developed 
(Alavandar et al., 2008; Duka, 2015). The main idea of the 
developed neuro- fuzzy systems is using the input-output data 
generated from the forward kinematics to train the neural 
networks and then using the output of the neural networks to 
fire the fuzzy rules. Again, the neural network is trained offline 
which may be not suitable for some real time robotics 
applications. 

In order to overcome the limitations of the approaches 
mentioned above, a new adaptive fuzzy self-tuning approach 
is developed in this paper to solve the IKP. The proposed 
approach works on reducing the number of fuzzy inputs and 
number of developed fuzzy rules in order to get a simple, very 
accurate and fast control system which is very suitable for 
complex robot manipulators' applications. Furthermore, the 
developed control system adapts online to any changes in the 
tasks given to the robot or in the environment the robot works 
in. Compared to other adaptive inverse kinematics algorithms 
like in (ref), the proposed adaptive fuzzy solution is very 
simple and robust. The developed solution depends on the 
heuristic knowledge and thus no need for the complex 
mathematical computations as in other solutions. In (Elawady 
et al., 2020) for example, we proposed an adaptive solution for 
the IKP. However, the proposed solution in our previous work 
(Elawady et al., 2020) depends on the computation of the 
mathematical kinematics. Also, the proposed solution like 
most inverse kinematic solution is based on Lypanov theory 
which is stable for certain operating conditions. Working 
towards finding a more simple and robust algorithm than the 
other proposed approaches, an adaptive fuzzy self-tuning 
approach is proposed in this paper. Differing from the solution 
proposed in (Elawady et al., 2020) and other solutions, the 
developed solution in this paper is stable and robust over a 
wide range of operating conditions. Furthermore, the proposed 
adaptive solution is faster, more accurate, and simpler than 
other approaches as will be illustrated in the next sections.  

The rest of this paper is structured as follows. The 
characteristics of the IKP are introduced in section 2. Sections 
3, and 4 present the characteristics of proposed fuzzy self-
tuning inverse kinematics approach. Some simulation results 
are presented in section 5. Conclusions and future work are 
drawn in section 6. 

2. INVERSE KINEMATICS ALGORITHM 

The pose of manipulator end-effector can be specified 
as:   

𝑥௘ ൌ ሾ𝑝௘      𝜑௘ሿ்                                     (1)  

Where 𝑝௘ and 𝜑௘ represent the end-effector position 
and orientation respectively. 𝑥௘ is dependent on joint 
variables and thus equation (1) can be written as: 

𝑥௘ ൌ 𝑘ሺ𝑞ሻ                                                                             (2)      

The nonlinear vector function 𝑘ሺ𝑞ሻ represents the 
calculation of the operational space variables given the 
joint space variables 𝑞. By the differentiation of (1), 
and (2), we get: 

𝑥
•

௘ ൌ ቂ𝑝
•

௘      𝜑
•

௘ቃ
்

ൌ 𝐽஺ሺ𝑞ሻ𝑞
•
                                                    (3) 

Where 𝑥
•

௘ ൌ ቂ𝑝
•

௘    𝜑
•

௘ቃ
்
 represents end-effector velocity 

and 𝑞
•
 is the vector of joint velocities. 𝐽஺ሺ𝑞ሻ is the 

Jacobian matrix which is given by: 

𝐽஺ሺ𝑞ሻ ൌ
డ௞ሺ௤ሻ

డ௤
                                                                        (4) 

In order to control the robot manipulator, it is 
necessary to specify the end-effector trajectory in terms 
of joints' position, velocity and acceleration. 
Conversely, the robot manipulator is inherently a 
nonlinear second order system. Therefore, we need to 
develop an algorithm that allows the inversion of the 
end-effector trajectory into the equivalent joint 
positions, velocities and accelerations. The 
differentiation of equation (3) gives: 

𝑥
••

௘ ൌ 𝐽஺ሺ𝑞ሻ𝑞
••

൅ 𝐽
•

஺ሺ𝑞, 𝑞
•
ሻ𝑞

•
                                                      (5) 

Equation (5) represents the relationship between the 
accelerations of joint and operational spaces. Under the 
assumption of a square and nonsingular Jacobian 
matrix J୅ሺqሻ, equation (5) can be rewritten as: 

𝑞
••

ൌ 𝐽஺
ିଵሺ𝑞ሻ ሺ 𝑥

••
௘ െ 𝐽

•

஺ሺ𝑞, 𝑞
•
ሻ 𝑞 

•
                                               (6) 

The velocities and positions can be computed by the 
integration of equation (6). However, this leads to a 
drift of the solution (Siciliano et al., 2009). 
Consequently, it is worth to define the operational 
space error as follows: 

𝑒 ൌ 𝑥ௗ െ 𝑥௘                                                                         (7) 

Where 𝑥ௗ is the desired end-effector pose. 

The time derivative of (7) is: 

𝑒
•

ൌ 𝑥
•

ௗ െ 𝑥
•

௘                                                                           (8) 
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The time derivative of (8) is: 

𝑒
••

ൌ 𝑥
••

ௗ െ 𝑥
••

௘                                                                         (9) 

This in view of (5),  

𝑒
••

ൌ 𝑥
••

ௗ െ 𝐽஺ሺ𝑞ሻ𝑞
••

െ 𝐽
•

஺ሺ𝑞, 𝑞
•
ሻ𝑞

•
                                            (10) 

Equation (10) describes the error evolution over time.  
To obtain the inverse kinematics model, the joint 
acceleration vector q

••
 is computed in terms of the error 

e. q
••

 can be chosen as: 

𝑞
••

ൌ 𝐽஺
ିଵሺ𝑞ሻ ሺ 𝑥

••
ௗ ൅ 𝐾ௗ𝑒

•
൅ 𝐾௣𝑒 െ 𝐽

•

஺ሺ𝑞, 𝑞
•
ሻ 𝑞 

•
ሻ                    (11) 

Which leads to the equivalent linear differential 
equation of the operational space error: 

𝑒
••

൅ 𝐾ௗ𝑒
•

൅ 𝐾௣𝑒 ൌ 0                                         (12) 

The robot is asymptotically stable If Kp and Kd 
matrices are positive definite. The eigenvalues of K୮ 
and Kୢ will affect the speed of convergence of error 
along the trajectory. The inverse kinematics model in 
equation (11) is visually illustrated in Fig. 1. 

 

Fig. 1. The inverse kinematics model. 

3. ADAPTIVE FUZZY-SELF TUNING INVERSE 
KINEMATICS ALGORITHM (AFSTIK) 

The Jacobian matrix for the kinematic model of robot 
manipulator is generally assumed to be known (Cheah et al., 
2005; Cheah et al., 2003). Therefore, the stability of the control 
system cannot be guaranteed for uncertain kinematics from 
joint space to Cartesian space.  Although the kinematic model 
of the robot manipulator has sometimes sufficient accuracy, 
the parameters of the kinematic model changes as the robot 
interacts with its environment. Fuzzy logic is one of the 
intelligent techniques that implements human's knowledge 
able to model uncertainty and inaccurate data.  Fuzzy logic can 
be used as a standalone technique or as a methodology to tune 
the parameters of other controllers. An adaptive self-tuning 
control structure is developed in this paper to solve the IKP 
efficiently. The proposed structure consists of two controller 
levels. The upper level is the fuzzy logic controller used as a 
supervisory controller to tune and supervise the parameters of 
the lower level controller which is the conventional PD 

controller. The goal of the lower level controller is to deliver 
the control actions to the robot manipulator. The proposed 
controller can adapt efficiently to any changes in the 
environment. Furthermore, the developed fuzzy controller 
structure can compensate for inaccurate kinematic model of 
the robot manipulator. The block diagram of the developed 
adaptive fuzzy-self tuning inverse kinematics approach 
(AFSTIK) is shown in Fig. 2. 

The proposed supervisory fuzzy controller uses IF-THEN 
rules to tune the control gains 𝐾௣  and 𝐾ௗ  according to the 

values of the error 𝑒ሺ𝑡ሻ  and derivative of error 𝑒
•
ሺ𝑡ሻ  of the 

robot manipulator as described in equations (7) & (8). 
Kp=diag{kp1, Kp2,………..Kpn}, and Kd=diag{kd1, 
Kd2,………..Kdn} are used as consequents for each rule. The 
range of the inputs (𝑒, 𝑒

•
) is {-0.1, 0.1} and for the output 

control gains 𝐾௣ and 𝐾ௗ is {1, 1000}. The fuzzy membership 

functions  for (𝑒, 𝑒
•
)  are chosen to be triangle shape defined as 

{NL (Negative Large), NM (Negative Medium, NS (Negative 
Small), Z (Zero), PS (Positive Small), PM (Positive Medium), 
PL (Positive Large)} as shown in Fig. 3. Similarly, the fuzzy 
membership functions for ( 𝐾௣  and 𝐾ௗ ) are chosen to be 
triangle shape defined as {VVL (Very Very Low), VL (Very 
Low), L (Low), M (Medium), H (High), VH (Very High) and 
VVH (Very Very High).  

 

Fig. 2. The adaptive fuzzy inverse kinematics structure. 

 

Fig. 3. Membership functions of 𝑒 and 𝑒
•
. 
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Fig. 4. Membership functions of 𝐾௣ and 𝐾ௗ. 

The proposed adaptive fuzzy control law can be expressed as: 

𝑅ሺ௜ሻ   :   𝐼𝐹  𝑒ሺ𝑡ሻ   𝑖𝑠   𝐸ଵ
௜    𝑎𝑛𝑑    𝑒

•
ሺ𝑡ሻ    𝑖𝑠  𝐸ଶ

௜      

𝑇𝐻𝐸𝑁   𝐾௣  𝑖𝑠  𝐺௜     𝑎𝑛𝑑     𝐾ௗ   𝑖𝑠  𝐻௜ 

Where 𝐸ଵ
௜   and 𝐸ଶ

௜  represent the labels of the input fuzzy sets 
and 𝐺௜ and 𝐻௜ are the labels of the output gains fuzzy sets. 𝑖 ൌ
1, 2, . . . . , 𝑝 denotes the rule number. Table 1 shows the rule 
base of the proposed supervisory fuzzy controller. The crisp 
values of the outputs are computed using the centre average 
defuzzification method. 

Table 1.   ∆𝑲𝒑 & ∆𝑲𝒅 supervisory fuzzy rule table. 

𝑒
•
ሺ𝑡ሻ               𝒆ሺ௧ሻ  NL NM NS Z PS PM PL 

NL M L VL VVL VL L M 

NM H M L VL L M H 

NS VH H M L M H VH 

Z VVH VH H M H VH VVH 

PS VH H M L M H VH 

PM H M L VL L M H 

PL M L VL VVL VL L M 

4. REDUCED RULE BASE SINGLE INPUT ADAPTIVE 
FUZZY-SELF TUNING INVERSE KINEMATICS 

ALGORITHM (RRBSI-AFSTIK) 

In the AFSTIK approach proposed in the previous section, 49 
fuzzy rules are used to tune the output gains Kp and Kd of the 
lower level controller. This high number of rules increases the 
complexity and computational time of the proposed control 
system which restricts using the proposed system to simple 
robot manipulators. In order to extend the proposed control 
system to be used with complex manipulators and real time 
applications, a rule base reduction method is proposed in this 
section. Furthermore, the number of inputs to the proposed 
adaptive fuzzy self-tuning inverse kinematics system is 
reduced to only one input.  

Reconsidering the rules shown in Table 1, it can be inferred 
through vigilant observation that the adjacent quadrants are the 
mirrors of each other as illustrated in Figure 5. This leads to 
the reduction of the rule base of the proposed fuzzy controller.  
Two methods can be used to reduce the previous rule base. The 
first method works by considering the absolute value of the 

error  𝑒ሺ𝑡ሻ and the derivative of error 𝑒
•
ሺ𝑡ሻ as the inputs of the 

fuzzy controller. The rules of one quadrant are used to 
represent all cases represented in all quadrants. This will 
reduce the number of rules to only 16 rules as shown in Table 
2. 

The second method is motivated by the approach proposed in 
(Jae, 2001) for reducing the number of fuzzy controller inputs. 

The fuzzy inputs 𝑒ሺ𝑡ሻ  and 𝑒
•
ሺ𝑡ሻ  can be replaced by the 

magnitude difference 𝑑 given as: 

𝑑ሺ𝑡ሻ ൌ |𝑒ሺ𝑡ሻ| െ ቚ𝑒
•
ሺ𝑡ሻቚ                                                       (13) 

 

Fig. 5. The mirror image similarity of adjacent quadrants. 

Table 2. Reduced rule for  ∆𝑲𝒑 & ∆𝑲𝒅 of supervisory 
fuzzy logic controller. 

ቚ௘
•

ሺ௧ሻቚ

|௘ሺ௧ሻ|
 Z PS PM PL 

PL VVL VL L M
PM VL L M H
PS L M H VH
Z M H VH VVH

The corresponding block diagram of reduced rule base single 
input adaptive fuzzy self-tuning inverse kinematics algorithm 
(RRBSI-AFSTIK) is shown in Fig. 6. By taking the variable 𝑑 
to be the input of the new fuzzy system, the developed fuzzy 
system is now a single-input system and the rule base can be 
reduced to be as shown in Table 3 using the following 
linguistic fuzzy form: 

𝑅ሺ௣ሻ    ∷    𝐼𝐹  𝑑  𝑖𝑠  𝐷௣      𝑇𝐻𝐸𝑁   𝐾௣  𝑖𝑠  𝐺௣ 𝑎𝑛𝑑     𝐾ௗ   𝑖𝑠  𝐻௣ 

Where 𝐷௣ represents the label of the input fuzzy sets. 𝐺௣ and 
𝐻௣ are the output gains' labels. 𝑝 ൌ 1, 2, 3,4,5,6,7 denotes the 
number of the fuzzy rules. Using a single-input to the 
supervisory fuzzy controller leads to a great reduction in the 
number of rules as shown in table 3 which in turn reduce the 
computational complexity of the control algorithm. The centre 
average defuzzification method is used to compute the crisp 
values of the outputs. 
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Table 3. Reduced single input supervisory fuzzy logic 
controller rules. 

𝑑ሺ𝑡ሻ NL NM NS Z PS PM PL 

൫𝐾௣, 𝐾ௗ൯ VVL VL L M H VH VVH 

 

Fig. 6. Block diagram of the of the proposed RRBSI-AFSTIK 
approach. 

5. SIMULATIONS AND RESULTS 

In this section some simulations and results are presented to 
validate and assess the performance of the proposed RRBSI-
AFSTIK approach, two different robot configurations are 
used; two-link robotic arm and three-link robotic arm. 

5.1 Two-link robot arm 

The direct kinematics of the 2 DOF robotic arm shown in 
Fig. 7 can be chosen as follows (Siciliano et al., 2009): 

𝑥௘ ൌ 𝑝௘ ൌ 𝑘ሺ𝑞ሻ ൌ ቂ
𝑎ଵ𝑐ଵ ൅ 𝑎ଶ𝑐ଵଶ
𝑎ଵ𝑠ଵ ൅ 𝑎ଶ𝑠ଵଶ

ቃ                                   (14) 

The Jacobian of this 2 DOF manipulator is deduced as: 

𝐽஺ሺ𝑞ሻ ൌ
డ௞ሺ௤ሻ

డ௤
ൌ ቂ

െ𝑎ଵ𝑠ଵ െ 𝑎ଶ𝑠ଵଶ       െ 𝑎ଶ𝑠ଵଶ
   𝑎ଵ𝑐ଵ ൅ 𝑎ଶ𝑐ଵଶ          𝑎ଶ𝑐ଵଶ

ቃ                    (15)                                                                                                         

 

Fig. 7. Two-link robot manipulator. 

By the differentiation of 15,  𝐽
•

஺ሺ𝑞ሻ is deduced as:  

𝐽
•

஺ሺ𝑞, 𝑞
•
ሻ ൌ

ௗ

ௗ௧
𝐽஺ሺ𝑞ሻ ൌ ൤

𝐽ଵଵ     𝐽ଵଶ
𝐽ଶଵ     𝐽ଶଶ

൨

𝐽ଵଵ ൌ െ𝑎ଵ𝑐ଵ𝑞
•

ଵ െ 𝑎ଶ𝑐ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ

𝐽ଵଶ ൌ   െ 𝑎ଶ𝑐ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ

𝐽ଶଵ ൌ െ𝑎ଵ𝑠ଵ𝑞
•

ଵ െ 𝑎ଶ𝑠ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ

𝐽ଶଶ ൌ െ𝑎ଶ𝑠ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ

                                      (16) 

Where the link lengths are  21 aa 1 m and: 

𝑐ଵ ൌ cos𝑞ଵ          𝑐ଵଶ ൌ cosሺ𝑞ଵ ൅ 𝑞ଶሻ 
𝑠ଵ ൌ sin𝑞ଵ            𝑠ଵଶ ൌ sinሺ𝑞ଵ ൅ 𝑞ଶሻ   

                                (17) 

An eight trajectory shown in Fig. 8 is chosen as the desired end 
effector trajectory. This trajectory is chosen to show the 
effectiveness of the proposed approach in achieving complex 
tasks. The desired coordinates of the chosen trajectory are 
given as follows (Siciliano et al., 2009): 

𝑝ௗሺ𝑡ሻ ൌ ቂ
𝑥ௗ
𝑦ௗ

ቃ ൌ ൤
0.4 sin ሺ0.05 𝜋 𝑡ሻ

1.5 sin ሺ0.025 𝜋 𝑡ሻ൨                                (18) 

The initial posture of the robot end-effector is assumed to be 
at 𝑞ሺ0ሻ ൌ ሾ0     0.9 𝜋ሿ் rad. Figure 9 and Fig. 10 show the X 
and Y coordinates position tracking errors. As seen, the 
proposed RRBSI-AFSTIK approach outperforms the 
conventional inverse kinematics approach (CIK), and the 
continuous second order sliding mode inverse kinematics 
algorithm (CSOSM-AIK) proposed in (Elawady et al., 2020). 
Furthermore, the proposed approach rise time is further 
reduced compared with the other approaches which makes our 
approach is best fit in real time applications. The actual 
trajectories of the robot end-effector for the proposed 
approach, the CIK and CSOSM-AIK approaches are shown in 
Fig. 11. As seen in Fig. 11, the developed RRBSI-AFSTIK 
approach outperforms the other approaches. 

 

Fig. 8. Desired trajectory in task space. 

In order to more assess the tracking performance of the 
proposed RRBSI-AFSTIK approach, several performance 
metrics are considered. These metrics includes the integral 
absolute error (IAE), integral of squared error (ISE), and 
integral time multiplied absolute error (ITAE) (Zhu et al., 
2009) as given in equation (19). Table 4 shows a comparison 
between the proposed RRBSI-AFSTIK approach and the CIK 
approach in terms of these metrics. 
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Fig. 9. The X-coordinate position error. 

 
Fig. 10. The Y-coordinate position error. 

 
Fig. 11. The end effector trajectories of 2 DOF robot. 

Figs. 12, and 13 show how the adaptive gains Kp, and Kd are 
changing during tracking the desired manipulator trajectory. 
These adaptive gains are self-tuned using the proposed fuzzy 
logic rules in table 3. Thus, the adaptive gains are updated 
using a reduced single input supervisory fuzzy logic controller 
rules.  

 

Fig. 12. Adaptive Kp for the 2 DOF robot. 

 

Fig. 13. Adaptive Kd for the 2 DOF robot. 

The changes in the adaptive gains Kp, and Kd  shown in Figs. 
12 & 13 show that the proposed adaptive controller is covering 
a wide range of operating conditions and the gains Kp, and Kd 
are changing at every point of the search space to best track 
the desired complex eight trajectory.  

The indices IAE, ISE and ITAE are computed as follows: 

𝐼𝐴𝐸 ൌ න|𝑒ሺ𝑡ሻ| 𝑑𝑡 

𝐼𝑆𝐸 ൌ ׬   𝑒ሺ𝑡ሻଶ 𝑑𝑡                                            (19) 

𝐼𝑇𝐴𝐸 ൌ න 𝑡|𝑒ሺ𝑡ሻ| 𝑑𝑡 

Table 4. Performance comparison for two link robot. 

Algorith
m 

IAE ISE ITAE 
X  Y X Y X Y 

CIK 80.9 100.3 60.6 20.6  140.2 138.2 
CSOSM

-AIK 
70.3 70.8 5.6 5.4 86.2 85.8 

RRBSI-
AFSTIK 

65.5  60.6 2.9  1.9  82.5 80.2 

As seen in Table 4, the proposed RRBSI-AFSTIK approach 
provides a superior tracking performance compared to the CIK 
and CSOSM-AIK approaches. 
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5.2 Three-link robot arm 

The developed RRBSI-AFSTIK approach is secondly 
examined on the 3 DOF robot arm shown in Fig. 14 (Siciliano 
et al., 2009). 

 
Fig. 14. Three-link robot manipulator. 

The kinematics for this robot is chosen as follows (Siciliano, 
2009): 

𝑥௘ ൌ 𝑘ሺ𝑞ሻ ൌ ൥
𝑎ଵ𝑐ଵ ൅ 𝑎ଶ𝑐ଵଶ ൅ 𝑎ଷ𝑐ଵଶଷ
𝑎ଵ𝑠ଵ ൅ 𝑎ଶ𝑠ଵଶ ൅ 𝑎ଷ𝑠ଵଶଷ

        𝑞ଵ   ൅ 𝑞ଶ ൅ 𝑞ଷ

൩        (20) 

The Jacobian of this 3 DOF manipulator is deduced as: 

𝐽஺ሺ𝑞ሻ ൌ
𝜕𝑘ሺ𝑞ሻ

𝜕𝑞

ൌ ቈ
െ𝑎ଵ𝑠ଵ െ 𝑎ଶ𝑠ଵଶ െ 𝑎ଷ𝑠ଵଶଷ        െ 𝑎ଶ𝑠ଵଶ െ 𝑎ଷ𝑠ଵଶଷ         െ 𝑎ଷ𝑠ଵଶଷ
   𝑎ଵ𝑐ଵ ൅ 𝑎ଶ𝑐ଵଶ ൅ 𝑎ଷ𝑐ଵଶଷ          𝑎ଶ𝑐ଵଶ ൅ 𝑎ଷ𝑐ଵଶଷ             𝑎ଷ𝑐ଵଶଷ

                     1                                               1                                 1
቉ 

                        (21) 

By the differentiation of 21,  𝐽
•

஺ሺ𝑞ሻ is deduced as: 

𝐽
•

஺ሺ𝑞, 𝑞
•
ሻ ൌ

𝑑
𝑑𝑡

𝐽஺ሺ𝑞ሻ ൌ ൥
𝐽ଵଵ     𝐽ଵଶ     𝐽ଵଷ
𝐽ଶଵ     𝐽ଶଶ     𝐽ଶଷ
 0         0          0

൩

𝐽ଵଵ ൌ െ𝑎ଵ𝑐ଵ𝑞
•

ଵ െ 𝑎ଶ𝑐ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ െ 𝑎ଷ𝑐ଵଶଷሺ𝑞
•

ଵ ൅ 𝑞
•

ଶ ൅ 𝑞
•

ଷሻ

𝐽ଵଶ ൌ   െ 𝑎ଶ𝑐ଵଶቀ𝑞
•

ଵ ൅ 𝑞
•

ଶቁ െ 𝑎ଷ𝑐ଵଶଷቀ𝑞
•

ଵ ൅ 𝑞
•

ଶ ൅ 𝑞
•

ଷቁ,  

 𝐽ଵଷ ൌ   െ 𝑎ଷ𝑐ଵଶଷሺ𝑞
•

ଵ ൅ 𝑞
•

ଶ ൅ 𝑞
•

ଷሻ

𝐽ଶଵ ൌ െ𝑎ଵ𝑠ଵ𝑞
•

ଵ െ 𝑎ଶ𝑠ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ െ 𝑎ଷ𝑠ଵଶଷሺ𝑞
•

ଵ ൅ 𝑞
•

ଶ ൅ 𝑞
•

ଷሻ

𝐽ଶଶ ൌ െ𝑎ଶ𝑠ଵଶሺ𝑞
•

ଵ ൅ 𝑞
•

ଶሻ െ 𝑎ଷ𝑠ଵଶଷሺ𝑞
•

ଵ ൅ 𝑞
•

ଶ ൅ 𝑞
•

ଷሻ

𝐽ଶଷ ൌ െ𝑎ଷ𝑠ଵଶଷሺ𝑞
•

ଵ ൅ 𝑞
•

ଶ ൅ 𝑞
•

ଷሻ

 

          (22) 

Where the link lengths are 𝑎ଵ ൌ 𝑎ଶ ൌ 𝑎ଷ ൌ1 m. A butterfly 
path shown in Fig. 15 is chosen as another complex trajectory. 
The X and Y coordinates of this desired end-effector path are 
described by:

 

𝑝ௗሺ𝑡ሻ ൌ ቂ
𝑥ௗ
𝑦ௗ

ቃ ൌ ቈ
0.1 cosሺ𝑡ሻ 𝑒ୡ୭ୱሺ௧ሻ െ 2 cosሺ4𝑡ሻ െ sinହሺ𝑡/12ሻ ൅ 1
0.2 sinሺ𝑡ሻ 𝑒ୡ୭ୱሺ௧ሻ െ 2 cosሺ4𝑡ሻ െ sinହሺt/12ሻ ൅ 1

቉
 

                               (23) 

The initial posture of the robot end-effector is assumed to be 

at 𝑞ሺ0ሻ ൌ ቂ𝜋     
ିగ

ଶ
     

ିగ

ଶ
ቃ

்
rad. 

 
Fig. 15. Desired trajectory in task space.  

Fig. 16 and Fig. 17 depict the X and Y coordinates 
position tracking errors. As seen, the proposed RRBSI-
AFSTIK approach outperforms the CIK and CSOSM-
AIK approaches in terms of error and speed even if the 
trajectory is very complex as chosen. The trajectory of 
the end-effector is shown in Fig. 18. 

 

Fig. 16. The X-coordinate position error. 

 

Fig. 17. The Y-coordinate position error. 
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Fig. 18. The end effector trajectories of 3 DOF robot. 

Figs. 19, and 20 show how the adaptive gains Kp, and Kd are 
changing during tracking the desired manipulator trajectory. 
These adaptive gains are self-tuned using the proposed fuzzy 
logic rules in table 3. Thus, the adaptive gains are updated 
using a reduced single input supervisory fuzzy logic controller 
rules. 

 

Fig. 19. Adaptive Kp for the 3 DOF robot. 

 

Fig. 20. Adaptive Kd for the 3 DOF robot. 

The changes in the adaptive gains Kp, and Kd shown in Figs. 19 
& 20 show that the proposed adaptive controller is covering a 
wide range of operating conditions and the gains Kp, and Kd 
are changing at every point of the search space to best track 
the desired complex butterfly trajectory.  

Table 5 shows a comparison of tracking response between the 
proposed RRBSI-AFSTIK approach, the CIK, and CSOSM-
AIK approaches in terms of ISE, IAE and ITAE described by 
equation (19).  The data of Table 5 illustrates that the proposed 
approach provides a superior performance compared to the 
other approaches. 

Table 5. Performance comparison for three link robot. 

Algorithm 
IAE ISE ITAE 

X  Y  X Y X Y  
CIK 95.2 79.9 15.2  60.5 139.5 142.4

CSOSM-
AIK 

83.004 67.35 5.34 6.87 82.221 85.325 

RRBSI-
AFSTIK 

58.1 62.9 2.6 3.9 78.5 80.9  

6. CONCLUSIONS 

As the inverse kinematic problem is very essential to consider 
for any robot manipulator control system, many techniques 
have been developed trying to find good solutions for this 
problem. However, this track is still challenging and needs 
more efforts especially when working with complex 
tasks/robots.  This paper presents a new adaptive self-tuning 
fuzzy solution for inverse kinematics for industrial robot 
manipulators. The proposed solution is distinguished from the 
other existing approaches by its simplicity, fastness, and 
robustness. These features make the developed fuzzy approach 
a good one to consider in many robotic applications. The 
conducted simulations and results showed the effectiveness 
and adaptation of the proposed approach compared to other 
approaches in the literature. 

Funding: This research was funded by the Deanship of 
Scientific Research at Prince Sattam Bin Abdulaziz 
University, KSA under the research project # 2019/01/11117. 

REFERENCES 

Adelhedi, F., Jribi, A., Bouteraa, Y. and Derbel, N. (2015). 
Adaptive sliding mode control design of a SCARA robot 
manipulator system under parametric variations. Journal of 
Engineering Science and Technology Review, Volume 5, 
No. 15, 17-123. 

Alavandar S., and Nigm M. (2008).  Neuro-fuzzy based 
approach for inverse kinematics solution of Industrial 
Manipulators, International Journal of Computers 
Communications & Control, Volume 3, 224-234. 

Batista J., Souza D. ,dos Reis L., Barbosa A. and Araújo R 
(2020). Dynamic model and inverse kinematic 
identification of a 3-DOF manipulator using 
RLSPSO, Sensors Journal,  20, 416. 

Cheah, C., Hirano, M., Kawamura, S., Arimoto, S. (2003). 
Approximated Jacobian control for robots with uncertain 
kinematics and dynamics. IEEE Trans. Robot. Autom., 19, 
692–702. 



CONTROL ENGINEERING AND APPLIED INFORMATICS                 51 

     

Cheah, C., and Liaw H. (2005). Inverse Jacobian regulator 
with gravity compensation: stability and experiment, IEEE 
Trans. Robot., 741–747. 

Ching C., Chien-Chun W., Yi Tun W., and Po Tung W.  
(2017). Fuzzy logic controller design for intelligent robots, 
Mathematical Problems in Engineering, Volume 2017. 

Dinh H. (2009). Approximation of the inverse kinematics of a 
robotic manipulator using a neural network, Computer 
Science. 

Duka A. (2015). ANFIS based solution to the inverse 
kinematics of a 3DOF planar manipulator,  Procedia 
Technology, 19, 526-533. 

Duka A. (2014). Neural network based inverse kinematics 
solution for trajectory tracking of a robotic arm, Procedia 
Technology, Volume 12, 12-20. 

Elawady W., Bouteraa Y., and Elmogy A. (2020). An adaptive 
second order sliding mode inverse kinematics approach 
for serial kinematic chain robot manipulators. Robotics 
journal, 9(1), 4. 

El-Sherbiny A, Elhosseini MA, and Haikal AY. (2017). A 
comparative study of soft computing methods to solve 
inverse kinematics problem, Ain Shams Engineering 
journal. 9:2535–2548. 

Hasan A., Hayder M., Ahmad A. (2011). Neural networks’ 
based inverse kinematics solution for serial robot 
manipulators passing through singularities, InTech 
artificial neural networks-industrial and control 
engineering applications, 459–78. 

Ignacy D., and Michal O. (2013). A Comparison Of Jacobian–
based methods of inverse kinematics for serial robot 
manipulators, International Journal of Applied 
Mathematics in Computer science, 23(2), 373-382. 

Jae C. (2001). Design of single-input direct adaptive fuzzy 
logic controller based on stable error dynamics, 
International Journal of Fuzzy Logic and Intelligent 
Systems,  

Koker R.  (2013). Genetic algorithm approach to a neural-
network-based inverse kinematics solution of robotic 
manipulators based on error minimization, Inf. Sci.,  528–
543. 

Kutuk, M., Taylan,M., and Canan, L. (2017). Forward and 
inverse kinematics analysis of Denso robot. In 
Proceedings of the International Symposium of 
Mechanism and Machine Science, Baku, Azerbaijan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mahmoodabadi M.,  and A. Ziaei (2019) .Inverse dynamics 
based optimal fuzzy controller for a robot manipulator via 
particle swarm optimization, Journal of Robotics, Volume 
2019. 

Manan K., Vinay P., and  Ashish T. (2018). Comparative 
Study of iterative inverse kinematics methods for serial 
manipulators,  International Journal of Engineering 
Research & Technology (IJERT), 7(5). 

Mary, T. Kara and A. H. Miry (2016). Inverse kinematics 
solution for robotic manipulators based on fuzzy logic and 
PD control, Al-Sadeq International Conference on 
Multidisciplinary in IT and Communication Science and 
Applications (AIC-MITCSA), Baghdad, Iraq. 

Olsen A., and Petersen H. (2011). Inverse kinematics by 
numerical and analytical cyclic coordinate descent. 
Robotica, 29(4),619–626. 

Perez A., McCarthy J. (2005). Sizing a serial chain to fit a task 
trajectory using Clifford algebra exponentials, IEEE 
international conference on robotics and automation. 
ICRA. 

Raheem F.A., Kareem A.R.,  and Humaidi, A.J (2016). Inverse 
kinematics solution of robot manipulator end-effector 
position using multi-neural networks. Eng. Technol. 
journal., 34, 1360–1369. 

Selig J. (2013). Geometrical methods in robotics. Springer 
Science & Business Media. 

Siciliano, L. Sciavicco, L. Villani and G. Oriolo (2009). 
Robotics, Modeling, Planning and Control, Springer. 

Tarokh M. and Kim M. (2007). Inverse kinematics of 7-DOF 
robots and limbs by decomposition and approximation, 
IEEE Transactions on Robotics, 23(3). 

Xanthidis M., Kyriakopoulos K.J., Rekleitis, I. (2018). 
Dynamically efficient kinematics for hyper-redundant 
manipulators, In Proceedings of the 24th Mediterranean 
Conference on Control and Automation, Athens, Greece, 
207–213. 

Xu J., Wang W., and Sun Y. (2010). Two optimization 
algorithms for solving robotics inverse kinematics with 
redundancy. J Control Theory Appl., 2010. 

Zhou H., Chen R., Zhou S. and Liu Z. (2019). Design and 
analysis of a drive system for a series manipulator based 
on orthogonal-fuzzy PID control. Electronics Journal. 
8(9), 1051.  

Zhu H. , Li L. , Zhao Y. ,  Guo Y. ,Yang Y. (2009). CAS 
algorithm-based optimum design of PID controller in AVR 
system, Chaos, Solitons & Fractals. 42. 792-800.  


