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Abstract: There are several methods to determine the stability of nonlinear systems that are fully 
described in control engineering resources and nonlinear control systems. The methods presented so far 
are not easy to analyze for the asymptotic stability of complex high-dimensional nonlinear dynamical 
systems. It is natural to extend the analysis of the stability of nonlinear systems and provide a method that 
can easily determine the asymptotic stability of a wide range of nonlinear systems, regardless of the 
dimensions and complexity of the system. In this paper, a new sufficient condition for asymptotic 
Lyapunov stability analysis of continuous nonlinear dynamical systems in the general case based on LLE 
is proposed. This method can easily support the asymptotic stability of a large variety of continuous high-
dimensional nonlinear dynamical systems based on system parameters. Using the method outlined in this 
paper, in order to analyze the stability of nonlinear systems, it is easy to determine the range of system 
parameters where the system has stable conditions. Some numerical examples are provided to show the 
effectiveness of the main results.  
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1. INTRODUCTION 

Surely, the most important characteristic of a control system 
can be its stability. The complexity of the stability analysis of 
dynamic systems changes with the variation of system 
models from linear to nonlinear systems. Therefore, of the 
most significant themes in the analysis of nonlinear systems, 
one is their stability. In recent years, much research has been 
done in the field of stability analysis in nonlinear dynamic 
systems. 

A prominent method for analyzing the stability of nonlinear 
systems is Lyapunov's theory of stability (Massera, 1949; 
Rouche et al., 1997). According to the definition of stability, 
an equilibrium point is globally asymptotically stable (GAS) 
if it is stable in the sense of Lyapunov and the state converges 
to an equilibrium point for any initial state. One of the 
Lyapunov stability methods is the Lyapunov linearization 
method, in which a linear approximation of  nonlinear system 
is considered around the equilibrium point and is examine its 
stability (Massera, 1949). This stability approach is 
considered only around the system equilibrium point and is 
not a suitable method for analyzing the stability of the 
nonlinear system. The major disadvantage of this method is 
the elimination of nonlinear dynamics of the system as well 
as the locality of stability. 

Another method is the Lyapunov's direct method. Lyapunov 
functions play a vital role in control design and dynamic 
stability theory. It is noticeable that no general valid method

is accessible for finding Lyapunov functions. The total 
energy stored in the physical system can be used as a 
Lyapunov function candidate, but the Lyapunov functions 
can be considered as a generalization of  energy functions for 
nonlinear dynamical systems (Gruyitch, 1992; Rouche et al., 
1997).  

A robust method for the stability analysis of linear systems is 
the Lyapunov method, which includes Lyapunov's first 
method and Lyapunov's second method. The Lyapunov's 
second method is used to the stability analysis of nonlinear 
dynamic systems (Gruyitch, 1992; Rouche et al., 1997). A 
Lyapunov function is a scalar function defined on the phase 
space, which can be used to prove the stability of an 
equilibrium point. The Lyapunov function method is applied 
to study the stability of various differential equations and 
systems. A Lyapunov function can be defined as a scalar 
function in the phase space, which can be used in various 
applications such as stability, convergence analysis, design of 
model reference adaptive systems, and etc. It is difficult to 
find the Lyapunov function for nonlinear systems (Zhang et 
al., 2017). In general, there is no definite method for 
determining the Lyapunov function, and it should often be 
eliminated. Recently, many methods have been proposed to 
find the Lyapunov function such as Krasovskii method, 
modified Krasovskii method, variable gradient approach, 
backstepping method, modified backstepping method and 
dynamic programming, etc (Schultz and Gibson, 1962; Al-
Bayaty, 2011; Ojha and Khandelwal, 2015; Liu and Zhang, 
2017; Wang et al., 2017; Zhang et al., 2017).  
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The major problem with Krasovskii method is that if the 
number of system states is high, solving equations and 
determining the conditions in this way is difficult (Zhang et 
al., 2017). It is easier to determine the conditions in the 
modified Krasovskii method than that in the Krasovskii 
method, but it needs a large amount of computation (Al-
Bayaty, 2011). The major disadvantage of this method is the 
elimination of nonlinear dynamics of the system as well as 
the locality of stability.  

In the variable gradient method, the solution of the obtained 
equations is not simple and sometimes leads to equations, 
which are difficult to solve. Also, the solution obtained by 
this method does not differ much from the linearization 
method (Schultz and Gibson, 1962; Liu and Zhang, 2017). 
One of the advantages of the backstepping and modified 
backstepping methods is to prevent the removal of nonlinear 
dynamics of the system, but the main disadvantages of this 
method can be the complexity of the calculation, especially in 
high- dimensional dynamic systems (Ojha and Khandelwal, 
2015; Wang et al., 2017).  

In linear systems, the presence of all negative eigenvalues 
indicates stability while the presence of a single positive 
eigenvalue for sure indicates exponential instability. Next the 
result could be expanded to linearized nonlinear systems. The  
unique equilibrium point of the diagonalizable systems is 
globally asymptotically stable if a particular set of nonlinear 
eigenvalues is not positive at each point in the state space 
(Kawano and Ohtsuka, 2015). Degree of complexity of the 
analysis of the dynamic systems increases by changing math 
model from unchanging linear systems with time to 
changeable and nonlinear systems with time. Therefore, in 
recent years researchers have done the analysis of the 
stabilization for a nonlinear system. For example, Li et al. 
proposed a novel method based on mode-dependent average 
dwell time (MDADT) method, for the stability analysis of 
discrete-time switching nonlinear systems (Kawano and 
Ohtsuka, 2015; Li et al., 2017). In this paper as a case study, 
Takagi-Sugeno (TS) fuzzy model is used to approximate the 
switching nonlinear system (Li et al., 2017). 

One of the new methods for analyzing Lyapunov is the use of 
the averaging functions and Steklov’s averaging method 
(Pogromsky and Matveev, 2016). This approach is proposed 
for incremental stability analysis of nonlinear systems. The 
disadvantages of this method are the complexity and 
inaccuracy in the use of high-dimensional dynamical systems 
(Pogromsky and Matveev, 2016). Angulo et al., proposed a 
novel method for qualitative stability of nonlinear systems 
based on the negative feedback interconnection (Angulo and 
Slotine, 2017). The disadvantages of this method are the 
complexity in the use of high-dimensional dynamical systems 
(Angulo and Slotine, 2017). Li et al., used the Lyapunov 
approach for the stability analysis of nonlinear impulsive 
systems with delay (Li et al., 2018). In (Ren and Xiong, 
2017), the Lyapunov function based on fixed dwell-time 
condition is exerted on the stability analysis of impulsive 
stochastic dynamic systems. In (Tuan and Trinh, 2018), the 
Lyapunov’s first method is used for analyzing the stability of 
time delayed nonlinear fractional systems. They proposed 

that the expressed system is stable if the linear system around 
the equilibrium point is stable (Tuan and Trinh, 2018). In 
(Molchanov and Liu, 2002), the robust absolute stability 
discrete time nonlinear systems with time varying interval 
matrices in the linear part is considered based on the 
variational method and the piecewise-linear Lyapunov 
function (Molchanov and Liu, 2002). Jiao et al., considered 
the multiple Lyapunov functions for the stability analysis of 
switching nonlinear systems (Jiao et al., 2016). In (Liang et 
al., 2017), the general Lyapunov functions is considered to 
the stability analysis of nonlinear Multiagent systems (Liang 
et al., 2017). In (Aleksandrov et al., 2015), the Lyapunov 
method is exerted on the stability analysis of nonlinear 
systems via decomposition (Aleksandrov et al., 2015). Peet, 
used the polynomial Lyapunov function to analyze the 
stability of nonlinear systems (Peet, 2009). This method is 
used for nonlinear systems with nonlinear polynomial 
functions (Peet, 2009). In (Feng et al., 2015), the iterative 
control laws based on heuristic dynamic programming are 
proposed for analyzing the stability of closed loop nonlinear 
systems. The modern methods are utilized to do stability 
analysis of a class of Lipschitz nonlinear impulsive systems 
based on vector Lyapunov function by using Linear Matrix 
Inequalities (Rios et al., 2017). Xu et al., proposed a new 
approach for the stability analysis of elastic elliptical 
cylindrical shells under the uniform bending (Xu et al., 
2017). In [25], the nonlinear active disturbance rejection 
control (ADRC) is utilized  to address the stability analysis of 
the fast tool servo system (Li et al., 2015). 

Ha et al., proposed the energy estimate method for the 
nonlinear stability of the incoherent solution to the 
Kuramoto–Sakaguchi equation [26]. Lefloch et al., studied 
the stability of a certain category of nonlinear systems 
(LeFloch and Sormani, 2015).   In (Yin et al., 2011), the 
stochastic Lyapunov method is used to do stability analysis 
of stochastic nonlinear systems. Also, the state feedback 
controller is applied for stabilizing these systems (Yin et al., 
2011). The largest Lyapunov exponent (LLE) is applied to 
the stability analysis of linear and nonlinear dynamical 
systems. The Lyapunov exponent (LE) is a quantitative 
criterion that determines the deviation or convergence of the 
two contiguous trajectories during the time evolution and has 
a direct relation to the stability of system state. The negative 
value of LLE shows that the system is stable.  In (Zevin, 
2015), the LLE is applied to the stability analysis of time 
delayed linear systems using eigenvalue of the system. In 
(Gavilan-Moreno and Espinosa-Paredes, 2016), the LLE is 
considered to analyze the instability state of boiling water 
reactors (Gavilan-Moreno and Espinosa-Paredes, 2016).  In 
(Yunping et al., 2013), the LLE is proposed to analyze the 
stability of passive bipedal robot (Yunping et al., 2013). In 
(Banerjee et al., 2014), the LLE is used for the transient 
stability analysis of the NE 39 bus power system. Also, this 
method is used for the transient stability analysis of the 
IEEE-39 bus test system (Huang et al., 2018). As an 
alternative, the differential transform method (DTM) has 
been suggested as an analytical approach to solve differential 
equations (Arikoglu and Ozkol, 2005; Odibat, 2008; Ghomi 
Taheri et al., 2016). In (Ghomi Taheri et al., 2016), the 
authors presented an analytical method for calculating the LE 
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in general terms, and, for example, examined it in two Lorenz 
system and Colpitts oscillator. In this paper, the chaotic 
Colpitts oscillator is analyzed and the system behavior has 
been investigated for various system parameters by the 
analytical method based on LE. Then, the desired circuit is 
constructed and the implementation results are compared 
with the analytical results. In all studies of the use of the LE 
in the stability analysis of systems, the LEs of continuous 
dynamical systems are estimated by numerical methods. As 
we have seen, a lot of research has been done on the 
asymptotic stability analysis of nonlinear systems based on 
the Lyapunov function. The disadvantages of this method 
include the difficulty of computing the shared Lyapunov 
function, the complexity of the calculation, as well as the 
inability to analyze the stability of the systems with high 
dimensions. In some cases, the Lyapunov function cannot be 
found for a nonlinear system, which is one of the main 
weaknesses of these methods. On the other hand, in a recent 
research on the stability analysis of a nonlinear system, new 
methods have been proposed for the stability analysis on a 
particular class of nonlinear systems, one of the main 
weaknesses of all the proposed methods, in the analysis of the 
stability of complex high-dimensional systems. In this paper, 
a simple method is presented to analyze the stability of 
nonlinear systems with unknown parameters. On the other 
hand, this method is capable of analyzing the stability of 
nonlinear systems with a high degree of complexity and high-
dimensional systems. 

In this note, a new and simple benchmark for analyzing the 
stability of continuous nonlinear systems is presented based 
on the estimation of the LE using DTM method. The rest of 
the paper is organized as follows. Section 2, the review on 
DTM technique is proposed. Section 3 is devoted to a novel 
method for calculating the LLE to do stability analysis based 
on DTM method. In section 4, the application of the theorem 
presented in section 3 is investigated in three different 
nonlinear systems. Discussion and conclusion about the 
method presented is taken into consideration in section 5. 

2. REVIEW OF THE DIFFERENTIAL TRANSFORM 
METHOD (DTM) 

A differential transformation method is an analytic method in 
the form of a polynomial whose computational domain is 
much shorter than that of the Taylor series. The kth derivative 
of the function ( )f t  denotes its differential transform, that is 
defined as  (Arikoglu and Ozkol, 2005; Odibat, 2008): 

 
0

1 ( )
,

!

kd f t
F k

kk d t t t

 
 
   

            (1) 

where  F k  is the differential transformation of the function 

( )f t  and 0t t   is the point at which the Taylor series 

expansion of the function is obtained around it. Because the 
function ( )f t  is considered as a finite series, it can be 
expressed as: 

     
0

0 .
k

k
t k t tf F





             (2) 

DTM technique actually represents signal variations. This 
technique is based on the expansion of the Taylor series. 
Some of the mathematical properties of the DTM method are 
shown in Table 1  (Arikoglu and Ozkol, 2005; Odibat, 2008). 

Table 1. Some mathematical operations of DTM 
technique. 

Original function Transformed function
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( ) sin( )f t t     ( ) sin
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k kF k
k
     

( ) cos( )f t t     ( ) cos
2!

k kF k
k
     

More details of expressions in Table 1 can be found in 
(Arikoglu and Ozkol, 2005). 

3. A NEW METHOD FOR STABILITY ANALYSIS IN 
NONLINEAR SYSTEMS 

Consider the nonlinear system  ( ) ( )t g x tx 


, and assume that 

it can be decomposed into a linear part and a nonlinear part, 
i.e.,  

 ( ) ( ) ( )t t x tx Ax f 


            (3) 

where ( )tx  is  a  1m  - matrix  consisting  of   state   vectors  

 1 2( ), ( ), , ( )x t x t x tm , A is an m m -matrix with
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coefficients in  , and  ( )x tf  is a nonlinear vector-valued 

function expression. 

The next equation is obtained from (3) by applying DTM 
technique and Table 1. 

, ( 0, 1, 2, , ).( 1) ( 1) ( ) ( ) k Kk X k AX k F k           (4) 

According to the DTM technique, the K -order Taylor 
polynomial of ( )x t  as (Arikoglu and Ozkol, 2005; Odibat, 

2008) can be obtained: 

2 ( )
0 1 2( ) ( ) ( ) ( ) ( ) K

X Kx t X X t X t t                     (5) 

LEs are the average exponential rates of divergence or 
convergence of nearby orbits in the state space. LEs make it 
possible to analyze the stability of nonlinear systems without 
solving them. The LE was used before the emergence of 
chaos theory to characterize the stability of linear and 
nonlinear systems. The signs of LEs characterize the stability 
property of the nonlinear dynamical systems. Trajectories 
from all directions in the state space come to the equilibrium 
point if all LEs are negative. So, if all LEs for system (3) are 
negative, then the system is asymptotically stable. In other 
words, the presence of a negative LLE confirms the 
occurrence of asymptotically stable behaviour in nonlinear 
dynamical systems (Wolf et al., 1985; Rosenstein et al., 
1993). 

If we consider a time series ( )x t , the LLE can be defined 

using the following equation (Wolf et al., 1985): 

0
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where ( )x t  is the average divergence at time t , n  indicates 

the number of iterations or evolution times, and max  is LLE 

expression (Wolf et al., 1985; Rosenstein et al., 1993). 

In this case, according to the DTM technique, 
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so,  
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where
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
is a 1m   column vector,  X ni  

indicates the differential transform of ( )x ti , and (0)X  is the 

initial point. 

Equation (4) gives, 

2

3 2

4 3 2

1 1 1

2! 2! 2

1 1 1

3! 3! 3

1 1 1 1 1

4! 4! 4

1

! 12 4

3!

(1) (0) (0)

(2) (0) (0) (1)

(0) (0)

(

(3) (1) (2)

(4) (0) (0) (21) )

A AF F

X A A AF F

X A A A F

X AX F

X X

X F

F AFX

   
  
  

   
   
   

       
   

 
 
 

   
   
   

   
   
   

 





  

 







 (3)F










  

               (10) 

In the general case, 
1
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where 1, 2, 3, ,j n  . 

In the special case, we have: 
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Now by replacing (11) in (9), we have: 
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To simplify the formula, consider 
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By natural logarithm properties, if 1M  , then LLE is 
negative. 

Theorem 1. Consider the nonlinear system (3) with the 
above assumptions. If 1A   and ( )F k  is a bounded function, 

then the corresponding LLE is negative. 
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Proof. Let M be given by (13), 1A  . It is sufficient to 

prove that M < 1 . Now we discuss the normed space 

  M ,n n   , where   is an operator norm on n n -

matrices with a coefficient in . 

According to the homogeneity and subadditivity property of 
matrix norm, we have: 
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Since ( )F k  is bounded, there exists 0   such that, 
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Conforming to (14), (15) and submultiplicitivity property of 
matrix norm, we have: 
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From (16) and (17), we have: 
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and also, 
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The hypothesis 1A   implies that, 
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! 1(0) (0) 1

nn A
M

n A nn X n X A

A  
   

 

 
 
 

   (20) 

Now, for n sufficiently large, we have: 

 
1

1 1 .
(0) 1n X A

 
    

                       (21) 

So, by (20), M < 1 , and this completes the proof. 

4. NUMERICAL RESULTS 

The following three physical and practical systems show the 
usefulness of the proposed Theorem.  In the first example, a 
nonlinear system is used that can be implemented with the 
Colpitts oscillator. The second example is a nonlinear 
physical system based on the Lorenz system. In the third 

example, we want to show the capability of the proposed 
theorem for stability analysis of complex high-dimensional 
nonlinear dynamical systems. For this purpose, a nonlinear 
system is used that can be implemented by five-dimensional 
(5D) memristor-based Chua's oscillation (Vasiljevic et al., 
2019; Odibat et al., 2010; Sun et al., 2018 ). 
Example 1: Consider the following nonlinear system 
equation: 

     

   

       

   

1 1 3

2 1

2 1
2 3

3 1

y 0.2 0.89

exp 1

y exp 1

y

t c y t y t a

y t y t

y t y t
t b a b y t

t a y t





   

   
      

   
       





















        (22) 

where 
1 2

( ) ( ),,t ty y  and 
3

( )ty  are state variables, and 

constant parameters are 2
,2, 0.5, 8.34 10a b      

and 351.64 10c   . 

By using DTM technique, (22) is converted as follows: 

1 1 3

2 1

2 1

2 3

3 1

0.2 0.89

1
!

1 ( )
!

( 1) ( 1) ( ) ( )

( ) ( )

2

( ) ( )

2
( 1) ( 1)

( 1) ( 1) ( )

k

k

Y c Y Y a

Y Y

k

Y Y

Y b a Y k
k

Y a Y

k k k k

k k

k k

k k b

k k k

 

 

 

 



   

  

  




   
   
  
 
     


   
   
    
     




             (23) 

where 0,1, ,k n  . 

Now, from (4) and (23), we get: 

2 1

2 1

( ) ( )

2
!

( ) ( )( ) .
2

!

0

kY k Y k

k
kY k Y kF k

k

       
 
 
      
  
 
 
 
  

                      (24) 

So, 

 ( ) 0
k
lim F k


             (25) 
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If we set the initial conditions by 1 2(0) 1, (0) 1,Y Y   

and 3(0) 1Y  , then by the recurrence relation (23), we have 

 ( ) 1iY k   for all 0,1, ,k n   and 1, 2, 3i  .  

We use of mathematical induction to prove it. When 1m  , it 

is easy to verify that (1) 1iY   for 1, 2, 3i  . Assume the 

inequality holds when m k  for some integer 1k  ; that is, 
assume 

( ) 1iY k   for all 0,1, ,k n   and 1, 2, 3i  , 

for some integer 1k  . We want to show that it also holds 

when  1m k  ; that is, we want to show that ( 1) 1iY k    

for all 0,1, ,k n   and 1, 2, 3i  , by the recurrence relation 
(23) we have; 

 
 

 

   

 

1 1 3

21 2( ) 0.2 ( ) 0.89 1
1 !

1 1
0.2 0.89 1

1 !

1
0.052 0.2 0.45 2

1

2
1

1

( 1)

k

c Y k Y k a
k k

c a
k k

k

k

Y k

  
  
          

          

   


 


 

  

 

   

   

2
1 1

1 0.85 1
1 !

1
0.45 2 0.85

1

1 2
1 1 1

1 1

( 1) ba
k k

k

k k

Y k
         

  


   
 

 

 

   3 1 1
1 1

( 1) ( )
a a

k k
Y k Y k 

 
    

This means that ( ) 1iY k  , where 1, 2, 3i  . 

Form (24), 

( )

0

b

F k b
 
 
 
 

 where 

2 1( ) ( )

2
!

kY k Y k

k
b

  
 
 

 
 
 
 
 

.       (26) 

We have that ( )F k  is a 3 1 -matrix and by representation 

theory, it is a linear operator from   into 3 . So by 
definition of the matrix norm, we have  

   2 2

2 1

1 11

1 1

( ) ( ) 1 1
2 2

!

( ) sup ( ) sup sup

0 0

sup 2 sup

2 2 2
!

2

!

kkY k Y k

k

b b

F k F k b b

b b b

b
k

k

 



 


  

  

 



 

     
     



  

  

  



   
   
   
   

 
 
 
 
 



            (27) 

With use of the Stirling’s formula  ! 2 k kk k e k   for 

large number k , 

2 2 2
0

! 2 2k k k

ke
k k kk k e k k k

lim lim lim
   

   

So,  

( ) 0 0 , ( ) .
k
lim F k N k N F k 


        

Now, we show that ( )F k  is a bounded function. For 1  , 

there exists a positive integer number N , such that 
( ) 1,F k  for all k N . If we consider M  , 

      0 , 1 , , ,1M max F F F N   

then ( )F k M , where 0, 1, ,k n   and it means that 

( )F k  is bounded. 

Hence, by (3) and (22), matrix A defined is as below, 

0 0.2

0 0

0 0

c

b

a

A

  
  
  

 .          (28) 

So, it is easy to verify that 1A   and by Theorem 1, the 

system (26) is stable. This can be proved by calculating the 
LEs representation and simulating a transient time series 
system with numerical methods. 

Fig. 1, shows that LEs are a function of time with initial 

conditions (0) 1iY   for 1, 2, 3i  . The presence of negative 

LEs in a dynamical system indicates the stability of the 
system. Fig. 2, illustrates the transient time series in state 
variables.  
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Fig. 1. The LEs calculation for system (22). 

Example 2: Suppose that ( ), ( ),x t y t  and ( )tz are state 

variables that satisfy the following nonlinear system 
equations: 

 

 

( ) 0.1 ( ) ( )

( ) ( ) 0.2 ( ) ( )

( ) ( ) ( ) 0.7 ( )

t y t x tx

t x t z t y ty

t x t y t z tz


 




  

  







          (29) 

 

Fig. 2. Time series plot of the generated data in the present 
study. 

By the DTM techniques on this system equations, we have: 

1

1

1

1 1
0

1 1
0

1 1
0

( 1) ( 1) )

)

( 1) ( 1) )

( 1) ( 1) 0.1 ( ) 0.1 ( )

0.2 ( ) ( ) (

( ) (

( ) ( 0.7 ( )

k

k

k

k

k

k

k k

k k

k X k Y k X k

Y X k X k Y k k

X k Z k k

Z X k Y k k Z k







 

 

   

  



 






 












              (30) 

where 0,1, ,k n  . In the following, we give matrix 

representation of ( )F k , 

1 1

1

1 1 1 1
0 0

1 1
0

( ) ( ) ( ) ( ) .

( ) ( )

0

( )
k k

k k

k

k

X k Y k k X k Z k k

X k Y k k

F k
 



  



 



 
 
 
 
 
 
 
 
  

 



       (31) 

by the same calculation like the last example and with the 

initial condition (0) (0)1, 1,X Y   and (0) 1Z   , we see 

that ( )F k  is a bounded function. Now, for 

 

0.1 0.1 0

0.2 0 0 .

0 0 0.7

A

 
 
 
  

                 (32) 

it is easy to see that 1A   and given by the Theorem 1, the 

system is stable. 

In order to confirm this claim, the LEs of this system is 
shown in Fig. 3. From the figure, it is seen that LEs are 
negative. As a result, system (29) is stable, which is 
consistent with the result from Theorem 1. The time series of 
the three state variables used in the present study is shown in 
Fig. 4. 

 

Fig. 3. Numerically calculated LEs for system (29). 
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Fig. 4. Transient time series of the three state variables. 

Example 3: Let the following equations be a high 
dimensional continues nonlinear system, 

 2
1 1 2 1 5

2 2 3 4

3 1 2 3

4 2 5

5 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

x t x t r x t x t x t

x t x t x t x t

x t x t g x t x t

x t x t s x t

x t x t

 

  

 





   

  

   

 



























        (33) 

where 
1 2 5
( ), ( ), , ( )t t tx x x  are state variables, and constant 

parameters are 4 3 3677 10 , 9 10 , 34 10 ,           
5 2 3 425 10 , 2 10 , 5.3 10 , 8.7 10 ,             

2 3 31 10 , 1 10 , 47 10 ,r s          and 222 10g   . 

 Then, with the DTM technique exploited, it is seen that 

2

2 1

1 1 5 2 1 5 2
0 0

1 1 2

2 2 3 4

3 1 2 3

4 2 5

5 1

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( 1) ( 1)

( 1) ( 1) ,

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

kk

k k

X X k r X k

X k X k k X k k

X X k X k X k

X X k g X k X k

X X k s X k

X X k

k k

k k

k k

k k

k k





 

 







 

  

  

  

   

 



 

 

 

 

 













 

            (34) 

for 0 , 1, ,k n  . Therefore, the matrix representation of 

( )F k  is as follows, 

2

2 1

1 1 5 2 1 5 2
0 0

( ) ( ) ( )

0
( )

0

0

0

.

kk

k k

X k X k k X k k

F k

 

 



 
 
 
 
 
 
 
 
  



        (35) 

Let us assume that the initial conditions (0) 1iX   hold for 

1, , 5i   . By the same calculations as in example 1, we see 

that ( )F k  is a bounded function.   

Since matrix A can be expressed as: 

0 0 0

0 0

,0 0

0 0 0

0 0 0 0

r

g

s

A


  

 




 
 

  
  
 
 
 
 

                                   (36) 

we see that 1A    and so Theorem 1 implies the stability of 

this system. 

Fig. 5, illustrates the existence of negative LEs confirming 
the stability of the system under study in this example. As 
shown in Fig. 6, the time series of state variables in this 
example is another proof of this claim. 

 

Fig. 5. The LEs as a function of time. 
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Fig. 6. Simulation of system (33) for transient time series of 
state variables. 

6. CONCLUSIONS 

This paper presents a new analytic method for asymptotically 
stability analysis of a wide range of nonlinear systems. In this 
paper, a new sufficient condition for the stability analysis of 
continuous nonlinear dynamical systems in the general case 
based on LLE has been proposed. The DTM is applicable for 
analytical nonlinearities, having convergent Taylor series.  In 
this method, the DTM technique is used analytically to 
estimate the sign of the LLE in nonlinear systems with 
unknown parameters. According to Theorem 1, the 
nonlinearity stability sector of function  ( )x tf in system (1) 

is not the aim of this paper, but the differential transform of 
nonlinear vector-valued function expression  ( )x tf (  F k ) 

must be bounded. This method can be used to analyze the 
asymptotic stability of complex high-dimensional nonlinear 

dynamical systems. Some examples are applied to show the 
usefulness of the proposed method. 
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