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Abstract: This paper performs a critical analysis of five fuzzy control solutions dedicated to Anti-
lock Braking Systems (ABSs). The requirements in ABS control are clearly stated to help the 
analysis. The detailed mathematical model of controlled plant is derived and simplified for control 
design with focus on tire slip control. A new fuzzy control solution based on a class of Takagi-
Sugeno fuzzy controllers is proposed. This class of fuzzy controllers combines separately designed 
PI and PID controllers corresponding to a set of simplified models of controlled plant linearized 
in the vicinity of important operating points. Simulation results validate the suggested fuzzy 
control solution in controlling the relative slip of a single wheel. 
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1. INTRODUCTION 
 
Anti-lock Braking Systems (ABSs) play a key 
role in the complex steering systems for modern 
cars [12]. The main requirement in ABS control 
systems (CSs) is the prevention of wheel-lock 
during braking to ensure high friction and 
maintain the steer ability of the car. The ABS 
control solutions can be grouped in two 
categories, wheel acceleration control and tire 
slip control, associated to several actuator types. 
The first category solves the tire slip control 
indirectly by controlling wither the wheel 

deceleration / acceleration or the braking torque 
commanded by the driver [16]. Widely used 
approaches in the second category include 
reaching the maximum friction point based on 
the measurement of wheel’s the angular velocity 
and brake pressure [6], feedback linearization 
[18], model-based hybrid controllers [9], LQ 
controllers [9], robust PID controllers [8, 25], 
gain scheduling [25] or fuzzy controllers [14]. 
 
Modelling the controlled plant is a very 
important stage in designing an ABS controller. 
Even if a simplified model is available, it can 
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provide valuable information about the system’s 
main parameters, like time constants, delays, the 
stable / unstable character or the factors that can 
influence the stability. The literature generally 
suggests a simplified mathematical model, the 
so called quarter-vehicle model [4, 11, 16, 19, 
20, 26, 27]. This model has the advantage that 
ignores the interactions between the four wheels 
and the vehicle’s body, and also the additional 
phenomenon that complicates it. However, the 
literature ignores the effects of mass shift in 
longitudinal direction towards the front of the 
vehicle and in the lateral direction when the 
vehicle is cornering. The mass shift leads to an 
increase of normal force on the front wheels 
and/or on the wheels situated outside the 
cornering. Most of the results reported in the 
literature ignore these effects and the 
modification of the normal force is seen as a 
simple noise. Therefore, it is important to 
present the detailed controlled plant (CP) model 
in this paper and this presentation is one of the 
paper goals. 
 
Due to the linear dependence of each rule on the 
input variables of the fuzzy controller (FC), the 
Takagi-Sugeno fuzzy controllers (TS-FCs) [28] 
are good interpolating supervisors of multiple 
linear controllers applied to different operating 
conditions of nonlinear CPs. The TS-FCs are 
extremely well-suited to play the role of 
bumpless interpolators between the linear 
controllers applied across the input space; 
therefore, these controllers are natural and 
efficient gain schedulers [23]. These are the 
reasons why it is suggested here a new class of 
TS-FCs that performs that merges a set of PI or 
PID local controllers. For the design of the local 
controllers it employed here a benchmark which 
involves a simplified nonlinear model that 
describes the slip dynamics for a wheel [26]. In 
the first step, by linearization of the friction 
curves in the vicinity of important steady-state 
operating points there are obtained 64 first-order 
lag plus time delay models of the CP 
representing local linear models. Next, the local 
controllers meant for controlling these local 
linear models are developed in terms of a 
frequency domain approach. 
 
The paper is organized as follows. The 
following section deals with the presentation of 
the requirements in ABS control accompanied 
by the derivation of CP’s mathematical model 
further simplified aiming its use in control 
design. Then, section 3 is dedicated to the 

critical analysis of five fuzzy control solutions 
dedicated to ABS control. Section 4 offers 
details on the original fuzzy control solution 
based on a class of TS-FCs presenting the 
controller structure and design. The theoretical 
approach is validated in section 5 by digital 
simulation results in case of a TS-FC controlling 
the relative slip of a single wheel, and the 
conclusions are drawn in the final section. 
 
 

2. REQUIREMENTS IN ABS CONTROL 
AND MATHEMATICAL MODELS OF 

CONTROLLED PLANT 
 
The requirements in ABS control are important 
because they represent targets to be followed in 
the control design and allow the assessment of 
control system performance indices. Using 
authors’ experience and [3], these requirements 
can be arranged as follows: 
- optimal brake torque after the tire-road 

friction coefficient (µ)-jump from low to 
high has to be reached in less than 500 ms. 
Slip controller must not be bottle neck. Fast 
µ-estimation and accurate reference speed 
needed to satisfy this requirement, 

- the brake control for forward driving must 
work over the whole vehicle velocity range 
down to standstill, 

- there should be an ABS for backward 
driving, 

- the brake control has to guarantee stability 
and controllability (by steering) for any 
road surface, 

- the ABS has to show full performance in 
the temperature range from –20°C to 
+120°C and must not fail below –20°C, 

- a build-up of oscillations due to (chassis) 
vibrations must be avoided, 

- priorities of requirements for ABS when 
driving at high speeds: 1. vehicle stability, 
2. braking distance and 3. comfort, 

- priorities of requirements for ABS to brake 
in straightforward direction: 1. braking 
distance, 2. vehicle stability and 3. comfort, 

- priorities of requirements for ABS to brake 
on µ-split: 1. braking distance, 2. vehicle 
stability, 3. steer ability, 4. lateral 
displacements from the centre of the track 
have to be less than 0.5 m, 5. comfort. 

 
To derive the mathematical model of controlled 
plant it is important to observe that a crucial 
physical parameter that influences the braking 
process is the adherence of the tire-road system, 
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characterized by µ. This coefficient depends 
mainly on the state of the road, (dry, wet, etc.) 
but also on the longitudinal slip of the tire 
against the road referred to as the relative slip, λ. 
When the braking force exceeds the adherence 
offered by the wheel-road contact, the wheel of 
the car begins to slide. The relative slip is 
defined in terms of (1): 
 

vRvvvv /)(/)( wheel ω−=−=λ ,        (1) 
 
where: v – longitudinal velocity of the vehicle 
(car), vwheel – tangential velocity of the wheel, ω 
– angular velocity of the wheel, R – outer radius 
of the wheel. 
 
There are several models that approximate the λ-
µ curve. In literature, the most known are 
Pacejka’s magic formula and Lu-Gre Model, 
which is a result of a study done in cooperation 
by two universities, Lund Institute of 
Technology and Grenoble Institute of 
Technology. In [27], some equations are 
provided to describe the dependence between 
the longitudinal slip and the friction coefficient, 
as follows (see Fig. 1): 
 
- for dry asphalt: 

]0026.0)1(07.1[9.0 2773.0 λ−−=µ λ−e , 
- for wet asphalt: 

]0006.0)1(07.1[7.0 5.0 λ−−=µ λ−e , 
- for snow: 

]0003.0)1(07.1[3.0 1773.0 λ−−=µ λ−e , 
- for ice: 

]0003.0)1(07.1[1.0 38.0 λ−−=µ λ−e . 
 
In [10], the Pacejka's magic formula is stated as: 
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where x is the slip angle, f(x) is the output force, 
Sx and Sy are shift factors which locate the centre 
of magic formula curve relative to the origin and 
B, C, D and E are coefficients chosen to fit 
measured tire data. These four coefficients 
modify the shape of the curve. A few “rules of 
thumb” are now stated as: 
 
- the peak of the curve occurs at f(x) = D, 
- the initial slope of the curve is given by the 

product BCD, 

- B is related to the location of the peak along 
the x-axis, 

- E controls the shape of the curve in the 
vicinity of the peak. 

 
In practice, the effects of the coefficients are 
more complicated as they all have secondary 
effects. A much more detailed discussion of the 
parameters is given in [24]. 

 
A Lu-Gre model according to [21] deals with 
the dependence of friction on velocity. This 
model is focused on the definition of a pseudo 
steady-state expression for the absolute value of 
friction force as: 
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where: 
 
 

 
 

Fig. 1. Tire-road friction coefficient (µ) versus 
relative slip (λ). 
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All the models give an approximation in case of 
the four so-called standard surfaces, already 
mentioned: dry asphalt, wet asphalt, snow and 
ice. The models admit that there is a maximum 
in the λ-µ curve, somewhere around 12 % for 
dry asphalt. Since there is a maximum at 12 %, 
it is easy to observe that the maximum possible 
deceleration is obtained at this relative slip, 
which is, in general, an important ABS 
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requirement associated to the requirements 
presented here. 
 
Besides the longitudinal λ-µ curve, there is 
another characteristic that describes the lateral 
friction coefficient depending on longitudinal 
slip. This second coefficient is very important 
for the stability of the vehicle. In Fig. 1 one can 
see that if the longitudinal slip increases, the 
lateral coefficient dramatically decreases, which 
eventually leads to a loss in vehicle’s stability. 
This unwanted phenomenon is easier to notice if 
the braking is done during cornering. If one or 
both rear wheel lock, the vehicle will start 
spinning. 
 
The quarter vehicle model is proposed in [26, 
27] related to Fig. 2. It starts with the well-
known Newton relationship: 
 

amF = ,           (5) 
 
where: F – friction force, m – vehicle’s mass, a 
– vehicle’s acceleration. The friction force Ff 
has the form (6): 
 

GFf µ= ,           (6) 
 
where: µ – friction coefficient, G = m·g – 
vehicle’s weight, m – vehicle’s mass and g – 
gravitational acceleration. From (5) and (6), by 
equalizing the forces (in module), one obtains: 
 

mamg =µ .           (7) 
 
By dividing to the vehicle’s mass, the modulus 
of acceleration’s value is obtained: 
 

ga µ= .           (8) 
 
Regarding the wheel, the forces that occur and 
the corresponding parameters are shown in Fig. 
3. The total torque is given in (9): 
 

 
 

Fig. 2. An object’s interaction with the ground. 

 
 

Fig. 3. The wheel’s geometry and its contact with the 
ground.. 

 

sf FrFRM −=Res ,          (9) 
 
so the wheel’s equation can be immediately 
found: 
 

Sf rFRFJ −=ω& .        (10) 
 
The friction force of the brake pad, FB, can be 
written in the form (11): 
 

BActBB SpF µ= ,        (11) 
 
where Bµ  is the friction coefficient between the 
brake pad and the discus (not to be mistakenly 
taken as the friction coefficient between the tire 
and the ground), pAct is the pressure from the 
hydraulic system and SB is the contact surface 
between the brake pad and the brake discus. Of 
course, in electric brakes (like Electro Magnetic 
Brake  also known as EMB or Electronic Wedge 
Brake also known as EWB), the pressure is no 
longer relevant (as in hydraulic brakes) since the 
actuators are electrically driven and thus the 
power conversion is done to N directly, without 
having the pressure as a relevant value any 
longer. 
 
The vehicle’s dynamics during braking can be 
expressed in terms of (12): 
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with: m – 1/4 of vehicle’s total mass,  – 
friction coefficient between the braking discus 
and the wheel, and some parameters in (12) are 
variable with respect to time. 

Bµ

 
The same mathematical model, written in 
different ways, is suggested also in [4, 17, 19, 
20]. In [15] it is taken into account the increase 
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of the normal force on the front wheel and the 
decrease in the rear wheels, but do not take into 
consideration the vehicle’s dynamics during 
cornering. The total tractive force, denoted by 
Ftot, is represented as the sum in (13): 
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Because of the vehicle’s geometry, the static 
normal forces for the front tire and rear tire are 
Fzf1 and Fzr1, respectively: 
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Concluding, the state-space mathematical model 
can be expressed as: 
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where x1 represents the distance, x2 is the 
vehicle's speed, x3 = wf, x4 = wr, and the 
parameters in (15) represent: a and b – distance 
from centre of gravity to front and rear axle, 
respectively, hs, hf and hr – height of sprung 
mass, front unsprung mass and rear unsprung 
mass, respectively, mtot – total mass of the 
vehicle, ms – sprung mass of the vehicle, mf and 
mr – front and rear unsprung mass, respectively, 
Jf and Jr – moment of inertia of the front and 
rear wheel, respectively, Rw – radius of tire, Te – 
engine torque, kbr – brake displacement 
proportionality constant. As one can easily see, 
the result is a nonlinear mathematical model, 
much more complicated than the quarter vehicle 
model. However, this model still does not 
account for the weight shift due to cornering. In 
this model it is assumed that the car is braking in 
straight forward direction. 
 

The actuator is generally neglected. Only few 
papers mention it and give a simplified model of 
the actuator. In [26] a continuous-time model is 
given with the transfer function (16): 
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In [19] a hydraulic system is presented: 
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where  and  are the control signals, 
which can take values between 0 and 1, 
depending on the corresponding valve being 
open or closed, P

idC
1 idC

2

b is the output hydraulic 
pressure, Pp is the pump pressure, Plow is the 
reservoir pressure and A1,2 are the orifice areas 
of hydraulic valves. In [29] a first-order lag 
model for an actuator dedicated to aircraft 
braking systems is suggested. 
 
These actuators work in a range of forces (for 
passenger cars) between 0 and 30 kN, all of 
them are non-linear mechanical elements 
characterized by delays and other limitations 
(like limited increase). A linear mathematical 
model is incorrect and incomplete. However, for 
a limited range they can provide an accurate 
response and can be used in the design phase. 
 
A simplified model of the braking wheel as CP, 
similar to (12), under the action of brake torque 
and ground contact reaction force was proposed 
in [26] and will be used here: 
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where Tb = u is the brake torque (control signal), 
µb the friction coefficient in the brakes, τ the 
time delay, and α, β and γ are positive constants 
resulting from the physical parameters of the 
car. The following values of CP parameters will 
be considered in the sequel: r=0.3 m, α=1500, 
β=1 and γ=10. For simplicity it is assumed that 
µb=min(ω/ε,1), for small ε >0, and the signals ω, 
v and µH (the maximum road-tire friction 
coefficient) can be measured / estimated. 
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In order to simplify the TS-FC design the 
nonlinear model (1), (18) will be linearized in 
the vicinity of a steady-state operating point 
A0(v0, ω0, λ0, µ0), where the lower index 0 
applied to a certain variable highlights the 
steady-state value of that variable. Only the 
nonlinear components will be linearized here 
except for µb(ω(t)) which will be approximated 
to 1 in the control design: 
 

1))(( =ωµ tb .         (19) 
 
Next, (1) can be written in its equivalent form: 
 

)()()()( trtvttv ω+λ= .        (20) 
 
Linearizing the product in (20) in the vicinity of 
A0 and differentiating the result (with respect to 
time), the linearized form of the second equation 
in (18) can be expressed as: 
 

)()()()1( 00 trtvtv ω+λ=λ− &&& .       (21) 
 
But, the nonlinear component µ(λ(t)) can be also 
linearized around A0: 
 

000 ))(())(( µ+λ−λ=λµ tmt ,       (22) 
 
where m0 represents the slope of the tire friction 
curve at the considered operating point A0: 
 

0
)d/d(0 A
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The substitution of the expression (22) of 
µ(λ(t)) into (18) in the condition (19) leads 
to the modified version of (18) expressed in 
terms of (24): 
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Then, (24) is substituted into (21) and the 
linearized model of wheel dynamics can be 
expressed as: 
 

)()()()( 11 tdtukttT +τ−=λ+λ& ,      (25) 
 
with the parameters k1 and T1 expressed in (26): 
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       (26) 

and the disturbance input d(t) expressed as: 
 

)/()()( 0000 rmmtd βµ−λ= ,       (27) 
 
with the remark that it is necessary the choice of 
A0 such as 00 ≠m . 
 
Taking into consideration the fact that the slope 
m0 can take positive or negative values, the rest 
of parameters in (26) take only positive values, 
it comes out that the parameters k1 and T1 will 
take positive or negative values. So it will be 
accepted in the sequel two model types for the 
wheel dynamics in tire slip control. The unified 
expression of these model types in zero initial 
conditions outlines the CP transfer function, 
P(s): 
 

)()()()( sdsusPs +=λ ,       (28) 
 
and the expressions of this transfer function for 
the two model types are: 
 
- in case of : 00 >m

)1/()exp()( PP sTsksP +τ−= ,       (29) 
 
- in case of 00 <m : 
-  

)1/()exp()( PP sTsksP +−τ−= ,      (30) 
 
where kP, TP and τ are the CP gain, lag time 
constant and time delay, respectively. The 
parameters kP and TP can be derived calculating 
the absolute value in (31): 
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The linear models (29) and (30) represent 
widely used first-order lag plus time delay 
models. Challenging design problems, reported 
in [22], arise in case of (30). Since the new class 
of TS-FC to be presented in section 4 will merge 
several local PI / PID controllers, for the design 
of these local controllers devoted to the local 
models (29) / (30) of CP it is necessary to derive 
local models valid in the vicinity of significant 
operating points. For the choice of the operating 
points it must be highlighted that µ0 does not 
appear in (31) so it is sufficient to calculate the 
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slope m0 for several values of µH (Fig. 1). The 
operating points are characterized by the 
following sets of steady-state values: µH ∈ {0.1, 
0.3, 0.7, 1}, λ0 ∈ {0.05, 0.1, 0.2, 0.3}, v0 ∈ {1, 
10, 20, 30}. So, there will result 64 local models 
of the CP, of type (29) or (30). 
 
 

3. FUZZY CONTROL SOLUTIONS 
 
Most of the fuzzy control solutions analyzed 
involve just fuzzy control [4, 16, 29] or fuzzy 
logic combined with genetic algorithms [15, 16, 
19] or fuzzy logic combined with sliding mode 
[17]. This section is dedicated to a short analysis 
of currently used fuzzy control solutions in 
ABS. 
 
In [4] a method is proposed to determine the 
friction coefficient between the tire and the road 
and the solution for this was a Kalman filter. 
Two Mamdani fuzzy logic blocks are included 
to the control loop. The first block determines 
the optimum relative slip for braking in order to 
ensure the maximum friction coefficient and it 
uses two input linguistic variables (LVs): 
 
- the calculated relative slip with three 

linguistic terms (LTs), 
- the estimated friction coefficient µx with 

five LTs, 
and one output LV, the road type, with five LTs. 
The second fuzzy block, a Mamdani fuzzy 
controller, employs two input LVs: 
- the control error with five LTs, 
- the derivative of control error with five 

LTs, 
-  

and one output LV, the pressure, with six LTs. 
The results reveal a good behaviour for high-µ 
surfaces; however, in the case of lower friction 
surfaces oscillations occur. However, if there is 
a transition from wet surface to snow, the 
overshot of the slip is quite small; the slip 
reaches a maximum value of 30 %. However, 
there is no measurement for a transition from 
dry asphalt to ice and from ice to dry asphalt. 
These two situations are very important when 
judging the overall performance of an ABS. 
The mathematical model of CP in [15] is the 
most detailed compared to similar literature. 
However, the actuator is not described but it is 
neglected. The suggested controller involves a 
combination between fuzzy logic and genetic 
algorithms using a genetic algorithm in tuning 
the fuzzy controller parameters. Two controllers 

are implemented, one for the front wheels and 
one for the rear ones. The population of the 
genetic algorithm consists of 20 members. Each 
member of the population contains all 
parameters of the fuzzy controllers. In order to 
decide which chromosome is the best one, a 
fitness function is used: 
 

∫ +
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rf ttete
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where  and  stand for the control error in 
case of front and rear wheel, respectively. The 
performance of each chromosome is tested using 
the same environment for 2 seconds. The best 
two chromosomes are kept into the next 
population. Crossover and mutation are applied 
to the chromosomes in the mating pool. The 
algorithm takes care of keeping the coherence of 
the fuzzy rules into the parameters of the new 
population. 

fe re

 
The main disadvantage of the solution proposed 
in [15] is the big number of simulations in order 
to achieve good results. For each chromosome, a 
whole simulation must be run. Since there are 20 
chromosomes, for each generation, 20 
simulations must be performed. Considering the 
fact that the authors needed 248 generations, one 
could calculate the total number of simulations: 
20 x 248 = 4960. Besides this huge number of 
simulations, a considerably computational effort 
is needed also for the crossover and mutation of 
the new generation. In this particular case, the 
complete operation was performed 247 times. 
On the other hand, the results do not show the µ-
jump results or the measurements done for low- 
µ. From practical point of view, this method 
can't be used. It's impossible to tune an ABS 
algorithm like this on a real car, because it's 
practically impossible to have 4960 identical 
tests in order to determine the best chromosome 
combination. 
 
The paper [29] suggests a fuzzy controller with 
three input LVs, road type, current slip and 
predicted slip. The road type is determined by an 
algorithm that works as a state machine, which 
can provide the four types of road, i.e. the 
standard surfaces mentioned in the previous 
section. The controller takes the type of the 
estimated road and, depending on it; it applies 
some fuzzy rules for each situation. The 
interesting part is that not all combinations are 
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taken into account, only those that are 
considered to be relevant (the well-accepted four 
ones). But, if the current situation is not found in 
the fuzzy rules database, the output is the last 
control signal. The controller involves also the 
calculation of a compensation value that 
multiplies the control signal. 
The results reported in [29] prove exhibit strong 
oscillations, beyond the accepted range in 
normal passenger car. However, in this case the 
ABS works on a military jet plane and the 
comfort is not the main concern. Even so, from 
the performance point of view, the big 
oscillations lead to a dramatic reduction of 
braking performance and thus to an increase of 
the braking distance. Besides, also the actuator 
could have a much shorter life. 
 
In [17] the inclination of the road in modelling 
the CP is accounted for. Due to this factor, the 
normal force is modified and the mathematical 
model of CP becomes more complex. The so-
called self-learning fuzzy sliding mode 
controller consists of four blocks: the fuzzy 
controller, the adaptive law that perform on-line 
tuning of fuzzy controller parameters, the robust 
controller that handles model uncertainties, and 
the bound estimation algorithm necessary in the 
implementation of a sliding mode-like behaviour 
of the fuzzy control system. The results that 
were presented reveal a very large overshot 
(around 50% slip, which means about 500 % 
overshot) in the beginning then the system is 
stable. Also, a transition from high to low µ is 
shown, but from the system's response one can 
see that the actuator is completely disregarded; a 
real mechanical system could not provide a 
decrease of approx 900 Nm to 0 practically 
instantly, which is totally unrealistic. 
 
The paper [19] suggests a TS-FC using three 
inputs: the slip, its derivative and the vehicle’s 
deceleration. A genetic algorithm is employed in 
tuning the fuzzy controller parameters, where 
the chromosomes performance function is: 

( )( )
2

)]()([∑ λ−λ=λ
=

simt

ot
robj tttF ,       (33) 

with λr – reference input (desired value of 
relative slip). The genetic algorithm is run in 
parallel with two separate populations of 50 
chromosomes with the probability to crossover 
pc and mutation pm under the supervision of a 
roulette wheel selection mechanism. In order to 
avoid losing the best solutions, the best 
chromosome is used into the next population. 

The results presented in [19] are compared with 
the ones using a PI controller in identical 
conditions. The PI controller results reveal very 
high oscillations especially at low speeds, and 
the TS-FC results prove smaller oscillations and 
also a better braking distance. A very interesting 
detail is that the output torque seems to be 
limited to a certain value. However, this is not a 
proper way to implement an algorithm since a 
real vehicle can have different loads due to 
passengers or the luggage. Also, a transition 
from a downhill road to a horizontal road even 
at medium speeds can lead to a certain increase 
in the vehicle’s load so the upper limitation in 
the requested brake torque is not acceptable. On 
the other hand, [19] suggests the tuning to be 
done using a genetic algorithm. 
 
As it was shown earlier, a real vehicle cannot be 
tuned like this because it is really impossible to 
have a huge number of identical tests. The 
majority of fuzzy control solutions reported in 
the literature work only in simulated 
environments. Therefore, it is necessary to 
suggest new fuzzy control solutions capable to 
work in real-time. One such solution will be 
presented in section 4. 
 
 

4. A CLASS OF TAKAGI-SUGENO 
FUZZY CONTROLLERS 

 
The suggested CS structure, dedicated to tire 
slip control has the structure presented in Fig. 4 
and it is based on the measurement / estimation 
of the signals {µH, v, λ} available from the CP. 
The other elements in Fig. 4 are: λr – reference 
input, e = λr – λ – control error. It can be seen 
that the relative slip λ plays the role of 
controlled output. For the sake of simplicity the 
measuring elements and the estimators are 
accepted to belong to the CP. 
 
The design of TS-FC starts, as already 
mentioned, with the design of local controllers 
to control the local CP models of type (29) or 
(30). In the first phase there are designed 
continuous-time controllers, PI controllers for 
(29) and PID ones for (30) in the frequency 
domain using the approach in [22]. Next, the 
discretization of continuous-time PI and PID 
controllers is done resulting in the incremental 
version of quasi-continuous digital PI / PID 
controllers expressed in the unified form (34): 

)( kfkekPk feeKu α+α+∆=∆ ,      (34) 
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where ek is the control error, ∆ek=ek–ek–1 and 
∆uk=uk–uk–1 stand for the increment of control 
error and control signal, respectively, and fk is 
the derivative term. The parameters KP, αe, and 
αf depend on the discretization method and 
sampling period Ts = 0.005 s for the accepted 
benchmark. In the case of the PI controller αf=0. 
In the case of the PID controller, the derivative 
term fk is obtained in terms of the recurrent 
equation (35): 
 

211 2 −−− +−+−= kkkkk eeeff .       (35) 
 
The suggested structure for the class of TS-FCs 
is presented in Fig. 5 and it contains the block 
B-FC representing the fuzzy controller without 
dynamics and the blocks with dynamic needed 
to be inserted to the structure. In the initial 
phase, the fuzzification is done in terms of the 
membership functions presented in Fig. 6. The 
block B-FC employs the MAX and MIN 
operators in the inference engine, and the 
weighted sum method for defuzzification. 
 
A complete rule base of 64 rules with the 
general form (36) assists the inference engine in 
the block B-FC: 
 
 

 
 

Fig. 4. Tire slip control system structure. 
 
 
 

 
 
 

Fig. 5. Takagi-Sugeno fuzzy controller structure. 
 

 
 

Fig. 6. Input membership functions. 
 
 

)),
((  THEN

)(  AND  )(  AND

)(  AND  )(  AND
)(  AND  )(  IF

kf

kekP
i
k

v

Hfk

ekek

f
eeKu

LTLTv

LTLTf
LTeLTe

α+
+α+∆=∆

=λ=

=µ=
=∆=

λ

µ

∆

      (36) 

 
the upper index 64,1  , =ii , corresponds to the 
index of the local model of CP for which the 
digital PI / PID controller was designed. 
 
It should be outlined that the paper suggests a 
class of TS-FC because it can involve other 
parameters in all modules of B-FC. These 
modifications are of great interest in order to 
compensate for controlled plant nonlinearities 
and to further ensure control system 
performance enhancement. 
 
Fig. 6 illustrates the specific parameters of the 
TS-FC, tuned by the modal equivalence 
principle, referred to also as parallel distributed 
compensation, connected to the coordinates of 
accepted operating points. In these conditions 
the following values of TS-FC parameters were 
obtained: BµZE=0.1, BµZE=0.3, BµZE=0.7, 
BµZE=0.9, BvZE=1, BvZE=10, BvZE=20, BvZE=29, 
BλZE=0.05, BλZE=0.1, BλZE=0.2, BλZE=0.25, 
Be=0.2, B∆e=0.2, Bf=0.2. The parameters Be B∆e 
and Bf depend on the universes of the variables 
ek, ∆ek and fk, respectively, and were calculated 
to ensure the scaling factors which are not 
shown in Fig. 5. 
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Summarizing the results presented before, the 
design method for the new class of TS-FCs 
consists of the following steps: 
- step 1: choose the significant operating 

points of the CP, linearize the mathematical 
model around these points and express the 
local linearized models in the forms (29) or 
(30), 

- step 2: using a conventional design method 
(e.g., the frequency domain approach), tune 
the continuous-time local PI controllers 
dedicated to (29) and (30), respectively, 

- step 3: choose a sufficiently small sampling 
period Ts accepted by quasi-continuous 
digital control and take into account the 
presence of a zero-order hold, 

- step 4: discretize the continuous-time local 
PI / PID controllers and compute the 
parameters KP, αe and αf in (34), 

- step 5: set one TS-FC from the class of TS-
FC in terms of choosing the operators 
involved in the inference engine, the 
membership function shapes, scaling 
factors and defuzzification method, 

- step 6: apply the modal equivalence 
principle to calculate the TS-FC 
parameters. 

 
 
5. CASE STUDY. DIGITAL SIMULATION 

RESULTS 
 
The validation of the fuzzy control solution 
presented in the previous section is done 
considering a case study characterized by the 
simplified mathematical model in terms of (1) 
and (18) corresponding to the CP involved in 
tire slip control, as part of an ABS control 
system. 
 
The CS structure is presented in Fig. 4. The 
parameter values in the case study were 
presented in section 2, together with τ=0.014 s 
and ε=0.001. 
 
The TS-FC is designed according to the design 
steps presented in section 4. For the accepted 
case study, the simulation scenario consists of 
feeding a reference input λr=0.015 (acceptable 
for several surfaces), and the braking is started 
on a high friction surface (µH=0.9 for 0.9 s). 
Next, a low friction surface is encountered 
(µH=0.1 for the next 1.5 s), and the braking is 
finished on a medium friction surface (µH=0.5 
for the final 0.6 s). The initial value of v is set to 
v0=25 m/s. Part of the digital simulation results 

corresponding to the fuzzy control system with 
TS-FC is presented in Fig. 7 and Fig. 8. 
 
 

6. CONCLUSIONS 
 
The paper suggests an original fuzzy control 
solution dedicated to relative slip control. The 
solution consists of a class of Takagi-Sugeno 
fuzzy controllers and a design method. 
 
The fuzzy control solution is backed up by the 
presentation of the detailed mathematical model 
of CP in ABS control accompanied by its 
simplification to enable the control design. A 
critical analysis of current approaches employed 
in fuzzy controlled ABSs presented in this paper 
emphasizes the necessity for fuzzy control 
solutions capable of being implemented in real-
time control of modern cars. 
 

 
 

Fig. 7. Relative tire slip (λ) versus time. 
 

 
Fig. 8. Control signal versus time. 

 
The solution presented here in a very simple 
form (with 64 local controllers merged in the 
TS-FC although there can be used more, 80 at 
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least depending on the performance of the 
automotive embedded systems that equip the 
cars) meets this necessity and preliminary tests 
done with the new brake-by-wire braking 
system, called Electronic Wedge Brake (EWB) 
confirm the control system performance 
enhancement. The fuzzy control solution 
described in section 5 fulfils the requirements in 
ABS control highlighted in section 2. 
 
Further research will be focused on real-time 
experiments and the reduction of rule base that 
may result in other classes of fuzzy controllers 
with supplementary features [1, 7]. On the other 
hand, since the controlled plants in audio signal 
processing have the same structure but with 
smaller time constants [2, 5, 13], the authors’ 
intention is to design fuzzy controllers for these 
plants, too. 
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