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Abstract: This paper investigates the problem of prediction of failures that may lead to violations of 
critical safety requirements if they are not dealt with in a timely manner. The main contributions are as 
follows. First, the new notion of active predictability of discrete-event systems (DESs) is introduced and 
formalized to capture the feature that the occurrences of failure events can not only be predicted based on 
observed sequences of events, but also be prevented from occurring by properly controlling system 
behavior. The control actions are posed and addressed in the framework of supervisory control theory, 
which could be required to prevent failure events from developing into safety hazards. It is indicate 
through comparison that active predictability is stronger than the predictability proposed by Genc and 
Lafortune. Second, in order to achieve the performance of active prediction, a nondeterministic 
automaton called verifier is constructed and the necessary and sufficient condition for verifying the active 
predictability of DESs based on the verifier is presented. Third, an algorithm is developed to verify the 
active predictability, which can be applied to the control of robots. It is worth noting that both 
constructing the verifier and verifying the active predictability can be realized with polynomial 
complexity in the number of states and events of the system. 
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1. INTRODUCTION 

Failure detection and isolation is an important task in the 
automatic control of large complex systems. Failure 
diagnosis of DESs is to timely identify incipient failures that 
have occurred but may not be directly observed by the 
sensors, which has been widely investigated during the past 
decades (Sampath, 1995, 1998; Thorsley, 2007; Moreira, 
2011; Liu, 2014; Chen, 2014; Yao, 2016; Zhao, 2017;  Deng, 
2017; Keroglou, 2018; Masopust, 2019; Viana, 2019). The 
main objective of failure prediction is to develop 
methodologies for predicting the occurrences of possible 
failures arising in the operation of a dynamic system. And the 
research problem has received considerable attention (Jeron, 
2008; Genc, 2009; Briones, 2012; Takai, 2011, 2012; Chang, 
2013; Chen, 2014; Grastien, 2015;  Benmessahel, 2017; Yin, 
2016, 2018; Liu, 2019; Zhao, 2019). Jeron, Marchand et al. 
developed a method to predict the occurrence of sequence 
patterns which contain some ordered significant observable 
or unobservable events (Jeron, 2008). Genc and Lafortune 
defined the predictability of DESs and proposed two model-
based approaches to perform the online prediction and the 
offline verification, respectively (Genc, 2009). Briones and 
Madalinski refined lower and upper bound of predictability, 
and proposed the notion of (lb,ub)-predictability (Briones, 
2013). In (Takai, 2012), the robustness of failure prediction 
was discussed, and a robust prognoser was introduced to 
predict the failures prior to their occurrence. Chang and Chen 
(Chang, 2013; Chen, 2014) extended the framework 
proposed by Genc and Lafortune (Genc, 2009) to stochastic 
models and introduced two new concepts of AAS-
predictability and  _S m -Prognosability respectively. The 

definition of predictability was further extended to consider 

the time interval and (i,j)-predictability was formulated in 
(Grastien, 2015). A fuzzy approach was proposed 
(Benmessahel, 2017) by introducing fuzzy predictability 
functions to characterize the predictability degree of a faulty 
trace as well as a faulty event in a fuzzy DES. As for 
distributed systems, the decentralized prognoser was defined 
and employed to perform the coprediction (Takai, 2011); The 
notion of k-reliable coprognosability was proposed (Yin, 
2016) as the necessary and sufficient condition for the 
existence of a decentralized prognoser under the presence of 
unreliable local prognostic decisions. Yin and Li (Yin, 2019) 
proposed two novel decentralized protocols for the purpose 
of fault prognosis.  

The copredictability of DESs was formalized (Liu, 2019) 
under the decentralized framework to capture the feature of 
copredictable DESs where the occurrences of failure events 
can be predicted in advance based on at least one local 
observation. In the paper (Zhao, 2019), the relative 
predictability of DESs  is investigated.  

This paper aims to deal with the new issue of how to prevent 
failure events from occurring when they are predicted to 
occur. This is what can be called the active prediction 
problem. The term active is used to distinguish the prediction 
from passive prediction  (Jeron, 2008; Genc, 2009; Briones, 
2012; Takai, 2011, 2012; Chang, 2013; Chen, 2014; Grastien, 
2015;  Benmessahel, 2017; Yin, 2016, 2018; Liu, 2019; Zhao, 
2019) wherein the role of the prediction module is simply to 
observe the system behaviour and draw inference about the 
occurrence of potential failures. But the active prediction is 
one that combined observation and control and the control 
issues are posed and addressed in the framework of 
supervisory control theory. Supervisors can disable some 
controllable events at any time to change the behaviour of the 
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system to avoid failures. In order to capture the feature of the 
system, the notion of active predictability is introduced and 
formalized. And the relationship with the notion of 
predictability introduced by Genc and Lafortune  (Genc, 2009) 
is analysed. It is illustrated that active predictability is 
stronger than the predictability. In order to achieve the 
necessary and sufficient condition for verifying the active 
predictability, a new verifier is constructed. And a 
verification algorithm of polynomial computational 
complexity is proposed.  

Notice that active diagnosis and its application were 
investigated in (Sampath, 1998), (Thorsley, 2007) and (Chen, 
2014). Inspired by these works, this paper presents an 
integrated approach to control and predict. But the idea of 
this paper is different from those references. The main 
differences are as follows. (Sampath, 1998), (Thorsley, 2007) 
and (Chen, 2014) presented some approaches of using control 
actions to alter the diagnosability properties of a given 
system, but what they did was to restrict the behaviour of a 
nondiagnosable system by appropriate control, to obtain a 
diagnosable system. This paper is not concerned with using 
control actions to alter the predictability property of a given 
system, but rather using control actions to prevent impending 
failure events from occurring.  

Our main contributions are (1) formal definition of the notion 
of active predictability; (2) derivation of the necessary and 
sufficient condition for verifying active predictability; (3) an 
algorithm for checking whether a system is actively 
predictable.  

This paper is organized as follows. In section 2, the necessary 
background on predictability of DESs is presented. In section 
3, an example is provided to illustrate the motivation of the 
research. In section 4, the notion of active predictability is 
defined. In section 5, the necessary and sufficient condition 
of active predictability is given and an algorithm is designed 
to verify active predictability. In section 6, active 
predictability with multiple failure types is considered. 
Finally, in section 7, conclusions are drawn.  

2. PRELIMINARIES 

A discrete-event system is modeled as a deterministic 
automaton 

0( , , , , )mG X X x   

where X  is the finite state space,    is the set of events, 
: X X   is the transition function, mX  is the set of 

marked states and 0x X  is the initial state of the system. 
* denotes the set of all finite strings over   , including the 

empty string  . The transition function   can be extended to 

the domain *X  : for any x X , (x, )={x}   and 

' ( , )
(x,s )= ( ', )

x x s
x


   

  for *s and   . 

Given an event    and a string *s ,  if  appears at 
least once in s , then denote it as s   or with slight abuse 
of notation, denote it as ={ }s  . And   denotes empty 

sets. 

The language generated by G  is defined as 

*
0{ : ( , ) }L s x s X    

and it is often denoted by ( )L G . ( )mL G  is a set of strings 

that can reach the marked state and ( ) ( )mL G L G . Given a 

trace s  originating from 0x , denote /L s  as the post 

language of L  after s , i.e., 

*/ ={ : }L s t st L   

and denote  s as the prefix language of s . Given a string s , 

the length of s  (number of events including repetitions) is 

denoted by s . 

All events of G  are partitioned as o uo    , where o  

denotes the set of observable events and uo  denotes the set 

of unobservable events. Let f uo    denote the set of 

failure events, define 

*
~ = ( )f fL L    

as the set of all traces in L  containing no failure events. 

Let x  be a state of G  ( i.e. x X  ). The feasible event set 
of x  is denoted by 

( ) { : ( , ) }x x X      . 

The accessible part (Genc, 2009) of G  with respect to x  is 
denoted by ( , )Ac G x  and 

( , ) ( , , , ),ac acAc G x X x   

Where *={ ' :  s.t. ( , ) '}acX x X s x s x    ，and ac   

|
ac acX X  . 

Define  

~ 0( ) { : ( ( , )) }       f f fs L x s . 

as the set of all traces in ~fL  whose next feasible events 

contain a failure event, where   is the empty set. 

Let * *: oP     denote the usual projection operator with 

filters the unobservable events from a trace, which is defined 
as :P   , and for *s and ，  

 if 
( )

otherwise. 

( )

( )
oP s

P s
P s

 



 


 

The inverse projection is 1( ) { : ( ) }LP y s L P s y    . 

For a given DES, supervisory control theory deals with the 
design of controller that ensures that the controlled system 
meets certain qualitative specifications. These specifications 
define the legal languages of the system. A supervisor of a 
DES is an external agent or controller that, based on its 
partial view of the system, dynamically enables or disables 
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the controllable events of the system in order to ensure that 
the resulting closed-loop language lies within the legal 
language. The control structure of G  is defined by a partition 

c uc     

where c  is the set of controllable events whose occurrences 

can be disabled, and uc  is the set of uncontrollable events 

that cannot be disabled. This paper makes the following 
assumption: 

c o    

i.e., no unobservable event can be prevented from occurring 
by control. 

A supervisor S  is a map 

( ) 2S L G ：  

together with a language ( )S mL L G  such that, for each 

string s  generated by G , the control action of S  over G  
(denoted by /S G ) enables events of ( )S s   , with 

( )uc S s  , and marks strings Ss L . 

Definition 1 ( Predictability (Genc, 2009) ) Given L  a 
prefix-closed, live language over  , occurrences of failure 
event ( )f f f    are predictable in L  w.r.t. P  if 

( )n   s.t. 

( ( ))( )[ ( ) 1],fs t s t       

where   is the set of natural numbers and the condition 
( )t  is defined as follows: 

1
~( v / ( ( ( )) ))

1
(|| v||

 if 

( )

 otherwise

n

. 

( v))

0

f

f
t

L P P t L



 

 












 

Intuitively, occurrences of failure events in the language L  
are predictable if for any trace s  whose next feasible events 
contain a failure event, it is possible to infer about the 
occurrence of the failure event based on the observable 
record of the trace. Predictability of L  can be verified 
through constructing corresponding verifier (Genc, 2009). 

3. PROBLEM MOTIVATION 

Example 1: Consider the plant G  described in Fig.1, in 
which   ， ，  and   are observable events, uo  is an 

unobservable event, f f   is a failure event and state 1 is 

the initial state. 

 

Fig. 1. Automaton  G . 

As Fig.1 shows,  ( ) { , }.f uo     Let s   or 

uos   and t s . Take ,t  1
~( ( )) ={ }fP P t L     

and 1
~/ ( ( )) ={ ,n

f fL P P t L     }.n
uo f    For /v L    

1
~( ( )) fP P t L  ，|| || nv    ( ).f v   This means that for 

any string fs , there is a t s  which satisfies the 

condition ( ) 1t   in Definition 1. Therefore, all the 

occurrences of f  can be predicted, i.e. L  is predictable 

w.r.t. P  and f . 

Now consider the case: if the system starts from the initial 
state 1 and event   has occurred, then event   or   may 

occur. As long as event   occurs, then failure event f  is 

bound to occur in the future. In order to avoid the occurrence 
of the failure event f , a supervisor can step in and take 

some preventive actions, such as preventing event   from 

occurring, of course, if event   is controllable. If event   is 

prevented from occurring, the next event that will occur is  . 
After event  , no failure events will occur. By this way, 
failure event f  that may cause serious security hazards can 

not only be predicted, but also be avoided. Such 
predictability can be called active predictability. 

4. FORMALIZATION OF ACTIVE PREDICTABILITY 

Definition 2 ( Active Predictability ) A prefix-closed 
language L  is said to be actively predictable w.r.t. P , f  

and c  if the following conditions hold: 

C1. Predictability condition: 

( )( ( ))( ) ,fn s t s          

where  is: 

 1
!~( / ( ( ( )) )) (|| || ) ( ).f fv L P P t L v n v       

C2. Active predictability condition: 

for ( )fs   , if exists t s  such that  holds, and 

ct   . 

Roughly speaking, the occurrences of failure events in the 
language L  are actively predictable if for any trace whose 
next feasible events contain a failure event, it is possible to 
infer about the occurrence of the failure event based on the 
observable part of the trace and the prefix of the trace 
contains some controllable events that can be posed the plant 
to prevent the failure from occurring. 

By comparing  definition 1 and definition 2, it is known that 
active predictability is stronger than the predictability (Genc, 
2009). 

Let event   of G  described in Fig.1 be controllable ( i.e. 

c   , then for s   or uos   ( ( )fs  ), there 

exists = ( )t t s  such that the predictability condition C1 
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holds and { }ct      (i.e. activity predictability 

condition C2 holds ). According to the definition 2, it is 
known that L  generated by G  is actively predictable w.r.t. 
P , f  and c . So supervisory controller of the plant can 

prevent the predictable failure event f  from occurring by 

disabling event  . 

5. VERIFICATION OF ACTIVE PREDICTABILITY OF 
DESS 

In this section, the necessary and sufficiency condition of 
active predictability is derived and an algorithm based on a 
verifier is developed to verify the property of DESs. 

5.1 The Necessary and Sufficiency Conditions 

Definition 3 (Marked states) Let 0( , , , , )mG X X x   and 

{ }f f   be the failure event set of G . State x X  is 

referred to as marked state if ( )f x  ; And the set of 

marked states is mX . 

Definition 4 (Simplified model) Let NG  be the non-failure 

automaton of G . Remove the " N " labels from the states of 

NG  and mark all marked states of G  in NG  by double-circle. 

Then NG  is referred to as the simplified model of G , 

denoted by 0=(X , , ,x )S SG  . 

Definition 5 (1-class and 2-class marked states) Let SG  be 

the simplified model of G , state x  be a marked state of SG  

( i.e. Xmx ) and the accessible part of state x  be 

( , ) ( , , , )ac acAc G x X x  . (a) State x  is referred to as 2-

class marked state if { }acX x  and X { }ac mX x ; 

Otherwise, mx X  is referred to as 1-class marked state. (b) 

The set of 2-class marked states is denoted by 2
mX ; the set of 

1-class marked states is denoted by 1
mX . And 1 2 =m m mX X X . 

Theorem 1: Let L  be the language of 0( , , , , )mG X X x   

and SG  be the simplified model of G . L  is not actively 

predictable w.r.t. P , f  and c  if 2
mX  . 

Proof: Since 2
mX  , there is a state x  of SG  and 2

mx X . 

This means that the reachable states from state x contain only 
a few unmarked states except for itself. Therefore, suppose 
that there is a string s L such that 0( , )x s x  , then there 

exist 1st L  and 1f t  , 2st L  and 2|| || nt   ( n ) but 

2f t  . The fact indicates that the occurrence of f  cannot 

be predicted according to the observation of s . According to 
Definition 1, it is known that L  is not predictable w.r.t. 
P and f . So by Definition 2, the conclusion that L  is also 

not actively predictable can be drawn. 

Let there be no 2-class marked states in SG . The Verifier of 

SG  is a finite automaton 

0=(X , , ,x )G V V VV  ，  

where XV  is the state space, V  is the state transition 

function, and 0xV，  is the initial state. Verifier state x XV V is 

of the form 1 1 2 2x =[ ; ]V x l x l , where x Xi  , { , , ,il N F CN  

}CF  and {1, 2}.i The state transition function ( , )V Vx   is 

defined as follows. 

For   , 

1) if c  and o  , 

a. if 1
0( , ) mx X   , then 

0 0 0 0([ , ], ) [ ( , ) , ( , ) ];V x N x N x N x N       

b. if 1
0( , ) mx X   , then 

0 0 0 0([ , ], ) [ ( , ) , ( , ) ];V x N x N x F x F       

2) if c  and uo  , 

a. if 1
0( , ) mx X   , then 

0 0

0 0 0 0

0 0

[ ( , ) , ]

[ , ], [ , ( , ) ]

[

(

( , ) , ( , ;

)

) ]
V

x N x N

x N x N x N x N

x N x N

 
  

   



 



 

b. if 1
0( , ) mx X   , then 

0 0

0 0 0 0

0 0

[ ( , ) , ]

[ , ], [ , ( , ) ]

[

(

( , ) , ( , ;

)

) ]
V

x F x N

x N x N x N x F

x F x F

 
  

   



 



 

3) if c  , 

a. if 1
0( , ) mx X   , then 

0 0 0 0([ , ], ) [ ( , ) , ( , ) ];V x N x N x CN x CN       

b. if 1
0( , ) mx X   , then 

0 0 0 0([ , ], ) [ ( , ) , ( , ) ].V x N x N x CF x CF       

For ( )s t L G   and 0 0 1 1 2 2([ , ], ) [ , ],V x N x N t x l x l  let 
'
1 1 " " " "l l C F    and '

2 2 " " " "l l C F   (Here, with slight 

abuse of notation, label merge operation is denoted by 
symbols of sets). 

1) if c  and o  , 

a. if 1
0( , ) mx s X  , then 

1 1 2 2 1 1 2 2([ , ], ) [ ( , ) , ( , ) ];V x l x l x l x l       

b. if 1
0( , ) mx X   , then 

' '
1 1 2 2 1 1 2 2([ , ], ) [ ( , ) , ( , ) ];V x l x l x l x l       
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2) if c  and uo  , 

a. if 1
0( , ) mx s X  , then 

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

[ ( , ) , ]

[ , ], [ , ( , ) ]

[ ( , ) , ( , )

( )

];
V

x l x l

x l x l x l x l

x l x l

 
  

   


 



 

b. if 1
0( , ) mx s X  , then 

'
1 1 2 2

'
1 1 2 2 1 1 2 2

' '
1 1 2 2

[ ( , ) , ]

[ , ], [ , ( , ) ]

[ ( , ) , (

( )

, ) ];
V

x l x l

x l x l x l x l

x l x l

 
  

   



 



 

3) if c  , 

a. if 1
0( , ) mx s X  , then 

1 1 2 2 1 2([ , ], ) [ ( , ) , ( , ) ];V x l x l x CN x CN       

b. if 1
0( , ) mx s X  , then 

1 1 2 2 1 2([ , ], ) [ ( , ) , ( , ) ].V x l x l x CF x CF       

A verifier state 1 1 2 2[ , ] XV Vx x l x l  is: CF-certain if 

" ";il CF  normal if " "il N or " "il CN ; and CF-

uncertain if 1" "N l and 2" "F l  (or 1" "F l and 2" "N l  ) 

or " "il F , where {1,2}.i  

Theorem 2: Let SG  be the simplified model of G , there be 

no 2-class marked states in SG , and GV be the verifier of SG . 

L  generated by G  is not actively predictable w.r.t. P , f  

and c  iff there exists at least a CF-uncertain state in GV . 

Proof: Necessity: Assume that L  is not actively predictable 
w.r.t. P , f  and c . By contradiction it will be shown that 

there exists at least a CF-uncertain state in GV . If there is no 

any CF-uncertain state in GV , then the states in GV  are either 

normal or CF-certain, which means that as long as there are 
failure events in the system, then failure events must be 
predictable and the system must have executed controllable 
events before occurrences of the failure events. According to 
definition 2, L  is actively predictable w.r.t. P , f  and c . 

Clearly, this is a contradiction to the intended hypothesis. 
Consequently, if L  is not actively predictable w.r.t. P , f  

and c , there exists at least a CF-uncertain state in GV . 

Sufficiency: Assume that there is a CF-uncertain state 
=[ , ]i i j jx x l x l in GV . Case 1: suppose " " iN l and " " jF l , 

then there exist strings 1 2,s s L  and 1 2( ) ( )P s P s  such that 
1

0 1( , ) ( )i i mx s x x X   and 1
0 2( , ) ( ).j j mx s x x X   This 

means there is a failure event and its occurrence cannot be 
predicted according to the observation of 1s  or 2s . So by

Definition 1, it is known that L  is not predictable w.r.t. P , 

f  and c . Thus, L  is not actively predictable w.r.t. P , f  

and c . Case 2: suppose " "il F  and " "jl F , then there 

exists a string s L  such that 1
0( , )= ( )i i mx s x x X  ， 

1
0( , ) ( )j j mx s x x X   ，  and .cs    According to 

definition 2, L  is not actively predictable w.r.t. P , f  and 

c . 

5.2 A verification Algorithm 

Algorithm 1 (Checking the active predictability of DESs): 

Step 1: Construct non-failure automaton NG . 

=N NG G A  models the normal behaviour of G , where NA  

is composed of a single state N  with a self-loop labelled 
with all events in \ f  . 

Step 2: Construct simplified model SG . 

According to NG , construct simplified model  of SG . 

Step 3: Check whether there are a 2-class marked states in 

SG . 

If there are, it is known that the occurrences of  failure events 
in language L  cannot be actively predictable by Theorem 1, 
i.e., L  is not actively predictable w.r.t. P , f  and c ; 

Otherwise, perform the next step. 

Step 4: Based on SG , construct verifier automaton GV . 

Step 5: Check if there are CF-uncertain states in the GV . 

If the answer is yes, then L  is not actively predictable w.r.t. 
P , f  and c  according to Theorem 2; Otherwise, L  is 

actively predictable.  

Now, discuss the computational complexity of the algorithm. 

Let X be the number of states of X ;  , f be the number 

of events of    or f . 

For the first step, since the number of states of G  is X , and 

the number of feasible transitions from every state is - f  , 

the construction of NG  takes ( ( ))fO X     time. The 

time complexity of step 2 and step 3 is ( ( ))N fO X    . 

The number of states of GV  is in the worst case equal to 
2

2 XN . Moreover, the maximum number of transitions of 

states in the GV  is equal to ( - )f    . The time 

complexity of step 4 and step 5 is 
2

2 ( ( - ))N fX      . 

So the overall computational complexity of the approach is 
polynomial. 
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5.3 Illustrative Examples 

Example 2: Consider the plant G  shown in Fig.2, where 
{ , , , }o      , f f   is a failure event and state 1 is the 

initial state. Suppose   is a controllable event ( i.e. c  ). 

In the following, the active predictability of G  will be 
verified by Algorithm 1.  

 

Fig. 2. Plant G of Example 2. 

The first step of the algorithm is to obtain single state 
automaton NA and to compute the automaton NG , which are 

shown in Fig.3 and Fig.4, respectively. 

 

Fig. 3. Automaton NA . 

 

Fig. 4. NG  of Example . 

Then, SG  is constructed as that in Fig.5. As Fig.5 shows, 

state 2 is a 2-class marked state. So according to Theorem 1, 
it is known that L of G  is not actively predictable w.r.t. P , 

f  and c . 

 

Fig. 5. SG  of Example 2. 

Example 3: Consider again the plant G  shown in Fig.1 and 
let   be a controllable event (i.e. c  ). In the following, 

the result that L is actively predictable w.t.r. P , f  and c  

will be verified by Algorithm 1. 

 

Fig. 6. NG  of Example 3. 

Firstly, NG  and SG  are constructed as that in Fig.6 and Fig.7, 

respectively. 

 

Fig. 7. SG  of Example 3. 

In the SG , state 5 and state 8 are both 1-class marked states 

and there are no 2-class marked states. 

Construct verifier GV  by the SG , depicted in Fig.8. 

 

Fig. 8. Verifier GV  of Example 3. 

Obviously, there is no CF-uncertain state in the verifier GV . 

By Theorem 2, it is known that the language L  generated by 
G  is actively predictable w.r.t. P , f  and c . 

Example 4: Consider the system G  shown in Fig.9, where 
, , ,    are observable events, uo  is an unobservable event, 

f  is a failure event and   is a controllable event ( i.e. 

c   ). Next to verify the active predictability of the system. 

 

Fig. 9. G  of Example 4. 

NG  and SG  are firstly constructed as that in Fig.10 and 

Fig.11, respectively. As Fig.11 shows, state 3 and 6 are 1-
class marked states, also there is no 2-class marked state in 
the SG . 

 

Fig. 10. NG  of Example 4. 
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Fig. 11. SG  of Example 4. 

Verifier GV  is constructed as that in Fig.12. As Fig.12 shows, 

there is a CF-uncertain state "6F6F" in GV . So according to 

Theorem 2, it is known that the language L  generated by 
G is not actively predictable w.r.t. P , f  and c . 

 

Fig. 12. GV  of Example 4. 

Example 5: Consider the automatic cargo transport system 
shown in Fig.13, which describes the situation that a robot 
carries a batch of goods from warehouse A to warehouse B. 
In the figure, the red dashed line indicates the given route 
direction and black squares and  dots represent obstacles and 
states, respectively. At first, the robot goes straight following 
the direction of the given route, but if obstacles or borders are 
predicted during the process, the robot will adjust the route 
appropriately. 

 

Fig. 13. Automatic cargo transport system. 

The model of the system is shown in Fig.14, where events are 
three execution instructions: 

 : walk following the direction of the given route; 

 : turn right and goes straight; 

 : turn left and goes straight;  

Here, assume that the direction of the given route can be 
adjusted appropriately, i.e.   is a controllable event. 

If the robot executes wrong instructions, it is possible to 
encounter obstacles or borders while walking., i.e., the failure 
event f  occurred. 

Initially, the robot is in the warehouse A (i.e., state 0. When 
the robot receives instruction , then it will carry the goods 
and go straight along the direction of the given route until 
arrives state 1. From state 1, continue to move forward to 
state 2 with instruction  . In state 2, if the robot executes 
instruction  , it will reach state 14. In state 14, it will 
encounter obstacles as it moves on, that is, it will reach a 
failure state (i.e. state 20). In state 2, if the robot can predict 
that it will encounter obstacles when it continues to go 
straight, it will turn right and go straight to state 3 with 
instruction  . In state 3, if the robot continues to execute 

instruction  , it will reach state 15.  Similarly, if the robot 
go straight from state 15, it may run into obstacles, that is, it 
will reach the failure state (i.e. state 20). However, if it can 
predict that there are obstacles ahead, the robot will turn right 
and go straight to state 4 according to instruction  . Then, 

go from state 4 to state 5 with instruction  . In state 5, if the 
robot continues to execute instruction  , it will reach state 
16. In state 16, it will encounter obstacles and cannot go 
straight, that is, it will reach the failure state ( i.e. state 20). 
But in state 5, if it predict that there are obstacles ahead, then 
the robot will turn left and go straight to state 6 according to 
instruction  . After that, the system execution process is 

similar to the previous one. 

In the following, the active predictability of the system will 
be verified by Algorithm 1. 

Firstly, compute automaton =N NG G A , which is described 

by Fig.15. 

Next is to build a simplified model SG  of G , shown in 

Fig.16. 

There are no 2-class marked states in SG , So the verifier 

automaton GV  is computed by SG , shown in Fig.17. 

As Fig.17 shows, there is no any CF-uncertain state in the 
verifier GV , so the L  generated by G  is actively predictable 

w.r.t. P , f  and c . 

Since the L  is actively predictable, the supervisory controller 
can control system behaviour when the system is actually 
running (as shown in Table 1). For example, if the system 
executes the   event, continuing to execute the   event 
will inevitably cause failure event f  to occur. To avoid the 

occurrence of the failure event, the supervisory controller can 
disable the event  . Then the next event that will be 
executed is the event  . In this way, the occurrence of the 

failure event is avoided.  
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Fig. 17. GV  of Example 5. 

Table 1. The behavior of supervisory controller. 

 

6. ACTIVE PREDICTABILITY OF DESs WITH 
MULTIPLE FAULT TYPES 

Let
1 2

= ...
rf f f f       be a partition of the set of failure 

events, where r denotes the number of fault types, and let 

f denote this partition. The active predictability of L  with 

respect to f  is equivalent to the active predictability of L  

with respect to each fault type separately, as ensured by the 
following result. 

Theorem 3: The language L  of system G  is actively 
predictable w.r.t. P , f  and c , if and only if L  is 

actively predictable w.r.t. P , 
if

  and c  for each 

1, 2,...,i r . 

Poof: it is easily obtained by Definition 2. 

7. CONCLUSIONS 

This paper  concerned the problem of active failure prediction. 
Starting from the standard definition of predictability (Genc, 
2009) of DESs, which dealt with the problem of predicting 
the occurrences of failure events using the available system 
observations, the new notion of active predictability was 
introduced and the verification of active predictability in the 
framework DESs was investigated. A verifier was 
constructed, and based on it the necessary and sufficient 
condition of active predictability was presented. Moreover, a 
polynomial-complexity algorithm for verifying active 
predictability was developed. In future work, the active 
predictability of fuzzy DESs or stochastic DESs will be 
considered. 

 

Fig. 14. The model G  of the automatic cargo transport system. 

 

Fig. 15. NG  of Example 5. 

 

Fig. 16. SG  of Example 5. 
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