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Abstract: Fault diagnosis of non-linear helicopter systems are affected by inherent char-
acteristics such as non-linear behaviour, high cross coupling effects, external disturbances
such as atmospheric turbulence and wind effects. Fault diagnosis in non-linear systems gains
importance due to its high complexity and this work focuses on fault detection of helicopter
system with the consideration of the inherent non-linearity effects. This paper deals with the
detection, identification and classification of sensor, actuator and component faults in non-
linear helicopter systems using model-based state estimation approaches. Approaches include
Interacting Multiple Model based Extended Kalman Filter and Interacting Multiple Model
based Unscented Kalman Filter. To address problem of fault detection, statistical measures of
residual analysis, stochastic likelihood ratio and model probability is proposed. A Comparison
of these approaches is presented based on the ability to detect, identify and classify faults in
spite of system non-linearity. Algorithm is applied to 2 degrees of freedom helicopter and the
results for various fault cases are presented. The results yield better fault detection performance

Printed in Romania

using Interacting Multiple Model based Unscented Kalman Filter.

Keywords: Fault detection and diagnosis, Non-linear, Aerospace, FDI for non-linear
systems, Sensor and actuator faults, Model-based estimation and filtering.

1. INTRODUCTION

Safety, reliability and improved performance of modern
day applications depends on sophisticated control algo-
rithms. Any fault or failure in engineering systems can
disrupt the normal functionality leading to decreased or
unacceptable performance, less reliability and safety. Thus
Fault Detection and Diagnosis (FDD) has a paramount im-
portance to ensure reliable Fault Tolerant Control (FTC).
See Zhang et al. (2008). FDD schemes plays a major role
in safety related applications such as aerospace, Unmanned
Aerial Vehicles (UAV), spacecraft and robotic applica-
tions. Most of the practical systems seen today are non-
linear systems. Non-linear systems are affected by non-
linear dynamics, cross couplings and uncertainty. Thus
non-linear fault detection and diagnosis gains importance
because of its ability to identify faults in spite of the effects
of non-linear dynamics. See Du et al. (2014), Tan et al.
(2015) and Yang et al. (2015). The control of small scale
helicopters draws attention due to its popularity for short
distance transportations because of its ability to take off
and land without runways in small areas. The applications
include transportation, air-sea rescue, firefighting, military
and surveillance applications. These helicopter systems
exhibits highly non-linear behavior and high cross cou-
pling between different axis. It is also affected by external
disturbances such as atmospheric turbulence, greater wind
speed, icing, parametric uncertainties and unmodelled dy-
namics. See Marzat et al. (2015) and Van Eykeren et al.
(2014). Fault diagnosis and classification of these highly

non-linear cross coupled helicopter systems poses a major
challenge. Various faults that occurs in helicopter systems
include sensor faults, faults in aerodynamic propellers, and
any other system components.

Many FDDs schemes have been developed mostly for mon-
itoring purposes. Model based FDD schemes are predom-
inantly used because of its fast speed of response. Model
based methods are based on state estimation, parameter
estimation or parity based methods which uses dynamic
process or system models. See Isermann. (2005). Zolghadri.
(2012) and Zolghadri et al. (2016) emphasizes the advan-
tages of model-based fault detection methods to aerospace
systems.

One of the effective methods is the Multiple Model (MM)
scheme. Since MM approach provides sophisticated so-
lutions to control, estimation and modelling problems,
research on the multiple-model approach has attracted
considerable interest in the last decades. See Blom, et al.
(1988), Li, et al. (1996) and Li, et al. (2000). Some well-
known examples to MM approach is the target tracking
problem and Fault Detection and Diagnosis. The main
advantage of this multiple model is a larger class of faults
can be modelled. MM approach allows modelling of sensor,
actuator as well as component faults since each local fault
model can represent different dynamics. The first step of
MM scheme is to design a normal system model and a
set of models representing different fault conditions. MM
scheme consist of a set of filters that runs in parallel
where the overall state estimate is the probabilistically
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weighed sum of all estimates. The above MM filter is
based on non-interaction between the set of models con-
sidered. MM estimation effectively handles problem with
an unknown structure or parameter without structural
or parametric changes. System undergoes structural or
parametric changes hence this method will not produce
effective results.

Another variant of MM filter is the Interacting Multiple
Model (IMM) filter see Zhang et al. (1999), Mazor, et al.
(2000),Menke, et al. (1995), Ding, et al. (1997) and
Zhang et al. (2001) where the set of models considered
interacts with each other by switching from one model
to another providing better ability to identify the faulty
condition or model occurring in that instant. Unlike MM
estimation where there is no interaction between models,
IMM interacts with set of models and switches from one
model to another as a Markov chain system according to
the probabilistic manner thereby resulting in improved
performance. The mixture of all estimates from single
model based filters acts as an initial estimate at the begin-
ning of each cycle. The mixing of estimates enables a more
accurate estimate of the system. The other characteristic
of IMM is that the probability of each mode is calculated
which clearly indicates the current mode in effect and
mode transition at each time. Identification of single and
multiple failures is another advantage of multiple model
based approaches. While other FDD schemes uses residual
based fault classification, see Zhang et al. (2008) and
Wang, et al. (2015), IMM uses a stochastic based approach
to detect and classify faults in the system. The set of
model probabilities summarizes all the past and current
information about the mode in effect and is reliable for
fault decision making. Another stochastic approach is the
set of likelihoods based on the innovations is white noise
with zero mean and known covariance provides informa-
tion about the abrupt and continuous sensor and actuator
faults occurring in the system for classification of faults.
See Deshpande et al. (2009), Kiasi et al. (2015), Dhler
et al. (2016) and Jayaprasanth et al. (2018).

State estimation approach is one way to design a set of
filters for the multiple models. Traditional IMM scheme
as in Zhang et al. (1999) uses Kalman Filter (KF) to
propagate the mean and covariance of the system states
over time. This holds good for the linear varying systems.
Helicopter systems posses higher degree of non-linearity.
Since fault detection and diagnosis of non-linear system
is proposed, variant of Kalman filter, see Chowdhary
et al. (2010), known as Extended Kalman filter (EKF)
is applied to non-linear system. EKF's propagate the state
mean and covariance through linear approximation around
the operating point by calculating the Jacobian matrices
for non-linear systems. For higher order systems, another
state estimation filter named as Unscented Kalman Filter
(UKF) is developed for non-linear systems. The Unscented
Kalman filter propagates the system through a set of
points in Gaussian probability distribution function. See
Kandepu et al. (2008).

Kargar et al. (2015) discussed an interactive bank of
Extended Kalman Filter is used in IMM framework for
the estimation of actuator faults. Residual based isolation
technique is used to quantify and isolate the actuator faults
in the system. Another IMM based fault detection ap-

proach is employed in high redundancy actuation system.
A set of actuator fault models representing overheating,
loose faults and lockup faults are considered and the fault
detection is carried out using IMM framework in Davies
et al. (2009). Another multiple model approach for FDI
schemes is hierarchical multiple model approach which
detects the sensor and actuator faults in the system is
discussed in Hsiao et al. (2012). It covers a variety of
faults such as incipient faults, abrupt faults and simulta-
neous faults. A likelihood based evaluation test reflects the
missed detection probabilities.

Lu, et al. (2015) proposed sensor fault detection and
estimation using augmented UKF for a kinematic model of
a quadrotor UAV. The faults in sensors are modeled using
random walk process and it is augmented with system
states. UKF detects the faults and the system states
simultaneously. Zhong, et al. (2019) proposed a fault
diagnosis scheme for quadrotor helicopter covering sensor
faults via adaptive two stage extended Kalman filter. A set
of forgetting factors is introduced into the adaptive scheme
to estimate the system with faults occurring separately
and simultaneously. The main advantage here is FDD
scheme is designed for a non-linear model of a quadrotor
while it suffers from shortcomings such as consideration of
only bias and drift sensor faults.

Freddi et al. (2010) developed a Thau observer which
addresses the actuator fault detection of a mini-quadrotor.
FDD strategy uses a residual generation and residual eval-
uation module which generates residuals and detects the
change in it. It uses upper and lower threshold bound
values to detect faults. The main disadvantage here is it
detects and isolate actuator faults and does not estimate
the faults. Simultaneous state and parameter estimation
techniques for actuator faults in unmanned helicopter is
dealt in Wu, et al. (2015). An Actuator Health Coeffi-
cients (AHC) defining the effect of actuator faults with the
augmented flight states transforms the general structure
into a non-linear state and parameter estimation prob-
lem. Actuator FDD performance is analyzed using three
adaptive schemes; KF-UKF, MIT-UKF and MIT-ESMF.
This method deals only with actuator faults affecting the
system. Fault detection of 3 DOF helicopter based on Non-
linear Unknown Input Observer (NUIO) is developed in
the paper, see Lan et al. (2017). Here the actuation faults,
oscillation faults and saturation faults are considered. This
achieve asymptotic estimation of faults without the need
of system output derivatives.

Heredia et al. (2008) presented a sensor and actuator
fault detection systems for small autonomous vehicles. An
observer is designed for detection of fault using residual
generation. However it can only detect the faults and not
isolate and estimate the faults. Caliskan et al. (2016)
proposed an adaptive two state Kalman Filter based FDD
scheme detects the sensor and actuator faults in UAV. To
estimate the loss of control effectiveness, degree of struck
magnitude and fault isolation, control effectiveness factor
and struck magnitude parameters are given to active FTC
scheme. Zhong, et al. (2018) proposed a methodology to
detect actuator and sensor faults for unmanned quadrotor
helicopters. They proposed IMM approach with state
augmentation strategy to reduce the computational load
on large model set design. The loss of control effectiveness
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in actuators and bias in sensor faults are handled. The
main shortcoming is the model is linearized and the FDD
strategy is designed for a linear model excluding the
inherent non-linearity.

As seen from literature, most of the FDD strategies deals
with either actuator faults or sensor faults. Few works
are available for both actuator and sensor fault detection.
However many of the works mentioned above uses a linear
model of helicopter rather than a non-linear model. Since
the helicopter model considered has severe non-linearity
effects and high degree of interaction between its variables,
occurrence of faults tends to magnify this non-linearity
and interaction. Hence only a non-linear model can clearly
portray these effects. Hence an FDD scheme is proposed
for this non-linear helicopter model with IMM scheme as
the backbone. IMM scheme with its significant advantages,
tends to represent the fault models effectively. It also gives
a good statistical measure of fault decision based on the
set of likelihood and mode probabilities. The non-linearity
and interaction is handled using two model-based state
estimation approaches EKF and UKF which estimates the
states and covariance based on system model. Apart from
sensor and actuator faults, component faults occurring in
the system is also considered in this paper. The main ob-
jective is to design a model-based non-linear FDD scheme
combining the Interacting Multiple Model (IMM) with
Extended Kalman filter (EKF) and Unscented Kalman
Filter (UKF). Two strategies, IMM based EKF and IMM
based UKF were developed for handling sensor, actuator
and component faults. The helicopter model chosen is
Quanser 2 Degrees of Freedom (DOF) helicopter.

The paper is organized as follows. In section 2, mathemat-
ical modeling of 2 DoF helicopter is provided. IMM-EKF
and IMM-UKEF based fault detection strategy is discussed
in section 3. Experimental results from simulations are
provided in section 4 and conclusions in section 5.

2. MATHEMATICAL MODELING OF 2 DOF
HELICOPTER

2.1 Non-linear equations of motion

Two degrees of freedom helicopter consist of two propellers
driven by DC motors which is mounted on a fixed base.
The motion of front propeller elevates the pitch axis
and the motion of back propeller elevates the yaw axis.
The pitch and yaw axis angles are measured using high
resolution encoders. The two degrees of freedom are pitch
angle represented by 6 and yaw angle represented by .
The mathematical modeling of 2 DoF helicopter is derived
using the following conventions.

(1) When pitch angle is zero, the helicopter is horizontal
and pitch angle increases positively, when nose is
moved upwards and body rotates in counter clockwise
direction.

(2) Yaw angle increases positively when the body rotates
in clockwise direction.

(3) Both pitch and yaw angle increases when their respec-
tive thrust forces are positive.

Fig. 1 Kumar et al. (2015) describes the kinematic diagram
of 2 DoF helicopter. The thrust forces F}, and F, are

F)’

/ Yaw axis

<] wr0.CW

0>0, CCW

Pitch axis

Fig. 1. Kinematics of 2 DOF Helicopter

applied across the pitch and yaw axis respectively. The
torques acts at a distance r, and ry from the respective
axis. Fy is the gravitational force which acts on helicopter
body. The centre of mass acts at a distance I, from the
helicopter body.The transformation matrix for translation
and rotation are defined as

Ty - Rotation about pitch axis

cos(—0) 0 sin(—0) 0
0 1 0 0
To = —sin(—0) 0 cos(—0) 0 (1)
0 0 0 1
Ty - Rotation about yaw axis
cos(—) —sin(—y) 0 0
_|sin(=) cos(—y) 00
To=1""0 0 10 (2)
0 0 01
Tem - Translation about centre of mass
100 legm
010 O
Tem=1o01 0 ®)
000 1
Thus the resultant transformation matrix is
To =TyToTem (4)

cospcost  sinyp —cospsind 1., cosipcostd
—sinpcostd cosp  sinpsingd  —l.py, sinipcost 5
sinf 0 cost lem 8IN0 (5)
0 0 0 1

The potential energy V due to gravity is

T, =

V = mperigsindle, (6)
The total kinetic energy T of the system is the sum of
kinetic energy due to rotation of pitch 7)., and kinetic
energy due to rotation of yaw 7., and kinetic energy due
to translational movement of centre of mass T}.

T=Tp+T,+T; (7)

The rotational kinetic energy is related to angular move-

ment and total moment of inertia of pitch Je4, and yaw

axis Jeq,y respectively. The equivalent moment of inertia
of pitch and yaw about the centre of mass are

Jeqgp = Jmp + Jvody,p + Jp + Jy (8)

Jeqy = Jmy + Jvody.y + Jp + Jy + Tsnagt (9)

Where Jp,, and J,,, are rotor moment of inertia of

pitch and yaw motor respectively; Jyoay,p and Jyody,, are
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moment of inertia of helicopter body about pitch and yaw Kyy = Ky yry (28)
axis respectively; J, and J, are moment of inertia of shield
assembly about pitch and yaw pivot respectively; Jspqft is K K, 9
moment of inertia of metal shaft about yaw axis end pivot. P Ry (29)
Mpo y,pLgo ly ’
Jb()dyap = % (10) K, »
Mbody "JL20 : Kyp = = 30
Jbody.y = : d'ié et (11) " R p (30)
Jshatt = %fw (12)  where Ky, and Ky, are thrust force constants of pitch
J - 9 13 and yaw respectively and K, and K, are current torque
p = (M, + msuppomp)rp (13) constants of pitch and yaw respectively. The electrical
Jy = (M, —|—m5upport,y)r§ (14)  resistance of pitch and yaw motor are R,,, and R, .
The rotational kinetic energy of the pitch and yaw axis is Thus @1 and Q2 become
1 . .
Tp= 5.]6,“792 (15) Q1 = KppVmp + KpyViny — Byl (31)
1 . .
Ty = 5‘]81172411’2 (16) Q2= KypVinp + KyyVimy — Byy (32)
The kinetic energy due to translational movement is The Lagrangian is determined as
1 L o 92 . ..
T, = §mheli[(—sm1/1w0039lcm — c08Ysind0] .y )2+ 8t80L = Jogpb + mneril?,,0 (33)
(—cost1pcosOl o + sintsindipley, )? (17)
+(c05001 o )?) — L = —mpetiglemcost — mpepil?, sinfcosfip? 34
00
Simplifying,
B I o2 . -
t = amheli cm[e + 9~ cos 9] (18) 8t8’(/JL = Jeq,yw + Mperilemcos™ 0y (35)
Thus the total kinetic energy is
1 | . 1 . . 0
T = §Jeq,p€2 + §Jeq,yw2 + §mhelil§m [92 + ¢260829] (19) %L = _2mhel2 sm&cos@@iﬁ (36)

The non-linear motion model of helicopter system is de-
rived using Euler’s-Lagrange equation. The Lagrange vari-
able L is defined as difference between kinetic energy and
potential energy.
1 . 1 . 1 . .
L = 5 Jeqp0® + 5 Jequ¥h® + 5mnetilen 6% + 1% cos0)

—Mheli gSiNOlem
(20)
The generalized co-ordinates of the helicopter system that
describes the non-linear dynamics are pitch angle, yaw

angle, pitch velocity, yaw velocity represented as [0, 1, 0, w]
The Euler’s-Lagrange equation of motion is

[afaeL] N [%L] =6 2D
2
(v P~ 5 Hl = s (22)

where ()1 and @y are generalized forces corresponding
to generalized co-ordinates. The generalized forces of the
system are

Q1 =1p(Vinp, Vinyy) — Bpé (23)

Q2 = 7y(Vin,ps Viny) — Byt (24)
where B, and B, are the viscous rotary friction acting
about the pitch and yaw axis respectively. The torque
about pitch and yaw axis is

T (Vinps Vinyy) = KppVimp + Kpy Viny (25)

Ty(Vinps Vinyy) = KypVinp + KyyViny (26)
where V;,, and V,,, are input pitch and yaw motor
voltage. The torque constants that acts at a distance rp,
and r, from the centre of mass is

Kpp = Kgprp (27)

Substituting equations (31) to (36) in Lagrangian de-
scribed in equations (21) and (22), the non-linear equa-
tions of motion of helicopter model is

Kppvm p T prVm y B 9
sm&cos@@/}

(Jeq,p + Mneti gm)g =

_mhelzglcmcose mhelz

(37)

KypVinp + KyyViny — By
+2mhe“lfmsin000599.1/}
(38)

(Jeq,y + Mheril Cmcos )¢

2.2 Helicopter State Space model

The state-space model of helicopter system is given by

X = f(x) + g(X,u) +w (39)
y=h(x)+v (40)
where X = [z1,29,23,24] and u = [uy,us|, considering

state vectors as pitch angle 6, yaw angle v, pitch velocity
0 and yaw velocity ¥ and the inputs u; as pitch motor
voltage V,, , and uy as yaw motor voltage V,, . w and
v are parameters which addresses unknown disturbances
affecting the pitch and yaw axis respectively. These un-
known disturbances account for non-modeled dynamics,
parametric uncertainties and other external disturbances
like wind effects, icing and atmospheric turbulence af-
fecting the system. Non-modeled dynamics are due to
gyroscopic effects and couplings caused by the pitch and
yaw propeller. Thus the non-linear state space model is
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I 3 ] e mg(j = 3) Actuator 1 pitch motor fault mode with
T4 20 % decrease in supply to actuator
Z 1 [—(Byzs+ e my(j = 4) - Actuator 2 yaw motor fault mode with
To| Jeq.p + Mnetil?,, P 20 % decrease in supply to actuator
Z3| mhelilgmxisinxlcosxl + Mmperiglemcosey) + w) e my(j = 5) Sensor 1 pitch encoder fault mode with
Ty (B2t 20 % sensor bias
Jeqy + Mneil2,,cos?x, yd e mg(j =6) Sensor 2 yaw encoder fault mode with 20
i 2Mperil?,, T3248iNT1 COST1) + W] ] % sensor bias
0 0 Considering various faults occurring in the system, the
0 0 i general non-linear model structure becomes
B I, E— S TR— ek +1) = f(k,x(k), ulk),m(k +1),7(k)) +w, (46)
Jegp + Zhelilcm Jegp + Zhelilcm Uz | y(k+1) = hk, z(k + 1), u(k), m(k)) + vy (47)

Jeqy + Mhetil?,,c082x1 Jeogy + Mpelil?,cos?a,
(41)
The output vector y is the measurement vector which
contains the pitch and yaw co-ordinates.

Z1
= v
Thus w and v are assumed as Gaussian process and
measurement noise vectors with covariances ¢ and R

respectively. They are assumed to be white, independent,
zero mean with normal probability distributions.

p(w) = N(0,Q) and p(v) = N(0, R)

(42)

(43)
2.8 Helicopter Normal and Fault Models

For FDD using multiple model approach, it is assumed
that the actual system at any given time is modeled by
the following stochastic hybrid non-linear system.
x(k+1) = f(k,z(k),u(k),m(k+ 1)) + wg (44)
y(k+1) = h(k,z(k+ 1),u(k),m(k)) + vg (45)
where f and h are functions of state and measurement
output respectively. The mode sequence (normal and fault
modes) of the system at time k is selected by transition
probabilities m;; (k) = P{m;(k+ 1)|m;(k)}, Ym;,m; € M
and Zj mi; = 1, ¢ =1,.... M. The multiple models normal
and faulty modes are a set of models M = {my...mp},
where m; denotes normal mode and {ms....mx} denotes

faulty modes. The mode j in effect at time k is denoted

The predominant faults that affect the helicopter system
includes sensor faults, actuator faults and component
faults. Component faults represents the changes in the
physical parameters of the helicopter like change in mass,
change in aerodynamic co-efficient, change in centre of
gravity etc., Partial faults such as stuck actuator due
to lack of lubrication, a hydraulic leakage or decrease in
supply voltage results in actuator faults. Sensor faults
comprises reduction in gain, constant offset or bias, sensor
drift etc., A total of five faulty modes are considered
comprising two sensor faults, two actuator faults and a
component fault. The various fault modes are applied as
additive and multiplicative faults to the system which are
considered partial system failures.

The normal and faulty models chosen are

e my(j =1) Normal mode
e ma(j =2) Component fault mode with 20 % change
in mass of helicopter

where v denotes the fault bias vector or the fault scaling
factor of effectiveness representing the faults.

3. INTERACTING MULTIPLE MODEL BASED FDD
SCHEME

8.1 Basic IMM Algorithm

IMM based filter forms the basis for fault detection.
IMM algorithm is a recursive estimator which carries out
switching among various models. The set of models are
chosen as models m;....my, where N denotes the total
number of models. The various steps of IMM algorithm is
detailed as follows.

Step 1: Interaction or mixing of the model-conditioned
estimates: The input to the non-linear filter is acquired by
combining the estimates of all non-linear filters with the
probabilities from previous time instant. The combined
estimate and covariance is given by

Mixing estimate:

20 (k|k) = Z:ﬁi(k|k)ui‘j(l~c), i,j=1..N  (48)

Mixing covariance:
P(klk) = _{Pi(k[k) + [ (k|k) — &:(k[k)]

, (49)
(&5 (k|k) — 2 (k[)] i (k)}i, 5 = 1..N
where
_ mijpi(k)
Mz‘\j(k) = m (50)

The calculation of mixing probability j ;) (k) is done
with mode switching probability matrix m;; which denotes
transition from mode i to mode j and the predicted mode
probability u;(k+1|k). Predicted mode probability s, (k+
1|k) is given by p;(k + 1|k) = >, mijpi(k)

Step 2:Model Conditioned Filtering: A set of non-linear
filters like EKF, UKF in parallel corresponding to different
models is chosen and the individual updated state «;(k +
1|k 4+ 1) and covariance P;(k + 1|k + 1) of models are
obtained.

Step 3: Mode Probability Update: Based on innovation
and the likelihood ratio, mode probability is updated.
The likelihood ratio and the mode probability denotes
the target mode in effect at time k. For fault detection
and diagnosis, both likelihood ratio and mode probability
provides indication of faults occurring in the system. Like-
lihood ratio is calculated based on measurement residual
and residual covariance.
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Likelihood function:

Li(k+1)= Mezp{ij(k +1)'S; (k+1)
’Uj(k‘ + 1)}
(51)
Model probability:
wi(k +1|k)Lj(k +1)
wlk = s oL ey

Step 4: Estimate Combination: The combined state esti-
mate is calculated as a probability-weighted sum of the
updated state estimates from all the filters.

Combined state estimate:

Bk +1k+1) = &;(k+ 1|k)u;(k + 1) (53)
j
Overall covariance:
P(k+1k+1) =Y {Pi(k+1k+1)+
' (54)

[Z(k+ 1k +1) —2;(k+ 1|k +1)]
[Z(k+ 1k +1) — 2 (k+ 1|k + 1)] ;i (k + 1)

3.2 Model Conditioned EKF Filter

Extended Kalman filter is a recursive predictive filter
which operates by propagating the mean and covariance of
state through time. The EKF acts as model conditioned
filter in the IMM-EKF algorithm. The non-linear model
is approximated at mean estimate at time k by using first
order Taylor series expansion. The approximated Jacobian
model F (k) and H (k) are given by

F(k) = <7 frlarr (55)

H(k) = 7 hila(k+11k) (56)
Where f and h are non-linear functions and v/ is Jacobian.
The time update equations for state and covariance are as

follows
i (k+1k) = fr(2(k[k)) (57)
Pj(k + 1k) = F(k)P(k|k)F" (k) + Q(k) (58)
In the measurement update, Kalman gain K (k+1) is com-

puted and the state and covariance are updated according
to Kalman gain and current measurement at instant k.

vj(k+1) = yei1 — hiea (E(k 4 1[F)) (59)
T (k+1|k+1) = 2(k+1][k)+ K (k+1) [yr1—heta (& (k+(1| %)}
1)

Si(k+1) =
Kj(k+1) =

H(k+1)P(k+1|k)HT (k4+1)+R(k+1) (6
P(k+1)H"(k+ 1)[H(k + 1)P(k + 1|k)
H"(k+1)+ R(k+1)!
(62)
Pj(k+1k+1)=[I - K(k+1)H(k+1)P(k+1|k)] (63)
3.3 Model Conditioned UKF Filter

The Unscented Kalman Filter (UKF) is based on Un-
scented Transformations which transforms the probability
density function of non-linear systems through a set of
individual points called sigma points in state space. The

steps of UKF algorithm are detailed further. The (2L +1)
sigma points are computed as

Xk = [2(k|k) 2(k|k) + /(L + X\)P(k|k)

2(k[k) = V(L + A) P(k|k)]

where X = o?(L + k) — L. L denotes the dimension of
state space model. o and k are tuning parameters. a
represents the scaling parameter which determines the
spread of sigma points around mean state where o varies
as 0.0001 < a < 1. Kk = 0 ensures the semi-positive
definiteness of covariance matrix.

(64)

The computed sigma points are transformed via state
update functions as in (65) and the predicted state and
covariance matrix from time instant k to k+1 are calcu-
lated through (66) and (67) respectively.

Xiyrjk = F(k, Xy, ug) (65)
2L
2(k+1|k) = Z W X etk (66)
=0
P(k+ 1|k) = ZW Xi g — 2(k + 1]k)) ©7)

(Xi,k+1\k —&(k+ 1K)+ Q
where the weights in the function are updated as follows

m A
Wy 77[1_’_}\ (68)
A
c_ 1 — o2
Wi = o + (1 -0+ 5) (69)
1

MW= ———— §=1.... 2L

W f 2(L+>\),z (70)

B is the parameter which incorporates the prior knowledge
about the distribution of state. For Gaussian distributions,
5 is set to 2. For time instant k41, the output sigma point
matrix is computed as in (71) and the predicted output is
obtained through (72).

Yirie = H(k, Xpg1jp, ur) (71)
2L

Gk +10k) =D WY ks (72)
=0

The measurement residual for each mode j is computed as
vi(k+1)=2(k+1)—g;(k+1lk),j=1,2,..N (73)
where z(k + 1) signifies the new measurement of active

mode and ¢;(k + 1|k) denotes the predicted output for
mode j.

The output covariance or residual covariance and the cross
covariance matrix are

P,y (k+1]k) = ZW Yi gk — 9(k + 1[k)) )
(Y' w1k — Ok + 1K) + R,
Pry(k + 11k) = ZW Xiprae =2k +11R) o0
(Yi o1k — 9k +1]k)7]
The Kalman gain K (k 4 1) is
K(k+1) = Py (k + 1[k)(Pyy(k + 1|k))~"  (76)
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The updated state and covariance matrix at instant k+1
are
fj(k—‘r”kﬂ-l) = fj(k—Fl‘k)—‘v‘K(k'Fl)UJ(k’-f—l),j = 1, 2, (77])\7
Pj(k+1k+1) = Pj(k+1|k) — K(k + 1) Py, (k + 1|k)~*
Kk+1)T
(78)

3.4 FDD Strategy

In this paper, sensor, actuator and components faults are
detected based on the generation of residuals. Continuous
evaluation of residuals, v; between model conditioned filter
and the measurements is computed.

vi(k+1) = yrr1 — hey1 (2(k + 1[K)) (79)
Under normal conditions, the mean value of residuals
will be closer to zero. When fault occurs, residual value
varies beyond zero based on fault magnitude. In addition,
computation of likelihood ratio, L; is another parameter
considered for fault detection. Likelihood is generally com-
puted using residual and residual covariance.

1 1 rg—1
’Uj(k‘—i‘ 1)}
(80)

The likelihood of normal mode is computed and when
there is fault, the likelihood of normal mode in effect tends
to zero. Likelihood value approaching zero indicates the
occurence of faults. Though these strategies, FDD scheme
computes the type of fault occurred, magnitude of fault
and the time of fault occurrence.

FDD ensures fault occurrence using another statistical
parameter of mode probability at any given instant. Mode
probability vector is computed as

plk+1) =[p(k+1) po(k+1).copn(k+ 1)) (81)
The maximum value of mode probability vector is
Hmaz = maz;{p;(k+ 1)} (82)
and the index j is computed as
Jj = find(i == max(p)) (83)

If ez > HThreshold, then fault has occurred in index
mode j. Otherwise there is no fault occurrence in the
system.

4. RESULTS AND DISCUSSIONS

Simulation studies were carried out for non-linear fault
detection and diagnosis using the model-based state es-
timation techniques, IMM-EKF and IMM-UKF for the
helicopter model. The initial state is assumed at the origin
and system is excited with a step input. Model conditioned
filter designed actively tracks the helicopter states for
any abnormalities in the system response due to faults.
Thus the filter designed gives only the information and
decision of fault occurrence in helicopter. In case fault
occurs, decision on fault occurence is made based on the
measurement residuals generated and on computation of
likelihood ratio. Also the decision to classify the faults
into sensor, actuator and component fault is accomplished
using mode probability. Sensor, actuator and component
faults are simulated and the results are discussed below.
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Fig. 3. Pitch and yaw angle with additive component fault

4.1 Design Parameters

The initial covariance for all possible cases is assumed
to be P = diag{10 10 10 10}. The process and
measurement noise covariance are assumed as @ =
diag{0.002 0.002 0.002 0.002} and R = diag{0.9 0.9}. It
is assumed that the initial mode probability for all models
is % where N = 6 represents the number of modes. The
mode transitions are restricted to normal to normal mode
and normal to fault modes. Since there is non-availability
of prior knowledge of partial faults causing simultaneous
faults, fault to fault mode transitions are not considered.

Thus the transition mode probability matrix is set as

0.958 0.008 0.008 0.008 0.008 0.008
0.042 0.958 0 0 0 0

0042 0 0958 0 0 0 (84)
Tij = 10.042 0 0 0958 0 0

0.042 0 0 0 0958 0

0.042 0 0 0 0 0.958

4.2 FDD Results

Simulation is carried out for 6000 iterations. Various fault
cases are tested with both IMM-EKF and IMM-UKF
filters and the results are plotted together and compared.
The fault cases occurs as abrupt and continuous fault at
time instant ¢ = 2000 and ¢ = 4000 to 4100 respectively.

Component faults. The state, output tracking and fault
diagnosis of non-linear helicopter model with additive
and multiplicative component faults using IMM-EKF and
IMM-UKF algorithm is given in Fig. 2 to Fig. 6. As
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seen from Fig. 3 and Fig. 5 both IMM-EKF and IMM-
UKF continuously tracks the pitch angle and yaw angle of
helicopter. When fault occurs, the change in parametric
values of helicopter mass affects system output instantly
and the increase in pitch and yaw angle is seen as there is a
variation in their corresponding velocities. Since the model
being highly non-linear with cross coupling effects as seen
in Fig. 2, fault in change in mass of helicopter affects all
other system states. Also IMM-UKF tracks faults with
minimum error than IMM-EKF.

The fault detection and diagnosis is carried over with error
residual analysis and the likelihood information. Fig. 4 and
6 illustrates the residual error and model likelihood ratio
of component fault. The results shows the model likelihood
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Fig. 8. Pitch and yaw angle with multiplicative actuator
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ratio provides the reliable fault detection as compared
with residual error since likelihood ration is based on both
measurement residual and residual covariance. Also IMM-
UKF yields better fault detection, as IMM-EKF fails to
detect the presence of additive fault because of its inability
to overcome the non-linearity behavior.

Actuator faults.  Fig. 7 depicts the helicopter output and
fault detection with the occurrence of additive actuator
fault. Effects of incidence of multiplicative pitch and yaw
motor fault is shown in Fig. 8. The front and back
propellers which are actuated by their respective motors
produces thrust forces which makes the helicopter pitch
and yaw angle positive.

The pitch angle and yaw angle output are produced
by pitch and yaw propellers. Actuator faults affect the
propellers resulting in malfunction. A sudden rise in pitch
angle of 1 deg results in deviation from the true path and
the IMM-UKEF algorithm estimates the deviation with an
offset of 0.5 degree compared with 1 degree offset from
IMM-EKF. The likelihood ratio and error residual for
actuator fault is depicted in Fig. 9. The likelihood ratio
responds better to the system faults than the residual error
analysis. IMM-EKF fails to detect the presence of faults
resulting in missed fault detection.

Sensor faults.  Output of pitch and yaw angle due to
variation in voltage to pitch and yaw encoder is shown
as sensor faults in Fig. 10. Sensor faults produces an
offset bias in pitch and yaw angle, making the motors to
exert a higher velocity on the propellers. Again additive
and multiplicative faults cases are displayed, which shows
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Fig. 11. Likelihood ratio and residual of additive sensor
fault

the IMM-UKF tracks the faults occurring in the system
more accurately. Fig. 11 and Fig. 12 shows the results
of likelihood ratio and error residual of additive and
multiplicative sensor fault cases.

Fig. 13 shows the occurrence of additive actuator fault and
continuous sensor fault. It indicates the tracking of pitch
and yaw angle with IMM-UKF providing better estimation
of faults. Mode probability shows the actuator fault mode
in effect at t = 2000 and sensor fault mode in effect from
t = 4000 to 4100.

Fault Detection.  The traditional residual analysis for
the detection of faults uses a threshold bound. A lower
threshold significantly reduces missed fault detection but
increases the rate of false indication of fault occurrence.
Thus fault decision based on residual analysis alone is not

Fig. 12. Multiplicative sensor fault
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Fig. 13. Simultaneous faults

sufficient. To reduce false fault indications, another statis-
tical decision using likelihood ratio is considered for fault
detection. Likelihood ratio calculates the likelihood of each
event with its corresponding residual as well as covariance.
As seen from figures, a more reliable fault detection is
made using likelihood ratio, significantly reducing the false
indication of faults.

Another major advantage that IMM provides is more
reliable FDD information using mode probability update.
As mentioned in sec 3.4, FDD strategy uses detection of
mode probabilities of all modes considered. The model
probabilities by itself provides a meaningful insight of how
likely each fault mode is in effect at a particular instant
of time. The choice of detection threshold is universal in
nature and performance of FDD varies little with respect
to the choice of detection threshold chosen. However, it
is convenient to detect a fault using a detection threshold.
Thus the detection threshold is set to 0.9. The set of model
probability for the different fault scenarios is displayed
in Fig. 14 to Fig. 16. Model probabilities are calculated
for set of models considered and for normal mode of
operation, normal model has a probability of 0.9 and all
other faulty model mounts to a value of 0.1. For the faulty
cases, the faults occurrence at different time instants,
switches the corresponding fault model to a value of 0.9,
indicating the mode in effect at that time. Zhang et al.
(1999) has shown the effect of model probability for a
linearized aircraft model. The model probability results
shown here are taken with the inherent non-linearity of
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the helicopter. The model probability factor indicates a
type of faulty mode in effect at any instant resulting in
the timely identification of the type of fault occurring in
the helicopter. This provides a more reliable fault decision
along with the residual analysis and model likelihood ratio.

Table 1. Comparative analysis of IMM-EKF
and IMM-UKF based on fault tracking

Fault analysis criteria IMM-EKF IMM-UKF
Component fault Less suitable Suitable
Actuator fault Less suitable Suitable
Sensor fault Suitable Suitable
Fault detection Missed Fault Detections  Detects faults
Fault classification Not accurate Accurate
Speed of detection Slower Faster
Multiple models Applicable Applicable
Non-linearity Less suitable Suitable

Table 1 presents the comparative analysis of quantitative
model-based approaches, IMM-EKF and IMM-UKF. The
analysis is based on diagnosis of faults with features asso-
ciated with the model chosen. The features are different
types of faults associated , ability to detect the presence
of faults, capability to classify faults, timely detection of
faults, representation of multiple model and the appli-
cability to nonlinear system for fault identification. In
general, both IMM-EKF and IMM-UKF as presented,
uses residual analysis, stochastic based likelihood ratio
and model probability approaches for fault diagnosis. The
main difference in performance arises due to challenges
posed by inherent non-linearity of helicopter model. EKF
uses linearization around the current mean estimate, the
original inherent nonlinearity is not propagated as such.
When faults occurs in the system, it tends to disrupt the
system with an underlying increase in non-linearity that
occurs due to complex system dynamics. As evident from
the results shown above, this increase in the non-linearity
is neither completely captured nor propagated by IMM-
EKF which leads to the significant performance reduction
in identification of faults. Unlike EKF, Unscented Kalman
Filter propagates the non-linear systems through a set of
sigma points approximating a Gaussian distribution. Thus
the ability to handle fault identification with IMM-UKF
has a significant improvement in terms of accurate fault
classification, speedy detection of faults and nonlinearity.

The results shows the importance of IMM over standard
single model-based filters. IMM clearly has the ability
to handle multiple faults of sensors, actuator and com-
ponents. IMM clearly provides the accurate estimate of
states both in normal and faulty condition. Also switch-
ing between normal and faulty models provides accurate
indication of fault detection. Thus the multiple model com-
bined with UKF allows significant tracking of abrupt and
continuous faults. IMM-UKF enhances the performance
of the system by providing the information pertaining to
faults in the system.

5. CONCLUSION

In this paper, non-linear fault detection and diagnosis for
2 DOF helicopter model is proposed using model based
stochastic state estimation approaches. The approaches
include IMM-EKF and IMM UKF for several fault condi-
tions. The fault diagnosis and classification is based upon
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residual analysis, likelihood ratio and model probability.
The results presented shows that stochastic fault classi-
fication approach yields better fault detection compared
with the residual analysis. Also IMM-UKEF is able to deal
with the inherent nonlinearity of helicopter in a promis-
ing manner. The validation of results shows IMM-UKF
has comparatively higher performance for fault detection,
diagnosis and fault classification of nonlinear systems.
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Appendix A. LIST OF ACRONYMS

FDD - Fault Detection and Diagnosis
FDI - Fault Detection and Identification

FTC - Fault Tolerant Control

DOF - Degrees of Freedom

UAV - Unmanned Aerial Vehicles

MM - Multiple Model

IMM - Interacting Multiple Model

KF - Kalman Filter

EKF - Extended Kalman Filter

UKF - Unscented Kalman Filter

ESMF - Extended Set Membership Function
NUIO - Non-linear Unknown Input Observer
AHC - Actuator Health Co-efficent



