
CEAI, Vol.23, No.1, pp. 13-21, 2021 Printed in Romania

Active Prediction in Discrete-event Systems

Rui Zhao, Fuchun Liu


School of Computers, Guangdong University of Technology, Guangzhou 510006
China (Tel: +8613160809171; e-mail: zhaorui118204@163.com, fliu2011@163.com).

Abstract: This paper investigates the problem of prediction of failures that may lead to violations of
critical safety requirements if they are not dealt with in a timely manner. The main contributions are as
follows. First, the new notion of active predictability of discrete-event systems (DESs) is introduced and
formalized to capture the feature that the occurrences of failure events can not only be predicted based on
observed sequences of events, but also be prevented from occurring by properly controlling system
behavior. The control actions are posed and addressed in the framework of supervisory control theory,
which could be required to prevent failure events from developing into safety hazards. It is indicate
through comparison that active predictability is stronger than the predictability proposed by Genc and
Lafortune. Second, in order to achieve the performance of active prediction, a nondeterministic
automaton called verifier is constructed and the necessary and sufficient condition for verifying the active
predictability of DESs based on the verifier is presented. Third, an algorithm is developed to verify the
active predictability, which can be applied to the control of robots. It is worth noting that both
constructing the verifier and verifying the active predictability can be realized with polynomial
complexity in the number of states and events of the system.

Keywords: discrete event systems, predictability, supervisory control.

1. INTRODUCTION

Failure detection and isolation is an important task in the
automatic control of large complex systems. Failure
diagnosis of DESs is to timely identify incipient failures that
have occurred but may not be directly observed by the
sensors, which has been widely investigated during the past
decades (Sampath, 1995, 1998; Thorsley, 2007; Moreira,
2011; Liu, 2014; Chen, 2014; Yao, 2016; Zhao, 2017; Deng,
2017; Keroglou, 2018; Masopust, 2019; Viana, 2019). The
main objective of failure prediction is to develop
methodologies for predicting the occurrences of possible
failures arising in the operation of a dynamic system. And the
research problem has received considerable attention (Jeron,
2008; Genc, 2009; Briones, 2012; Takai, 2011, 2012; Chang,
2013; Chen, 2014; Grastien, 2015; Benmessahel, 2017; Yin,
2016, 2018; Liu, 2019; Zhao, 2019). Jeron, Marchand et al.
developed a method to predict the occurrence of sequence
patterns which contain some ordered significant observable
or unobservable events (Jeron, 2008). Genc and Lafortune
defined the predictability of DESs and proposed two model-
based approaches to perform the online prediction and the
offline verification, respectively (Genc, 2009). Briones and
Madalinski refined lower and upper bound of predictability,
and proposed the notion of (lb,ub)-predictability (Briones,
2013). In (Takai, 2012), the robustness of failure prediction
was discussed, and a robust prognoser was introduced to
predict the failures prior to their occurrence. Chang and Chen
(Chang, 2013; Chen, 2014) extended the framework
proposed by Genc and Lafortune (Genc, 2009) to stochastic
models and introduced two new concepts of AAS-
predictability and  _S m -Prognosability respectively. The

definition of predictability was further extended to consider

the time interval and (i,j)-predictability was formulated in
(Grastien, 2015). A fuzzy approach was proposed
(Benmessahel, 2017) by introducing fuzzy predictability
functions to characterize the predictability degree of a faulty
trace as well as a faulty event in a fuzzy DES. As for
distributed systems, the decentralized prognoser was defined
and employed to perform the coprediction (Takai, 2011); The
notion of k-reliable coprognosability was proposed (Yin,
2016) as the necessary and sufficient condition for the
existence of a decentralized prognoser under the presence of
unreliable local prognostic decisions. Yin and Li (Yin, 2019)
proposed two novel decentralized protocols for the purpose
of fault prognosis.

The copredictability of DESs was formalized (Liu, 2019)
under the decentralized framework to capture the feature of
copredictable DESs where the occurrences of failure events
can be predicted in advance based on at least one local
observation. In the paper (Zhao, 2019), the relative
predictability of DESs is investigated.

This paper aims to deal with the new issue of how to prevent
failure events from occurring when they are predicted to
occur. This is what can be called the active prediction
problem. The term active is used to distinguish the prediction
from passive prediction (Jeron, 2008; Genc, 2009; Briones,
2012; Takai, 2011, 2012; Chang, 2013; Chen, 2014; Grastien,
2015; Benmessahel, 2017; Yin, 2016, 2018; Liu, 2019; Zhao,
2019) wherein the role of the prediction module is simply to
observe the system behaviour and draw inference about the
occurrence of potential failures. But the active prediction is
one that combined observation and control and the control
issues are posed and addressed in the framework of
supervisory control theory. Supervisors can disable some
controllable events at any time to change the behaviour of the

14 CONTROL ENGINEERING AND APPLIED INFORMATICS

system to avoid failures. In order to capture the feature of the
system, the notion of active predictability is introduced and
formalized. And the relationship with the notion of
predictability introduced by Genc and Lafortune (Genc, 2009)
is analysed. It is illustrated that active predictability is
stronger than the predictability. In order to achieve the
necessary and sufficient condition for verifying the active
predictability, a new verifier is constructed. And a
verification algorithm of polynomial computational
complexity is proposed.

Notice that active diagnosis and its application were
investigated in (Sampath, 1998), (Thorsley, 2007) and (Chen,
2014). Inspired by these works, this paper presents an
integrated approach to control and predict. But the idea of
this paper is different from those references. The main
differences are as follows. (Sampath, 1998), (Thorsley, 2007)
and (Chen, 2014) presented some approaches of using control
actions to alter the diagnosability properties of a given
system, but what they did was to restrict the behaviour of a
nondiagnosable system by appropriate control, to obtain a
diagnosable system. This paper is not concerned with using
control actions to alter the predictability property of a given
system, but rather using control actions to prevent impending
failure events from occurring.

Our main contributions are (1) formal definition of the notion
of active predictability; (2) derivation of the necessary and
sufficient condition for verifying active predictability; (3) an
algorithm for checking whether a system is actively
predictable.

This paper is organized as follows. In section 2, the necessary
background on predictability of DESs is presented. In section
3, an example is provided to illustrate the motivation of the
research. In section 4, the notion of active predictability is
defined. In section 5, the necessary and sufficient condition
of active predictability is given and an algorithm is designed
to verify active predictability. In section 6, active
predictability with multiple failure types is considered.
Finally, in section 7, conclusions are drawn.

2. PRELIMINARIES

A discrete-event system is modeled as a deterministic
automaton

0(, , , ,)mG X X x 

where X is the finite state space,  is the set of events,
: X X   is the transition function, mX is the set of

marked states and 0x X is the initial state of the system.
* denotes the set of all finite strings over  , including the

empty string  . The transition function  can be extended to

the domain *X  : for any x X , (x,)={x}  and

' (,)
(x,s)= (',)

x x s
x


   

 for *s and   .

Given an event   and a string *s , if  appears at
least once in s , then denote it as s  or with slight abuse
of notation, denote it as ={ }s  . And  denotes empty

sets.

The language generated by G is defined as

*
0{ : (,) }L s x s X  

and it is often denoted by ()L G . ()mL G is a set of strings

that can reach the marked state and () ()mL G L G . Given a

trace s originating from 0x , denote /L s as the post

language of L after s , i.e.,

*/ ={ : }L s t st L 

and denote s as the prefix language of s . Given a string s ,

the length of s (number of events including repetitions) is

denoted by s .

All events of G are partitioned as o uo    , where o

denotes the set of observable events and uo denotes the set

of unobservable events. Let f uo   denote the set of

failure events, define

*
~ = ()f fL L  

as the set of all traces in L containing no failure events.

Let x be a state of G (i.e. x X). The feasible event set
of x is denoted by

() { : (,) }x x X      .

The accessible part (Genc, 2009) of G with respect to x is
denoted by (,)Ac G x and

(,) (, , ,),ac acAc G x X x 

Where *={ ' : s.t. (,) '}acX x X s x s x    ，and ac 

|
ac acX X  .

Define

~ 0() { : ((,)) }       f f fs L x s .

as the set of all traces in ~fL whose next feasible events

contain a failure event, where  is the empty set.

Let * *: oP    denote the usual projection operator with

filters the unobservable events from a trace, which is defined
as :P   , and for *s and ，

 if
()

otherwise.

()

()
oP s

P s
P s

 



 


The inverse projection is 1() { : () }LP y s L P s y    .

For a given DES, supervisory control theory deals with the
design of controller that ensures that the controlled system
meets certain qualitative specifications. These specifications
define the legal languages of the system. A supervisor of a
DES is an external agent or controller that, based on its
partial view of the system, dynamically enables or disables

CONTROL ENGINEERING AND APPLIED INFORMATICS 15

the controllable events of the system in order to ensure that
the resulting closed-loop language lies within the legal
language. The control structure of G is defined by a partition

c uc   

where c is the set of controllable events whose occurrences

can be disabled, and uc is the set of uncontrollable events

that cannot be disabled. This paper makes the following
assumption:

c o  

i.e., no unobservable event can be prevented from occurring
by control.

A supervisor S is a map

() 2S L G ：

together with a language ()S mL L G such that, for each

string s generated by G , the control action of S over G
(denoted by /S G) enables events of ()S s   , with

()uc S s  , and marks strings Ss L .

Definition 1 (Predictability (Genc, 2009)) Given L a
prefix-closed, live language over  , occurrences of failure
event ()f f f   are predictable in L w.r.t. P if

()n  s.t.

(())()[() 1],fs t s t     

where  is the set of natural numbers and the condition
()t is defined as follows:

1
~(v / ((())))

1
(|| v||

 if

()

 otherwise

n

.

(v))

0

f

f
t

L P P t L



 

 













Intuitively, occurrences of failure events in the language L
are predictable if for any trace s whose next feasible events
contain a failure event, it is possible to infer about the
occurrence of the failure event based on the observable
record of the trace. Predictability of L can be verified
through constructing corresponding verifier (Genc, 2009).

3. PROBLEM MOTIVATION

Example 1: Consider the plant G described in Fig.1, in
which   ， ， and  are observable events, uo is an

unobservable event, f f  is a failure event and state 1 is

the initial state.

Fig. 1. Automaton G .

As Fig.1 shows, () { , }.f uo    Let s  or

uos  and t s . Take ,t  1
~(()) ={ }fP P t L  

and 1
~/ (()) ={ ,n

f fL P P t L    }.n
uo f   For /v L 

1
~(()) fP P t L  ，|| || nv   ().f v  This means that for

any string fs , there is a t s which satisfies the

condition () 1t  in Definition 1. Therefore, all the

occurrences of f can be predicted, i.e. L is predictable

w.r.t. P and f .

Now consider the case: if the system starts from the initial
state 1 and event  has occurred, then event  or  may

occur. As long as event  occurs, then failure event f is

bound to occur in the future. In order to avoid the occurrence
of the failure event f , a supervisor can step in and take

some preventive actions, such as preventing event  from

occurring, of course, if event  is controllable. If event  is

prevented from occurring, the next event that will occur is  .
After event  , no failure events will occur. By this way,
failure event f that may cause serious security hazards can

not only be predicted, but also be avoided. Such
predictability can be called active predictability.

4. FORMALIZATION OF ACTIVE PREDICTABILITY

Definition 2 (Active Predictability) A prefix-closed
language L is said to be actively predictable w.r.t. P , f

and c if the following conditions hold:

C1. Predictability condition:

()(())() ,fn s t s        

where  is:

 1
!~(/ ((()))) (|| ||) ().f fv L P P t L v n v     

C2. Active predictability condition:

for ()fs   , if exists t s such that  holds, and

ct   .

Roughly speaking, the occurrences of failure events in the
language L are actively predictable if for any trace whose
next feasible events contain a failure event, it is possible to
infer about the occurrence of the failure event based on the
observable part of the trace and the prefix of the trace
contains some controllable events that can be posed the plant
to prevent the failure from occurring.

By comparing definition 1 and definition 2, it is known that
active predictability is stronger than the predictability (Genc,
2009).

Let event  of G described in Fig.1 be controllable (i.e.

c  , then for s  or uos  (()fs ), there

exists = ()t t s  such that the predictability condition C1

16 CONTROL ENGINEERING AND APPLIED INFORMATICS

holds and { }ct     (i.e. activity predictability

condition C2 holds). According to the definition 2, it is
known that L generated by G is actively predictable w.r.t.
P , f and c . So supervisory controller of the plant can

prevent the predictable failure event f from occurring by

disabling event  .

5. VERIFICATION OF ACTIVE PREDICTABILITY OF
DESS

In this section, the necessary and sufficiency condition of
active predictability is derived and an algorithm based on a
verifier is developed to verify the property of DESs.

5.1 The Necessary and Sufficiency Conditions

Definition 3 (Marked states) Let 0(, , , ,)mG X X x  and

{ }f f  be the failure event set of G . State x X is

referred to as marked state if ()f x  ; And the set of

marked states is mX .

Definition 4 (Simplified model) Let NG be the non-failure

automaton of G . Remove the " N " labels from the states of

NG and mark all marked states of G in NG by double-circle.

Then NG is referred to as the simplified model of G ,

denoted by 0=(X , , ,x)S SG  .

Definition 5 (1-class and 2-class marked states) Let SG be

the simplified model of G , state x be a marked state of SG

(i.e. Xmx) and the accessible part of state x be

(,) (, , ,)ac acAc G x X x  . (a) State x is referred to as 2-

class marked state if { }acX x and X { }ac mX x ;

Otherwise, mx X is referred to as 1-class marked state. (b)

The set of 2-class marked states is denoted by 2
mX ; the set of

1-class marked states is denoted by 1
mX . And 1 2 =m m mX X X .

Theorem 1: Let L be the language of 0(, , , ,)mG X X x 

and SG be the simplified model of G . L is not actively

predictable w.r.t. P , f and c if 2
mX  .

Proof: Since 2
mX  , there is a state x of SG and 2

mx X .

This means that the reachable states from state x contain only
a few unmarked states except for itself. Therefore, suppose
that there is a string s L such that 0(,)x s x  , then there

exist 1st L and 1f t  , 2st L and 2|| || nt  (n) but

2f t  . The fact indicates that the occurrence of f cannot

be predicted according to the observation of s . According to
Definition 1, it is known that L is not predictable w.r.t.
P and f . So by Definition 2, the conclusion that L is also

not actively predictable can be drawn.

Let there be no 2-class marked states in SG . The Verifier of

SG is a finite automaton

0=(X , , ,x)G V V VV  ，

where XV is the state space, V is the state transition

function, and 0xV， is the initial state. Verifier state x XV V is

of the form 1 1 2 2x =[;]V x l x l , where x Xi  , { , , ,il N F CN

}CF and {1, 2}.i The state transition function (,)V Vx  is

defined as follows.

For   ,

1) if c  and o  ,

a. if 1
0(,) mx X   , then

0 0 0 0([,],) [(,) , (,)];V x N x N x N x N     

b. if 1
0(,) mx X   , then

0 0 0 0([,],) [(,) , (,)];V x N x N x F x F     

2) if c  and uo  ,

a. if 1
0(,) mx X   , then

0 0

0 0 0 0

0 0

[(,) ,]

[,], [, (,)]

[

(

(,) , (, ;

)

)]
V

x N x N

x N x N x N x N

x N x N

 
  

   



 



b. if 1
0(,) mx X   , then

0 0

0 0 0 0

0 0

[(,) ,]

[,], [, (,)]

[

(

(,) , (, ;

)

)]
V

x F x N

x N x N x N x F

x F x F

 
  

   



 



3) if c  ,

a. if 1
0(,) mx X   , then

0 0 0 0([,],) [(,) , (,)];V x N x N x CN x CN     

b. if 1
0(,) mx X   , then

0 0 0 0([,],) [(,) , (,)].V x N x N x CF x CF     

For ()s t L G  and 0 0 1 1 2 2([,],) [,],V x N x N t x l x l  let
'
1 1 " " " "l l C F   and '

2 2 " " " "l l C F   (Here, with slight

abuse of notation, label merge operation is denoted by
symbols of sets).

1) if c  and o  ,

a. if 1
0(,) mx s X  , then

1 1 2 2 1 1 2 2([,],) [(,) , (,)];V x l x l x l x l     

b. if 1
0(,) mx X   , then

' '
1 1 2 2 1 1 2 2([,],) [(,) , (,)];V x l x l x l x l     

CONTROL ENGINEERING AND APPLIED INFORMATICS 17

2) if c  and uo  ,

a. if 1
0(,) mx s X  , then

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2

[(,) ,]

[,], [, (,)]

[(,) , (,)

()

];
V

x l x l

x l x l x l x l

x l x l

 
  

   


 



b. if 1
0(,) mx s X  , then

'
1 1 2 2

'
1 1 2 2 1 1 2 2

' '
1 1 2 2

[(,) ,]

[,], [, (,)]

[(,) , (

()

,)];
V

x l x l

x l x l x l x l

x l x l

 
  

   



 



3) if c  ,

a. if 1
0(,) mx s X  , then

1 1 2 2 1 2([,],) [(,) , (,)];V x l x l x CN x CN     

b. if 1
0(,) mx s X  , then

1 1 2 2 1 2([,],) [(,) , (,)].V x l x l x CF x CF     

A verifier state 1 1 2 2[,] XV Vx x l x l  is: CF-certain if

" ";il CF normal if " "il N or " "il CN ; and CF-

uncertain if 1" "N l and 2" "F l (or 1" "F l and 2" "N l)

or " "il F , where {1,2}.i

Theorem 2: Let SG be the simplified model of G , there be

no 2-class marked states in SG , and GV be the verifier of SG .

L generated by G is not actively predictable w.r.t. P , f

and c iff there exists at least a CF-uncertain state in GV .

Proof: Necessity: Assume that L is not actively predictable
w.r.t. P , f and c . By contradiction it will be shown that

there exists at least a CF-uncertain state in GV . If there is no

any CF-uncertain state in GV , then the states in GV are either

normal or CF-certain, which means that as long as there are
failure events in the system, then failure events must be
predictable and the system must have executed controllable
events before occurrences of the failure events. According to
definition 2, L is actively predictable w.r.t. P , f and c .

Clearly, this is a contradiction to the intended hypothesis.
Consequently, if L is not actively predictable w.r.t. P , f

and c , there exists at least a CF-uncertain state in GV .

Sufficiency: Assume that there is a CF-uncertain state
=[,]i i j jx x l x l in GV . Case 1: suppose " " iN l and " " jF l ,

then there exist strings 1 2,s s L and 1 2() ()P s P s such that
1

0 1(,) ()i i mx s x x X   and 1
0 2(,) ().j j mx s x x X   This

means there is a failure event and its occurrence cannot be
predicted according to the observation of 1s or 2s . So by

Definition 1, it is known that L is not predictable w.r.t. P ,

f and c . Thus, L is not actively predictable w.r.t. P , f

and c . Case 2: suppose " "il F and " "jl F , then there

exists a string s L such that 1
0(,)= ()i i mx s x x X  ，

1
0(,) ()j j mx s x x X   ， and .cs   According to

definition 2, L is not actively predictable w.r.t. P , f and

c .

5.2 A verification Algorithm

Algorithm 1 (Checking the active predictability of DESs):

Step 1: Construct non-failure automaton NG .

=N NG G A models the normal behaviour of G , where NA

is composed of a single state N with a self-loop labelled
with all events in \ f  .

Step 2: Construct simplified model SG .

According to NG , construct simplified model of SG .

Step 3: Check whether there are a 2-class marked states in

SG .

If there are, it is known that the occurrences of failure events
in language L cannot be actively predictable by Theorem 1,
i.e., L is not actively predictable w.r.t. P , f and c ;

Otherwise, perform the next step.

Step 4: Based on SG , construct verifier automaton GV .

Step 5: Check if there are CF-uncertain states in the GV .

If the answer is yes, then L is not actively predictable w.r.t.
P , f and c according to Theorem 2; Otherwise, L is

actively predictable.

Now, discuss the computational complexity of the algorithm.

Let X be the number of states of X ;  , f be the number

of events of  or f .

For the first step, since the number of states of G is X , and

the number of feasible transitions from every state is - f  ,

the construction of NG takes (())fO X    time. The

time complexity of step 2 and step 3 is (())N fO X    .

The number of states of GV is in the worst case equal to
2

2 XN . Moreover, the maximum number of transitions of

states in the GV is equal to (-)f    . The time

complexity of step 4 and step 5 is
2

2 ((-))N fX      .

So the overall computational complexity of the approach is
polynomial.

18 CONTROL ENGINEERING AND APPLIED INFORMATICS

5.3 Illustrative Examples

Example 2: Consider the plant G shown in Fig.2, where
{ , , , }o      , f f  is a failure event and state 1 is the

initial state. Suppose  is a controllable event (i.e. c ).

In the following, the active predictability of G will be
verified by Algorithm 1.

Fig. 2. Plant G of Example 2.

The first step of the algorithm is to obtain single state
automaton NA and to compute the automaton NG , which are

shown in Fig.3 and Fig.4, respectively.

Fig. 3. Automaton NA .

Fig. 4. NG of Example .

Then, SG is constructed as that in Fig.5. As Fig.5 shows,

state 2 is a 2-class marked state. So according to Theorem 1,
it is known that L of G is not actively predictable w.r.t. P ,

f and c .

Fig. 5. SG of Example 2.

Example 3: Consider again the plant G shown in Fig.1 and
let  be a controllable event (i.e. c ). In the following,

the result that L is actively predictable w.t.r. P , f and c

will be verified by Algorithm 1.

Fig. 6. NG of Example 3.

Firstly, NG and SG are constructed as that in Fig.6 and Fig.7,

respectively.

Fig. 7. SG of Example 3.

In the SG , state 5 and state 8 are both 1-class marked states

and there are no 2-class marked states.

Construct verifier GV by the SG , depicted in Fig.8.

Fig. 8. Verifier GV of Example 3.

Obviously, there is no CF-uncertain state in the verifier GV .

By Theorem 2, it is known that the language L generated by
G is actively predictable w.r.t. P , f and c .

Example 4: Consider the system G shown in Fig.9, where
, , ,    are observable events, uo is an unobservable event,

f is a failure event and  is a controllable event (i.e.

c ). Next to verify the active predictability of the system.

Fig. 9. G of Example 4.

NG and SG are firstly constructed as that in Fig.10 and

Fig.11, respectively. As Fig.11 shows, state 3 and 6 are 1-
class marked states, also there is no 2-class marked state in
the SG .

Fig. 10. NG of Example 4.

CONTROL ENGINEERING AND APPLIED INFORMATICS 19

Fig. 11. SG of Example 4.

Verifier GV is constructed as that in Fig.12. As Fig.12 shows,

there is a CF-uncertain state "6F6F" in GV . So according to

Theorem 2, it is known that the language L generated by
G is not actively predictable w.r.t. P , f and c .

Fig. 12. GV of Example 4.

Example 5: Consider the automatic cargo transport system
shown in Fig.13, which describes the situation that a robot
carries a batch of goods from warehouse A to warehouse B.
In the figure, the red dashed line indicates the given route
direction and black squares and dots represent obstacles and
states, respectively. At first, the robot goes straight following
the direction of the given route, but if obstacles or borders are
predicted during the process, the robot will adjust the route
appropriately.

Fig. 13. Automatic cargo transport system.

The model of the system is shown in Fig.14, where events are
three execution instructions:

 : walk following the direction of the given route;

 : turn right and goes straight;

 : turn left and goes straight;

Here, assume that the direction of the given route can be
adjusted appropriately, i.e.  is a controllable event.

If the robot executes wrong instructions, it is possible to
encounter obstacles or borders while walking., i.e., the failure
event f occurred.

Initially, the robot is in the warehouse A (i.e., state 0. When
the robot receives instruction , then it will carry the goods
and go straight along the direction of the given route until
arrives state 1. From state 1, continue to move forward to
state 2 with instruction  . In state 2, if the robot executes
instruction  , it will reach state 14. In state 14, it will
encounter obstacles as it moves on, that is, it will reach a
failure state (i.e. state 20). In state 2, if the robot can predict
that it will encounter obstacles when it continues to go
straight, it will turn right and go straight to state 3 with
instruction  . In state 3, if the robot continues to execute

instruction  , it will reach state 15. Similarly, if the robot
go straight from state 15, it may run into obstacles, that is, it
will reach the failure state (i.e. state 20). However, if it can
predict that there are obstacles ahead, the robot will turn right
and go straight to state 4 according to instruction  . Then,

go from state 4 to state 5 with instruction  . In state 5, if the
robot continues to execute instruction  , it will reach state
16. In state 16, it will encounter obstacles and cannot go
straight, that is, it will reach the failure state (i.e. state 20).
But in state 5, if it predict that there are obstacles ahead, then
the robot will turn left and go straight to state 6 according to
instruction  . After that, the system execution process is

similar to the previous one.

In the following, the active predictability of the system will
be verified by Algorithm 1.

Firstly, compute automaton =N NG G A , which is described

by Fig.15.

Next is to build a simplified model SG of G , shown in

Fig.16.

There are no 2-class marked states in SG , So the verifier

automaton GV is computed by SG , shown in Fig.17.

As Fig.17 shows, there is no any CF-uncertain state in the
verifier GV , so the L generated by G is actively predictable

w.r.t. P , f and c .

Since the L is actively predictable, the supervisory controller
can control system behaviour when the system is actually
running (as shown in Table 1). For example, if the system
executes the  event, continuing to execute the  event
will inevitably cause failure event f to occur. To avoid the

occurrence of the failure event, the supervisory controller can
disable the event  . Then the next event that will be
executed is the event  . In this way, the occurrence of the

failure event is avoided.

20 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 17. GV of Example 5.

Table 1. The behavior of supervisory controller.

6. ACTIVE PREDICTABILITY OF DESs WITH
MULTIPLE FAULT TYPES

Let
1 2

= ...
rf f f f      be a partition of the set of failure

events, where r denotes the number of fault types, and let

f denote this partition. The active predictability of L with

respect to f is equivalent to the active predictability of L

with respect to each fault type separately, as ensured by the
following result.

Theorem 3: The language L of system G is actively
predictable w.r.t. P , f and c , if and only if L is

actively predictable w.r.t. P ,
if

 and c for each

1, 2,...,i r .

Poof: it is easily obtained by Definition 2.

7. CONCLUSIONS

This paper concerned the problem of active failure prediction.
Starting from the standard definition of predictability (Genc,
2009) of DESs, which dealt with the problem of predicting
the occurrences of failure events using the available system
observations, the new notion of active predictability was
introduced and the verification of active predictability in the
framework DESs was investigated. A verifier was
constructed, and based on it the necessary and sufficient
condition of active predictability was presented. Moreover, a
polynomial-complexity algorithm for verifying active
predictability was developed. In future work, the active
predictability of fuzzy DESs or stochastic DESs will be
considered.

Fig. 14. The model G of the automatic cargo transport system.

Fig. 15. NG of Example 5.

Fig. 16. SG of Example 5.

CONTROL ENGINEERING AND APPLIED INFORMATICS 21

ACKNOWLEDGEMENTS

This work was supported by “the National Natural Science
Foundation of China” (grand number 61673122) and “the
Natural Science Foundation of Guangdong Province ”
(grand number 2019A1515010548) of China.

REFERENCES

Briones, L. B. and Madalinski, A. (2012). Bounded
predictability for faulty discrete event systems. in 2011
30th International Conference of the Chilean Computer
Science Society (SCCC 2011), 142–146.

Benmessahel, B., Touahria, M. and Nouioua, F. (2017).
Predictability of fuzzy discrete event systems. Discrete
Event Dynamic Systems: Theory and Applications, vol.
27(4), 641–673.

Chang, M., Dong, W., Ji, Y. and Tong, L. (2013). On fault
predictability in stochastic discrete event systems. Asian
Journal of Control, 15(5), 1458–1467.

Chen, J. and Kumar, R. (2014). Failure prognosability of
stochastic discrete event systems. in Proc. 2014 Amer.
Control Conf, June, 2041–2046.

Chen, Z., Lin, F., Wang, C., Wang, L. and Xu, M. (2014).
Active diagnosability of discrete event systems and its
application to battery fault diagnosis. IEEE Trans. on
Control System Technology, 22(5), 1892–1898.

Deng, W. and Qiu, D. (2017). State-based decentralized
diagnosis of bi-fuzzy discrete event systems. IEEE
Transactions on Fuzzy Systems, 25(4), 854–867.

Genc, S. and Lafortune, S. (2009). Predictability of event
occurrences in partially-observed discrete-event systems.
Automatica, 45, 301–311.

Grastien, A. (2015). Interval predictability in discrete event
systems. arXiv:1508.00683v1[cs.SY], Aug., 1–14.

Jeron, T., Marchand, H., Genc, S. and Lafortune, S. (2008).
Predictability of sequence patterns in discrete event
systems. in Proc. 17th IFAC world conference, July 6-
11, 537–543.

Keroglou, C. and Hadjicostis, C. N. (2018). Distributed fault
diagnosis in discrete event systems via set intersection
refinements. IEEE Transactions on Automatic Control,
63(10), 3601–3607.

Liu, F. (2014). Polynomial-time verification of diagnosability
of fuzzy discrete event systems. Science China
Information Sciences, 57(6), 1–10.

Liu, F. (2019). Predictability of failure event occurrences in
decentralized discrete-event systems and polynomial-
time verification. IEEE Trans. on Automation science
and engineering, 16(1), 498–504.

Moreira, M. V., Jesus, T. C. and Basilio, J. C. (2011).
Polynomial time verification of decentralized
diagnosability of discrete event systems. IEEE Trans. on
Automatic Control, 56(7), 1679–1684.

Masopust, T. and Yin, X. (2019). Complexity of detectability,
opacity and A-diagnosability for modular discrete event
systems. Automatica, 101, 290–295.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K.
and Teneketzis, D. (1995). Diagnosability of discrete-
event systems. IEEE Trans. on Automatic Control, 40(9),
1555–1575.

Sampath, M., Lafortune, S., and Teneketzis, D. (1998).
Active diagnosis of discrete-event systems. IEEE Trans.
on Automatic Control, 43(7), 908–929.

Thorsley, D. and Teneketzis, D. (2007). Active acquisition of
information for diagnosis and supervisory control of
discrete-event systems. Journal of Discrete Event
Dynamic Systems, 17, 531–583.

Takai, S. (2012). Robust failure prognosis of partially
observed discrete event systems. in Proc. 2012 Amer.
Control Conf., Montreal, Canada, June, 27-29.

Takai, S. and Kumar, R. (2011). Inference-based
decentralized prognosis in discrete event systems. IEEE
Trans. on Automatic Control, 56(1), 165-171.

Viana, G. S. and Basilio, J. C. (2019). Codiagnosability of
discrete event systems revisited: A new necessary and
sufficient condition and its applications. Automatica,
101, 354–364.

Yao, L., Feng, L. (2016). Fault diagnosis and fault tolerant
control for non-Gaussian time-delayed singular
stochastic distribution systems. International Journal of
Control, Automation and Systems, 14(2),435–442.

Yin, X. and Li, Z. (2016). Reliable decentralized fault
prognosis of discrete-event systems. IEEE Trans. on
Systems, Man, and Cybernetics: Systems, 46(11), 1598–
1603.

Yin, X. and Li, Z. (2019). Decentralized fault prognosis of
discrete-event systems using state-estimate-based
protocols. IEEE Transactions on Cybernetics, 49(4),
1302-1313.

Zhao, R., Liu, F. and Liu, Z. (2017). Relative diagnosability
of discrete-event systems and its opacity-based test
algorithm. International Journal of Control, Automation
and Systems, 15(4), 1693–1700.

Zhao, R., Liu, F. and Tan, J. (2019). Relative predictability of
failure event occurrences and its opacity-based test
algorithm. International Journal of Control, 92(7),
1600–1608.

