
CEAI, Vol. 9, No. 2, pp. 23-30, 2007 Printed in Romania

EARTH 3D MODELING FOR WEATHER FORECAST
PRESENTATION

Imed Jabri and Tahar Battikh

Ass. Professors Electrical engineering Dept. ESSTT
Tunis, TUNISIA, Email : imedjabri@yahoo.com and btahar@yahoo.com

Abstract: In this paper, we put forward the development of a solution allowing modeling and
exploitation of real time synthesized images of the globe. This is used for presenting the weather
forecast bulletin of Tunisian television Channel 7. This presentation requires a smooth panning to
any part of the world, while having the necessary level of detail. To store and handle geographical
data, most of the used methods implement a tree structure of data where various threads come out
of each node (four in the case of quadtree). Recursively, one goes down the tree until a
satisfactory level of detail is reached. Our contribution consists in the adaptation of this algorithm
to a sphere and the exploitation of various filtering, storage and optimization techniques in
connection with the available material

Keywords: visualization, multi-resolution geometrical modeling, rendering based on view
parameters, extra main memory rendering, level of detail, geomorphing, texture mapping, fuzzy
controller.

1. INTRODUCTION

In order to control the events which depend on
the weather conditions (agriculture, aviation,
tourism...), the user becomes increasingly
demanding concerning the quality of the
synthesis of geographical information and its
dynamics. The technological development
(satellite transmission, graphics boards,
processor, memory size...) offers today a
considerable mass of data in real time related to
space.

The globe representation to which we associate
useful information (weather, demography,
economy...) must be as faithful and practical as

possible exploiting middle ranged PCs and
graphic cards.

We recommend illustrating the terrestrial sphere
in navigation in real time for the presentation of
a weather forecast bulletin (ground, sea level,
sky, clouds, rain, snow, fog, weather symbols)
with a level of detail, image and elevation, going
up to 250 m/pixel for Tunisia and 1km/pixel for
the rest of the world. Because of the great mass
of raw data related to the 3D representation of
the parameters of the globe (texture and
elevation), their storage requires a great capacity
of 4.618 Gb (for a resolution of 1km/pixel)
distributed as follows:

mailto:btahar@yahoo.com
mailto:btahar@yahoo.com

24 CONTROL ENGINEERING AND APPLIED INFORMATICS

Texture: 43800 x 21600 x 3 (RGB) = 2.771 Go
Elevation: 43800x21600 x 2 (16bits) = 1.847Go

For the elevation presentation with a variable
level of detail "LOD" and with a realistic
appearance, it is necessary to take into account
the real time constraints.

As PCs and graphic processors present limits in
terms of size of the data and vertex and that the
access disk should not significantly block the
rendering speed, it is necessary to carry out an
optimization of the useful information display,
and judicious storage of the data.

2. PROCEDURE

The followed procedure consists in adopting an
algorithm of a spherical field rendering then
ensuring the filtering of the branches of the tree
structure.

2.1 Algorithm of spherical field rendering

The parts of the field which are not close to the
camera do not necessitate the same detail level
as the near ones. They can be treated using a
lower resolution in order to significantly reduce
the number of vertex and thus increase the
rendering speed. We have exploited this
technique “LOD” in order to reduce the vertex
number to submit to the graphic card and which
consists in dynamically subdividing the field
into hierarchical detail levels]2[P .

2.2 Adaptation of the Geomipmapping

algorithm on a sphere

In order to represent the earth using a variable
detail level, we adopted the geomipmapping
algorithm (traditionally applied on a flat surface)
on a sphere. Hence, we exploit the spherical data
(ρ, Ө, φ) instead of the Euclidian ones (x, y, z).
The subdivision recursion makes us use a square
data matrix (2nx2n). The spherical data (φ : -
180…+180 et θ : -90..+90) are shown in a
rectangular matrix 2 x (2nx2n), hence the idea of
exploiting each half of the sphere separately.] 18[

Fig. 1. Correspondence between a square
surface and a half of sphere

The iterations enable us to model the globe
having an increasing number of sides (2x41,
2x42, … 2x4n)

Fig. 2. Iteration 1: Subdivision of the sphere into 8
sides

Fig. 3. Iteration 2: Subdivision of the sphere into 32

sides

Fig. 4. Iteration 3: Subdivision of the sphere into 128

sides

2.3 Filtering the invisible branches of the tree

structure

2.3.1 Filtering per frustum culling

When an important part of the globe lies outside
camera range, it is filtered through the use of the
frustum culling technique which enables us to

CONTROL ENGINEERING AND APPLIED INFORMATICS 25

rapidly eliminate patches that will not be
displayed in the final rendering of the visible
part of the globe. Thus, it avoids calculating
useless data and sending them to the graphic
card, and thus saves CPU and GPU resources as
well as the memory bandwidth.

Frustum culling necessitates placing the objects
of the scene in a hierarchy. If it is decided that
an element of high hierarchy can be ignored,
testing and rendering all the subordinate
elements are avoided.

The quadtree approach consists in dividing the
scene into four squares (4 childs) and then
proceeds by considering each one of them as a
parent. If one does not belong to the frustum, it’s
ignored; otherwise its four squares are
subdivided again, and so on.

Fig. 5. Quadtree: spatial hierarchy

2.3.2 Filtering per culling sides

In a sphere within the camera range, sides whose
normal vectors are in the same direction as those
of the camera are invisible. As a consequence,
they are ignored just like the ones that are
outside the camera range.

This approach is based on a simple observation:
if we know the normal of a side n, and the view
direction v of the observer, it is possible to
determine if this side would be seen or not. In
fact, any side whose normal points to an
opposite direction would be obscured.
Mathematically, if the normal of a side makes an
angle of less than 90° in the view direction, the
side will then be dissimulated. In order to detect
such a configuration, one has to realize the dot
product between n and v.

In fact, n • v = ||n|| • ||v|| • cos(θ), θ measuring
the angle between n and v. the sign of cos(θ)
determines the sign of the dot product. If this
angle is greater than 90°, then cos(θ) is negative,
otherwise, it is positive. A negative dot product
means that we can see the side, whereas a
positive one indicates that it is obscured. P]11[

Fig. 6. Calculating the normal of a side

2.4 Subdivision and choice of a higher detail

level

At a certain detail level, the use of the quadtree
techniques require a too long computing time.
As a consequence, we have to stop the
subdivision at the 8th iteration that lets out
512x256 patches. The width of the initial texture
is 43800 pixels, the closest power of 2 value is
65536, and the highest level of detail of each
patch is 128x128 pixels (65536:512=128). If the
obtained detail level is unsatisfactory, we
subdivide this portion into a maximum of 128
equal parts, thus avoiding the interpolation of
intermediary values and obtaining a visible
satisfactory result. P [11]

At the beginning, we have to determine the
desired detail constant (nd), once the visible
zone is determined, the tessellation of each
patch must not be the same. The level of detail
should thus be proportional to camera distance.
The patch is then divided by 2n (n=0..7)

The following diagram illustrates the nd value
with respect to the eye position. (0: maximum
detail level)

26 CONTROL ENGINEERING AND APPLIED INFORMATICS

Fig. 7. Determination of the desired detail constant
(nd)

Close to the poles, the number of patches
increases significantly, hence the necessity to
multiply the length of the arc by (Cos θ) (-90 <
θ < +90) to rapidly help converge the algorithm
and present patches with a reasonable level of
detail.

2.5 The algorithm

Render_Patch (θ, φ, delta(θ, φ), Level)
//frustum culling
If all the patch corners are outside the camera
frustum then
Destroy childrens and exit
End If

//face culling
If level >3 and visibility_face_test=false then
Destroy childrens and exit
End If

//subdivision
If level<stoplevel then
Render_Patch (θ , φ , delta(θ, φ)/2, level+1)
Render_Patch (θ+plage/2 , φ , delta(θ, φ)/2,
level +1)
Render_Patch (θ+plage/2 , φ+plage/2 ,
delta(θ, φ)/2, level+1)
Render_Patch (θ , φ+plage/2 ,
delta(θ, φ)/2, level+1)
End If

//choise of detail level
Detail=0
Perim=(EarthRadius * Cos(θ + delta(θ, φ)
/2)*2*pi/(2 level))/ cameraDistance
While (Perim/(2 Detail) > nd) and (Detail < 7)
DO
Detail := Detail+ 1
While End

// childs Render
• Search of texture and elevation of the
child in the disk
• Mesh creation (Grid of 2level x 2 level)
• Submission to graphic board

3. PROBLEMS AND SOLUTIONS

3.1 Optimization and data saving

3.1.1 Optimization the data size

In order to optimize the amount of data stocked
on disk, we have adopted various techniques :

For the texture: 128x128 pixel textures are
compressed into DDS format (which is
decompressed in real time by the graphic card),
then DDS files are recompressed by Huffman
algorithm compression, from the memory.

This technique allows us to obtain a
compression ratio of about 1 : 6.

For the elevation: In addition to using Huffman
algorithm compression, we exploit the fact that
nearly ¾ of the globe is covered by water
(elevation 0); as a consequence, we only note
the dry land (elevation>0)

The following table contains texture size and
elevation for the different detail levels.

Fig. 8. Texture size and elevation for the different
detail levels

The different compression techniques allowed
reducing the 16 GB space into 1 GB on the disk.

3.1.2 Data saving technique

In order to optimize disk access time, at a given
level, we do not save the data blocks
sequentially. In fact, we save according to the
camera frustum and their close neighbors.

CONTROL ENGINEERING AND APPLIED INFORMATICS 27

These data have to remain in the cache memory.
That is why we did not choose a sequential
storage, of all the data, but only of the nxn
blocks. After various attempts, we have adopted
the values: n=8 for level 8, 4 for 7, 2 for 6 and
n=1 for the remaining levels.

1 2 3 4 5 6 7 8 65 66 67 68 69 70 71 72 ,,,
9 10 11 12 13 14 15 16 73 74 75 76 77 78 79 80 ,,,
17 18 19 20 21 22 23 24 81 82 83 84 85 86 87 88 ,,,
25 26 27 28 29 30 31 32 89 90 91 92 93 94 95 96 ,,,
33 34 35 36 37 38 39 40 97 98 99 100 101 102 103 104 ,,,
41 42 43 44 45 46 47 48 105 106 107 108 109 110 111 112 ,,,
49 50 51 52 53 54 55 56 113 114 115 116 117 118 119 120 ,,,
57 58 59 60 61 62 63 64 121 122 123 124 125 126 127 128 ,,,

,,, ,,,

,,,
,,,
,,,
,,,
,,,
,,,
,,,
,,,

Fig. 9. Matrix of data saving technique

The algorithm used for data saving technique is
as follow:

ai,j = j + (i-1).2k + (p-1).22k + (q-1).(n+2k-1+2k(n-
1)).2k

Where

(q-1).2k + 1 ≤ i ≤ q.2k and (p-1).2k+1≤ j ≤p.2k

1 ≤ p , q ≤ n

3.2 Subdivision number regulation

In order to maintain the image display rate at a
constant value of approximately 25 images per
second, we work on the parameters of detail
level Nd.

The capacity of the exploited tools enables
reaching a number of vertex (Nvtx) equaling
80000 ± ε%. The regulation consists in
modifying the value of Nd so that we converge
as fast as possible to the desired Nvtx. For this
goal we used a fuzzy controller.

Traditional control systems are based on
mathematical models in which the control
system is described using one or more
differential equations that define the system
response to its inputs. Such systems are often
implemented as "proportional-integral-
derivative (PID)" controllers. They are the
products of decades of development and
theoretical analysis, and are highly effective.

In our case, the mathematical model of the
control process is not obvious and may be too
"expensive" in terms of computer processing
power and memory, we believe that a system
based on empirical rules should be more
effective.

Furthermore, such systems can be easily
upgraded by adding new rules to improve
performance or add new features.

In order to control the value of Nvtx, we choose
a fuzzy regulator of which here the diagram:

Fig.10. Fuzzy regulator diagram

The fuzzy controller developed consists of an
input stage, a processing stage, and an output
stage. The input stage defines the appropriate
membership functions and truth values. The
processing stage invokes rules and generates
results, then combines the results of the rules.
Finally, the output stage converts the combined
result back into a control output value.]5[P

The shape adopted for membership function is
triangular

 µ

Nvtx

Too much low Too high Little Good Much

P1 P2 P3 P4 P5

Fig. 11. Membership function

The control unit adopted has the following
values and shapes.
 µ(∆Nd)

∆Nd
∂1 ∂2 ∂3 ∂4

Decrease Increase Keep the value

Fig. 12. Control output value

28 CONTROL ENGINEERING AND APPLIED INFORMATICS

The fuzzy system developed has the following
rule base:

• If Nvtx < Nvmax – ε then not enough vertices

for the graphic board
• If Nvtx > Nvmax + ε then too many vertices

for the graphic board
• If Nvtx = Nvmax ± α with α ≤ ε then we have

a number of adequate vertex to the
performances of our graphic board

• If Nvtx is definitely lower/higher than Nvmax
then increase/ decrease appreciably Nd

• If Nvtx is slightly lower/higher than Nvmax
then increase/ decrease moderately Nd

The following process chart positions the
regulator in the solution suggested

Determination of the number of
vertex to submit to the

graphic board
(Nvtx)

Nvtx>Nbmax - ε

Yes

Nvtx<Nbmax + ε

Yes

Fuzzy Controller

No

No

Vertex submission
to the graphic board

Fig. 13. Subdivision number regulation

After several trials the values adopted for P1,
P2, P3, P4 and P5 are respectively 70000,
75000, 80000, 85000, 90000 and 0.85, 0.95,
1.05, 1.15 for δ1, δ2, δ3, δ4 respectively.

The fuzzy controller enabled us to maintain an
fps number between 24 and 27 with an average
equal to 25 fps at 96% of cases.

3.3 Smooth transition from a level to another

Transition from a level to another requires an
access to disk that can slow down real time
browsing. For this reason each time a different
detail level is necessary, we cast a patch which
prepares the desired detail level (lower or
higher). After the execution of this task, rocking
of the algorithm becomes possible.

4. OUTCOME AND COMMENTS

In the present work, we have used a Pentium
4.3Ghz PC with 1Gb RAM, 200GB Raid hard
disk and an ATI Radeon 9600 Pro graphic card.
We have used Delphi 6 and Windows XP.

Fig. 14. Application of frustum culling

Fig. 15. Application of face culling

CONTROL ENGINEERING AND APPLIED INFORMATICS 29

Fig. 16. Examples of final output

Each technique used contributed to the final
solution which allowed a quasi-constant flow in
the final output.

Techniques Min
fps

Max
fps

Average
fps

Basic Rendering 0 20 10
Adding disk saving techniques 10 25 12
Adding convergence at poles (cos multiply) 15 40 22
Adding fuzzy controller 24 27 25

Fig. 17. Contribution of the various techniques

5. PERSPECTIVES

5.1 Geomorphing

During the display, the abrupt transition from a
detail level to another is not always quite
smooth on the screen. If for a certain detail
level, the successive elevation values are Z1 and
Z2, the solution would be loading the data of the
following elevation level into memory and
continually moving to an intermediary level
before applying on screen (Z’ to (Z1+ Z2)/2 or
from (Z1+ Z2)/2 to Z’).

Fig. 18. Geomorphing technique

5.2 Exploitation of the vertex shaders and pixel
shaders

We intend to exploit the possibilities of the new
generation graphic cards which are less
demanding in terms of processor resources and
provide a better detail level. In fact, with the
DX8, the vertex channel has become totally
editable. Arbitrary vertex data are arbitrarily
treated through the vertex shader who then
writes the exit values in the registry in plain text.

The editable pixel channel has created for
DirectX a totally new concept of pixel
rasterization comparable to that of vertex
shaders. Pixel shaders are going to revolutionize
a domain in which everything depended on
sophisticated, hindering practices of checking
out the compatibilities with a unique function
channel.

5.3 Pre-calculating the meshes

There is another idea which can contribute to the
optimization of our solution which consists in
pre-calculating the meshes, compressing and
storing them in the space devoted to the
elevations. This would reduce the computing
time which is extremely precious and critical in
real time browsing.

6. CONCLUSION

3D real time modeling of the globe in a
250m/pixel resolution is now possible with
common PCs. This enables the free browsing of
any corner of the globe with a realistic
appearance (texture and embossment). The
improvements that we wish to make accomplish
with faster processors and more performing
graphic cards would allow going further ahead
with the data size that can be treated and the
resolutions that can be reached.

REFERENCES

[1] BLOW, J. Terrain rendering at high levels of

detail. In Game Developers Conference
Proceedings (2000).

[2] CIGNONI, P., GANOVELLI, F.,
GOBBETTI, E., MARTON, F.,
PONCHIO, F., AND SCOPIGNO, R.
Planet-sized batched dynamic adaptive
meshes (p-bdam). In VIS ’03: Proceedings
of the 14th IEEE Visualization 2003

30 CONTROL ENGINEERING AND APPLIED INFORMATICS

(VIS’03) (Washington, DC, USA, 2003),
IEEE Computer Society, p. 20.

[3] COHEN-OR, D., AND LEVANONI, Y.
Temporal continuity of levels of detail in
Delaunay triangulated terrain. In IEEE
Visualization ’96 Conference Proceedings,
(1996) pp. 37–42.

[4] Cuevas, E.V., Zald´ıvar, D., Rojas, R.
”Competitive Neural Networks Applied to
Face Localization” Technical Report B-13-
03, FU-Berlin, Germany, (2003).

[5] DUCHAINEAU, M., WOLINSKY, M.,
SIGETI, D., MILLER, M., ALDRICH, C.,
AND MINEEV-WEINSTEIN, M.
ROAMing terrain: Real-time optimally
adapting meshes. In IEEE Visualization ’97
Conference Proceedings (1997), pp. 81–88.

[6] FAN, M., TANG, M., AND DONG, J.
A review of real-time terrain rendering
techniques. The 8th International
Conference on Computer Supported Coop-
erative Work in Design Proceedings (2003),
pp. 685–691.

[7] FERNANDO, R., AND KILGARD, M.
The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics.
Addison-Wesley Professional, 2003.

[8] GERASIMOV, P., FERNANDO, R., AND
GREEN, S. Shader Model 3.0 Using
Vertex Textures. NVIDIA Corporation,
2701 San Tomas Expressway, Santa
Clara, CA 95050 June 2004. Available at
http://developer.nvidia.com/object/usingvert
ex textures.html.

[9] GREENE, N. Graphics Gems IV. Heckbert,
1994, ch. Detecting Intersection of a
Rectangular Solid and a Convex
Polyhedron, pp. 74–82.

[10] HAKL, H., AND ZIJL, L. V. Diamond
terrain algorithm: Continuous levels of
detail for height fields. South African
Computer Journal (2002).

[11] HILL, D. An efficient, hardware-
accelerated, level-of-detail rendering
technique for large terrains. Master’s thesis,
University of Toronto, 2002.

[12] HOPPE, H. Smooth view-dependent
level-of-detail control and its application to
terrain rendering. IEEE Visualization ’98
Conference Proceedings (1998), pp. 35–42.

[13] LEVENBERG, J. Fast view-dependent
level-of-detail rendering using cached
geometry. In IEEE Visualization ’02
Conference Proceedings (2002)

[14] LINDSTROM, P., KOLLER, D.,
RIBARSKY, W., HODGES, L., FAUST,
N., AND TURNER, G. Real-time,
continuous level of detail rendering of
height fields. In SIGGRAPH ’96:
Proceedings of the 23rd annual
conference on Computer graphics and
interactive techniques (1996), pp. 109–118.

[15] A. KANDEL, AND G. LANGHOLZ, ed.,
Fuzzy hardware, architectures and
applications, Kluwer Academic Publishers,
Boston, London, Dordrecht, 1998.

[16] LOSASSO, F., AND HOPPE, H.
Geometry clipmaps: terrain rendering
using nested regular grids. ACM
Transactions on Graphics (2004), 769–776.

[17] MCNALLY, S. The Tread Marks engine.
In Game Developers Conference
Proceedings (2000).

[18] NVIDIA CORPORATION. Using Vertex
Buffer Objects. 2701 San Tomas
Expressway, Santa Clara, CA 95050,
October 2003.

[19] PHARR, M., Ed. GPU Gems 2. Addison-
Wesley, 2005.

[20] POLACK, T. Focus on 3D Terrain
Programming. Premier Press, 2003.

[21] POMERANZ, A. ROAM using surface
triangle clusters (RUSTiC). Master’s thesis,
University of California at Davis, 1998.

