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Abstract: The article presents a discrete rule-based optimal control (D-RBOC) algorithm, as an 
alternative to known solutions for discrete time optimal control of a double integrator plant, which is the 
simplest positioning process. The algorithm was designed for a double integrator system, with the step 
response invariant discretization, using rules developed for the movement in the state space. The 
comparison of the proposed solution with fhan solutions, which are widely spread in the literature, proves 
the correctness of the former. The article shows that the developed D-RBOC behavior is very close to 
other optimal regulators. Because in the real physical system implementation, the control loop is affected 
by time delay due to processing, conversions, transport, etc. in the second part of article, the D-RBOC 
algorithm is adapted for this situation. The adaptation is based on time delay compensation and can also 
be used for other optimal control algorithms. The experiments were performed with two dSPACE 
systems. 

Keywords: Time-optimal control, rule-based controller, delay compensation, positioning systems, 
discrete-time systems. 

1. INTRODUCTION 

The optimal transition problem of a system from one state to 
another, or in particular, the time-optimal control problem, 
associated to servo-systems, is addressed in the specialized 
literature for a long time. Textbooks on continuous time 
optimal control from the 70s and 80s introduce, as case study, 
the time-optimal control of a double integrator plant 
considering the limitation of the control signal amplitude 
(Athans and Falb, 2007; Sage and White, 1977; Weinrich, 
1973). 

According to (Gao, 2004), in 1999 a solution appeared for the 
discrete time time-optimal control of a double-integrator 
plant considering the limitation of the control signal 
amplitude. The solution, based on isochronic regions, is 
designed in (Gao, 2004), and its applications in servo control 
systems is carried on in (Gao and Hu, 2004). The 
aforementioned articles are comparing the advantages of 
discrete time versus continuous time control considering the 
physical realizability and cvasicontinuity of the control signal 
and the robustness of the system with respect to 
measurements and various other types of noises. The main 
aspects of the discrete time servo-systems' capability of 
following a reference signal are also analyzed. 

The discrete time optimal control algorithm from (Gao, 2004) 
is known in literature as fhan (.,.,.,.) because of (Han, 2009), 
that gathered a large number of citations. 

Fhan algorithm’s starting point is the use of a discrete time 
model for the double integrator plant. This is obtained from 
the continuous time model, using for the derivatives the 
Newton’s difference quotient approximations. 

In 2010, in the context of the proposal of „A Complementary 
form of the Discrete Tracking-Differentiator” in (Li, 2010), 
and the presentation of an „Optimal control synthesis 
function of a discrete-time system” in (Sun, 2010), a discrete 
time model is used for the double integrator plant that 
considers the control signal as a staircase function with steps 
at the sampling moments. This type of signal accurately 
replicates the shape of the control signal in digital control. 
The derivation of discrete time models for this type of input 
signals, known as invariant realization to step signal of 
systems, is considered in numerous books like (Ackerman, 
1983) or (Astrom and Wittenmark, 1997).  

The result from (Sun, 2010) was generalized in 2015 in 
(Peng, 2015) using the same discreet time model, for a 
double integrator plant. 

Recently, in (Dragomir and Cîmpeanu, 2018) is emphasized 
that the solution from (Gao, 2004) is suboptimal due to the 
discretization procedure for the double integrator plant 
(forward finite difference). By applying the fhan control 
signal to a double integrator plant obtained with the invariant 
realization to step signal method, it can be seen that the 
system has permanent oscillations in the vicinity of the 
steady state position. In order to avoid the oscillations, the 
authors corrected the fhan algorithm, using isochronic 
regions, in the proximity of the steady state position, for the 
last two steps.  

By analyzing the time-optimal control laws as they appear in 
(Athans and Falb, 2007; Sage and White, 1977; Weinrich, 
1973; Gao, 2004), it can be seen that they use distinct 
calculus formulas of control signal u, dependent on x1Ox2 

state space. Let an arbitrary region i, [x1, x2]
T be the current 
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state of the process in this region and fi(x1,x2) the compute 
formula of the control signal in the region. In this case, the 
optimal controller manages the different formulas in the 
x1Ox2 plane through an ensemble of rules of the type: 

IF  [x1, x2]
Ti  THEN  u=... fi(x1,x2) (1) 

In this context, it can be stated that time optimal controllers 
of the double integrator plant are „rule-based optimal 
controllers” (RBOC). They are classified as „continuous-time 
rule-based optimal controller” (C-RBOC) and „discrete-time 
rule-based optimal controller” (D-RBOC). In this paper a D-
RBOC algorithm is proposed. 

This paper proposes a time-optimal control algorithm for the 
double-integrator plant, modeled using the invariant 
realization to step signal method and proposes a solution for 
time delay compensation, delay that appears in physical 
implementations.  

Next, the structure of this paper is: the introduction of the 
models used for the double integrator plant (Chapter 2), the 
derivation of the formulas for the optimal control law 
(Chapter 3), the synthesis of the new D-RBOC (Chapter 4), 
the comparison between the effects of the new D-RBOC and 
the ones from previous studies (Chapter 5), the new D-RBOC 
algorithm extended for time delay systems (Chapter 6) and, 
finally, some conclusions (Chapter 7). 

2. DOUBLE INTEGRATOR PLANT 

2.1 Continuous time model 

The state space equations of the double integrator plant are: 
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In (2) tR+ is the time. Usually, the variables x1 and x2 mean 
position and speed respectively, while the input u is 
associated to acceleration. x1(0) and x2(0) are the initial 
conditions of the plant. 

Considering u(t)=uo=const., the state trajectories x2(x1) are 
either descending parabolas (when uo<0), straight lines (when 
uo=0) or ascending parabolas (when uo>0), like in Fig. 1. 

Parabolas 1, …, 2, 4, …, 5 have the equations (3), and 
straight lines 3 and 3 have the equations (4). 
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Considering the state trajectories in Fig.1, it is important to 
emphasize the following: 

i) If uo has small values, the parabolas have a wider opening 
and if uo has large values, the parabolas have more pointed 
shapes (curves 1 and 1 versus curves 2 and 2 etc.). 

ii) For a fixed uo we obtain a family of parabolas that, 
depending on x1(0) and x2(0), can be obtained one from 
another by translating along Ox1 axis (pairs 1 - 1, 2 - 2, 4 - 
4, 5 - 5 represent this kind of families). Any parabolas 
family fully covers the state space. 

iii) For a family of parabolas corresponding to a fixed value 
of uo, the movement on all the segments of the trajectories 
that have projections of equal length on the Ox2 axis, uses the 
same amount of time. In Fig. 1, the movement on both arcs 
MN and PQ uses the same amount of time, as the trajectories 
1 and 1 belong to the same family and their projection on 
Ox2 axis is the segment AB. 

iv) For two parabolas’ families corresponding to two fixed 
values of uo, uo < uo, the movement on the segments of 
the trajectories that have the same projection length on Ox2 
axis, is faster on trajectories of parameter uo than on 
trajectories of parameter uo. E.g. in Fig. 1 arc MN is covered 
faster than arc RS. 

v) The movement direction along trajectories 3 and 3 is 
established by the sign of x2(0). 

vi) If d and d are two straight lines that pass through the 
origin of the x1Ox2 plane, then the movement on any 
trajectory 3 and 3 between d and d is performed in the same 
amount of time. 

Further on, the state trajectories (3) that pass through the 
origin of the x1Ox2 plane (when u=r, r being the maximum 
value of u) are called straight paths. The evolution of the 
current point on the straight paths is described by (5). 
Consequently, the initial state on straight paths must fulfill 
the condition (6): 
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Fig. 1. Simple state trajectories of system (2) when u(t)=uo:{1, 1, 2, 2} for uo<0, {3, 3} for uo=0, and {4, 4 5, 5} for uo>0. 
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2.2 Discrete time model 

For the digital control of the double integrator plant (2), the 
control signal u(t) is a staircase function like (7), generated 
by the digital to analog converter by processing the control 
sequence (8) sent at moments tk=kh, kN. The parameter 
h>0 is the sampling step generated by the control device. 
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The behavior of the double integrator plant at sampling time 
tk is described by equations (9):  
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The system (9) represents the invariant realization to step 
signal of system (2). As u(t) is constant within the time 
interval t[kh,(k+1)h) and is equal to uk*, the points (x1(kh), 
x2(kh)) and (x1((k+1)h), x2((k+1)h) will be found always on 
the boundary of a segment of a trajectory like in Fig. 1, 
corresponding to the control uk. Consequently, the statements 
i) – vi) are valid mutatis mutandis also for system (9). 

For a simplified presentation, the equations (9) will be 
rewritten using for state and input signals, scaled 
dimensionless variables (10) obtained by dividing variables 
(9) with the base values (11), where r is, according to (12) the 
absolute maximum value of u(t):  
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The system (13) with the restriction (14) is obtained:  
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If at the input of the system (13) the constant control 
sequence {uk}={u0=uo, u1=uo, u2=uo, ... , un-1=uo} is applied, 
the states will move through points of the trajectory (15), 
homologous of trajectory (3), and eventually will reach the 
state [x1,n, x2,n]

T given by (16):  
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3. THE SYNTHESIS OF D-RBOC FORMULAS 

The objective of time-optimal control is to generate the 
control sequence {uk}kN={u0, u1, u2, ...} under restriction 
(14), so as the process (13) reaches the steady state [0, 0]T 
from any initial state [x1,0, x2,0]

T, in a minimum number of 

steps. This means that the number of values in the control 
sequence has to be minimal.  

Using scaled values, the equation of a straight path is (17). In 
Fig. 2 are represented with black lines the straight paths (of 
parameter uk=+1 or u(t)=+r), and with red line other 
trajectories that pass through the origin.  

2
21 ,k,k xx   (17) 

 

Fig. 2. State trajectories of system (1) passing through the 
origin. 

Let P(x1,k,x2,k) be the notation for the point into the state space 
where the system is currently found. From this point on, the 
system evolves under the control signal uk. In order to 
establish the proper value of uk that has to be applied at the 
input of the plant (13) to reach the steady state in minimum 
time, four curved regions are marked within the plane x1Ox2 
(Fig. 3), relative to the straight paths (17), and the Ox1 axis. 
Two of them are represented striped and two are clear. The 
striped regions include the boundaries as well. The steady 
state O(0,0) does not belong to any region.  

 
Fig. 3. Curved regions, generic points and the evolution 
tendencies of states for every region. 

The generic positions of the point P in these four regions are 
noted as P1, ..., P4. The types of control signals that can be 
taken into consideration for a minimal time control are 
indicated in each region from Fig. 3, based on the 
assumptions from section 2. Thus: 
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 For P1 and P3 points, the approach towards steady state will 
be done with maximum acceleration over the simple 
trajectories of type 1 and 4, by applying uk = -1, respectively 
uk = 1 (Fig. 1). This conclusion leads to rule R3, respectively 
rule R4 from the algorithm (25). 

 For P2 and P4 points, the approach towards steady state will 
be done through the points over the trajectories composed of 
arcs. The arcs are obtained by alternating in different time 
intervals, the control signal uk in sequence ..., -1, u*, 1, ... 
around the point P4, respectively in sequence ..., 1, u*, -1, ... 
around the point P2. The value u* represents a control that 
abides the restriction (14). 

In order to establish the control strategy for the point P4, the 
representation in Fig. 4 will be used. The figure shows 
comparatively 3 particular evolutions in two steps of the 
system (2), provoked by a control sequence {u0, u1} applied 
when the system is placed in the point P4. If the control 
sequence {u0, u1}={1, -1} is applied, the system eventually 
gets to the state Q1. If the control sequence {u0, u1}={0, 0} is 
applied, the system eventually gets to the state Q2, and if the 
control sequence {u0, u1}={-1, 1} is applied, the system 
eventually gets to the state Q3. The points P4, Q1, Q2 and Q3 
are collinear. For a minimal time control strategy, the concern 
is that the points Qi , i = 1, 2 or 3, to be as close as possible to 
the straight path (16), in our case, the trajectory x1,k=x2,k

2, 
respectively the point Q, where the line P4Q3 crosses the 
straight path. As it can be seen, the most favorable case 
corresponds to control sequence {u0, u1}={-1, 1}. 

 

Fig. 4. Alternative state trajectories for the system (13) 
evolution being initially in state P3. 

This can be generalized as follows: when the control 
sequence (18), formed of j values of -1 and j values of 1, is 
applied to the system (13) found in the point P4, the system 
gets on a point Qm belonging to the segment P4Q (Fig. 5). 

{u0, …, uj-1, uj, …, u2j-1} = { -1, …, -1, 1, … , 1}              (18) 

Proceeding with the previous reasoning, it can be concluded 
that in order to obtain a time-optimal control, the value of j 
must be selected such as the point Qm to be placed on the 
closed segment P4Q closest to Q, and then, from Qm, the 
system to move on the straight path OQ towards the steady 
state. Considering both statement iii) from section 2a and the 
fact that the control sequences equal to 1 determine 
movement on trajectories SQm and OQ, it follows that the 
transition from S on the straight path OQ is more 

advantageous than movement on the trajectory SQm followed 
by a transition from Qm to the straight path. The explanation 
is that the movement on the same distance on Ox1 is faster 
with greater speed x2 and the reference to the start point P4 is 
no longer necessary. 

Consequently, in the case of point P4, the solution of the 
minimal time control problem can be reduced to the 
identification of the moment when the system state can be 
considered to have the characteristic of the point S, i.e. the 
moment when with a control uj[-1, 1] the system can reach 
the straight path (17). The situation is exemplified in Fig. 6. 
The segment RR contains all the points (states) the system 
can reach from the point S with uj[-1, 1]. In order to 
continue the move in minimal time, a control signal must be 
applied to get the system in point R.  

 

Fig. 5. State trajectory P4SQm when control (18) is applied. 

 

Fig. 6. Possible evolutions from point S when control      
uj[-1, 1] is applied. 

Let [x1,j, x2,j]
T be the state corresponding to the point S. The 

position of the point S regarding the straight path (17) has the 
property  

02
21  ,j,j xx .                                                                    (19) 

The system transition from S to a point on the segment RR 
is described by the equations: 
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In order to determine the values of uj that provide the 
transition, it is taken into consideration that in positions R, R 
and R one has respectively: 
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The value of the control uj is obtained from (21.2) after 
replacing x1,j+1 and x2,j+1 with the equations (20). The second 
order equation has the solutions: 

uj = j,j,j, xx.x. 212 25050   .  

The only acceptable solution (such that ]1,1[ju ) is: 

j,j,j,j xx.x.u 212 25050   .                               (22) 

Likewise, for the point P2 in Fig. 3: 

)xx(.x.u j,j,j,j 212 25050                            (23) 

The formulas (21) and (22) are integrated in rules R7 and R8 
of the algorithm (25). 

Note: Let nS be the number of steps n in which the system 
(13) reaches from point P4 to point S. It can be calculated by 
observing that the arcs P4S and QmS in Fig. 5 are symmetrical 
to the vertical line that passes through the point S. 
Considering that the point P4 has the coordinates (x1,k, x2,k)

T, 
the point Q will have the coordinates ((x2,k)

2, x2,k)
T, and the 

point S the coordinates (0.5 (x2,k)
2, x2,nS)

T. Thus, according to 
first equation in (16), the following equation is obtained: 
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Likewise, for the point P2: 
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The results can be used to approximate the number of steps in 
which the system reaches the steady state.  

4. D-RBOC CONTROL LAW 

The D-RBOC control law, which is the subject of this paper, 
is intended for the real time implementation of the closed-
loop control structure from Fig.7. Fig.7.a emphasizes the 
main elements of the physical structure, while Fig.7.b. 
contains the algorithmic elements. 

Due to measurement and calculus errors, the evolution of the 
plant (13) on the straight path, has only theoretical value. In 
reality, the system will move only on nearby trajectories. In 
this context, in order to reach the steady state, when the 

system gets near it on nearby trajectories, the first two rules 
of the algorithm developed in the paper (Dragomir and 
Cîmpeanu, 2018) will be used. Using the current notations, 
these two rules are: 

  

 
Fig. 7. The structure of the minimal time control system  
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These two rules provide the reach of the steady state in one or 
two steps, when system state is nearby the origin, into the 
region obtained from the graphic interpretation of the premise 
of the two rules.  

The new D-RBOC proposed in the present paper, referred as 
PM (proposed method), adds to that two rules, based on the 
reasoning from the chapter 4, the following 6 rules: 
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The rule R3 is applied for the region in Fig. 3 where P1 is 
placed, while rule R4 for the region where P3 is placed. The 
rule R5 is used for the region where P4 is placed, if the 
applied control signal does not take the system in a position 
of the P3 type (inside the striped area). Alike, the rule R6 
refers to the region where P2 is placed, if the applied control 
signal does not take the system in a position of the P1 type 
(inside the striped area). The rule R7 corresponds to the 
situation when the system is in a position of P4 type and it can 
move on a straight path (17), and the rule R8 when the state 
of the system corresponds to a point of P2 type and it can 
move on a straight path. 

Fig. 8 illustrates, as examples, the results obtained with the 
proposed algorithm in two numerical applications: 

- Case 1 (left images): x1,0 = 1000, x2,0 = 8, h = 0.1 s, r = 2, 
t[0, 7] s; (x1(0) = 10, x2(0) = 1.6). 

- Case 2 (right images): x1,0 = -150, x2,0 = -18, h = 0.25 s, r 
= 3.2, t[0, 14] s; (x1(0) = -15, x2(0) = -14.4). 

Fig. 8.a contains variations of x1(t) and x2(t) in absolute 
values, while Fig. 8.b in scaled values (x1,k, x2,k). In Fig. 8.c 
are presented the state trajectories with x1 and x2 in absolute 
values, in Fig. 8.d the control u(t) in absolute values, and in 
Fig. 8.e the sequences of rules activated in time. Thereby, in 
the case 1 the sequence of rules activated is R3, R5, R7, R4, 
R7, R4, R2, R1, and in the case 2, the sequence is R4, R6, 
R8, R3, R2, R1. 

       
-a- 

      
-b- 

   
-c- 

            
-d- 

             
-e- 

Fig. 8. Case 1 (left), Case 2 (right). 

Note: Regarding the interpretation of the curves like the ones 
from the figures 8, one must ignore the linear interpolation 
performed by the graphical representation environment, 
between the sampling points. 

5. COMPARISON BETWEEN THE CONTROL 
METHODS   

In this chapter, the PM control is compared with the CM 
(Dragomir and Cîmpeanu, 2018) control and it is shown that 
the former performs better in simulations. The PM is also 
compared with Peng’s method (Peng, 2015), and it is shown 
that even if the PM implies a simpler mathematical 
framework, the simulation results are very similar. 

5.1 Comparison between the effects of the PM control and 
CM control 

In (Dragomir and Cîmpeanu, 2018) a digital time-suboptimal 
control algorithm is presented, referred further on as 
„corrected fhan control law”. This algorithm noted as CM 
(corrected method), corrects the control algorithm in (Gao, 
2004), called „fhan control law”, within the regions where R1 
and R2 rules of (24) are activatable. The CM algorithm 
contains the three rules that in scaled values become:  
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Further on, the behavior of the system using PM and CM 
controllers is illustrated through numerical examples. 

- Case 3 (Fig. 9): x1,0=-1, x2,0=-1, h=0.25 s, r=3.2, t[0, 1] 
s; (x1(0) = -0.1, x2(0) = -0.8). 

The results obtained with PM and CM are identical as the 
transitory regime takes place within the areas of R1 and R2. 
In the left figure, the variations of states x1,k, k{0, 1, 2, 3, 4} 
and x2,k, k{0, 1, 2, 3, 4} appear in scaled values, in the right 
figure, the state trajectories x2,k (x1,k,) appear also in scaled 
values, and in the lower figure the control signal u(kh), 
k{0, 1, 2, 3, 4} appears in absolute values. 

- Case 4 (Fig. 10): x1,0 = -3, x2,0 = -2, h = 0.25 s, r = 3.2, 
t[0,2] s; (x1(0) = -0.3, x2(0) = -1.6). 

In this case there are differences between the two systems. 
All figures are represented in scaled values. In the central 
diagram, the differences between the values of x1, x2 and u 
(PM-CM) appear as functions of scaled time (number of 
steps). They were noted as delta-x1, delta-x2 and delta-u. 

 

Fig. 9. In case 3 the control laws PM and CM lead to 
identical results. 

- In Fig. 11 case 2 is reloaded: x1.0 = -150, x2,0 = -18, h = 
0.25 s, r = 3.2, t[0, 14] s; (x1(0) = -15, x2(0) = -14.4).  

The left figure presents the variations of the state variables in 
time, while the right figure the state trajectories. The blue 
curves correspond to the PM while the red curves correspond 
to the CM. They indicate that the differences appear after 8 
sec. and in the PM case, the system reaches the final state one 
second faster than in the CM case. Thus, the new control 
assures a faster evolution. The lower figure illustrates the 
differences delta-x1=x1,k-PM - x1,k-CM, delta-x2=x2,k-PM – x2,k-CM 
and delta-u=uk-PM - uk-CM  in scaled values.  

 

Fig. 10. In case 4 the control laws PM and CM lead to 
different results. 

 

Fig. 11. The comparison of the effect of PM and CM 
algorithms in case 2 from Fig. 8.  

5.2 Comparison between the PM and Peng’s method 

In scaled values, the control algorithm from (Peng, 2015) 
takes the three rules form from (28): 

k,k,k,c

k,ck

k,ckk,c
k

k,k,c

kk,c

k,ckk,c

kk,c

xaxx

,x

xfixx
fix

xu

where

,u,u

,uu,u

,u,u

21

2

)1(
2

1

181
2

1

),sgn()(
2

1

)(1

1

1HENT1IF:3R

HENT1IF:2R

1HENT1IF:1R








 





















   (28) 



74                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

In (28), a is a positive parameter (a > 0) and fix(x) rounds x to 
the nearest integer in the direction of zero. For a = 0, one can 
obtain the algorithm from (Gao, 2004) and for a = 0.5, the 
algorithm from (Sun, 2010).  

For a = 0.5, the RBOC algorithm (28) obtains the 
corresponding form of the double integrator system (9). 

Next, the steps through which in (Peng, 2015) the algorithm 
(28) is obtained for a = 0.5 are described as a synthesis. 
Unlike the form developed in (Peng, 2015), in which it is 
operated with absolute states and control signals values, 
below only scaled values are used. 

i) The points set from which the origin ([0, 0]T state) can be 
reached by the double integrator system in k steps, by 
applying the control signals ui = 1, i = 0, … , k-1 or ui = -1, i 
= 0, … , k-1 contains the points a+k=[k2, -k]T and a-k=[-k2, k]T. 

ii) The segments set )1j(jaa  , jN, (denoted G) defines a 

broken line that passes through the origin. If the current point 

[x1,k, x2,k]
T is contained by the segment  )1(  jjaa and u = + 

1, then the next point, [x1,k+1, x2,k+1]
T is contained by Q, that is 

the segment )2()1(  jj aa . 

iii) If the current point [x1,k, x2,k]
T is found on the segment 

01aa , then by applying the control signal u = -x2,k, the 

system state is brought to the origin. 

iv) Starting from the fact that according to equations (13) 
between the current point [x1,k, x2,k]

T and the next point [x1,k+1, 
x2,k+1]

T there is the following relation x1,k + x2,k = x1,k+1 - x2,k+1, 
it results that the double integrator system can transit from 

the current state on the segment 1ppaa  or on the segment 

)1(  ppaa , by applying the control signal  
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v) Because of the condition u[-1, 1], the values of u are 
adjusted through saturation to the interval [-1, 1]. In the case 
when p = 0, the formula of u is reduced to the one from iii). 

The results from above can be obtained by substituting a = 0 
in (28). 

As it was noted in the section 1, the solution from (Peng, 
2015), represented by D-RBOC (28) and the solution (25), 
described above, conduct to very similar results. This is 
underlined by Fig. 12, referring to case 1 and 2 from Fig. 8. 
Figures a, b and c show the differences between the values of 
x1, x2 and u obtained using D-RBOC (25) and D-RBOC (28).  

 

All the values are given in absolute form. In both cases, the 
difference delta-u takes values of under 1% from r, with the 
exception of two moments when the difference is approx. 6-
8%. Figure d presents the successions in which the three rules 
R1, R2 and R3 of algorithm (28) are used. 

Fig. 13 reproduces the differences delta-x1, delta-x2 and 
delta-u, in the same manner as Fig. 12. The reduced number 
of sampling steps from the case 3 permits a clearer 
underlining of the differences that appear when using 
algorithms (25) and (28). 

    

-a- 

    

-b- 

   

-c- 

    

-d- 

Fig. 12. Comparisons in Case 1 (left) and Case 2 (right) 
between the D-RBOC (25) and D-RBOC (28) with a=0.5. 
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Fig. 13. Comparisons in Case 3 between the D-RBOC (25) 
and D-RBOC (28) with a=0.5. 

6. THE EXTENSION OF D-RBOC ALGORITHMS FOR 
DOUBLE INTEGRATOR WITH TIME DELAY  

The D-RBOC algorithms presented in previous chapters were 
designed under the assumption of an ideal digital 
implementation. This means that at the sampling moments 
three operations are performed consecutively: i) acquire the 
values of the states x1 and x2, ii) calculate the value of the 
control uk from these values, iii) apply at the plant input a 
control signal equal to u(t)=uk. Fig. 14 suggests this operating 
mode. The vertical lines represent the moments the 
operations are performed: blue for operation i), red for 
operation ii) and green for operation iii). 

 
Fig. 14. Control signal generation for an ideal digital system. 

Real digital implementation of these algorithms differs from 
the ideal one. The most important difference is due to the fact 
that between operation i) and iii) comes up a time delay : 

 < h.  (29) 

The operating mode is illustrated in Fig. 15. Unlike the one in 
Fig. 14, the control value, computed from the values of the 
state variables x1,k and x2,k taken at kh moments, is applied at 
kh+ moments, when x1 and x2 have the values x1,k+/h, 
respectively x2,k+/h. The quantity k+(/h) is the scaled value 
of kh+ divided to h. The k+(/h) moments are marked in the 
figure with brown lines. Consider the notation: 

h

    (30) 

 

Fig. 15. Approximation model of the control signal 
generation in case of a real digital system.  

Applying the D-RBOC algorithms in the context of a real 
digital system can lead to the loss of optimality or 
suboptimality characteristics, the system becoming 
oscillating or even unstable. Thus, the D-RBOC algorithms 
have to be extended in order to fulfill the practical 
implementation conditions. 

From the point of view of continuous time systems, the new 
situation imposes to use, instead of (2), the system: 
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The discrete time model associated to (31) as invariant 
realization to step signal at kh moments, based on 
(Ackerman, 1983) or (Astrom & Wittenmark, 1997) is: 
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In (32), x3 is an auxiliary state variable due to the time delay. 
According to the last equation, for x3 the same base value as 
for u will be chosen. The list (10) of base values becomes: 
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In scaled values, the system (32) becomes: 
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For [kh, kh+] time interval, when u(t)=uk-1, as it appears in 
Fig. 15, computing as in equation (9), from the first two 
equations (34) one can obtain the equations (35). In scaled 
values, they become (36).  
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Fig. 16 describes the implementation technique of this result. 
DI is the double integrator with the time delay block that 
runs after equations (31). C represents any of D-RBOC 
controllers calculated in the previous sections. It operates 
with x1,k+α and x2,k+α calculated with formulas (36). C* is the 
digital compensator, that compensates the effect of the time 
delay. It contains, apart from the controller C, the blocks that 
perform the dividing operations (1/x1b and 1/x2b), the block 
that performs the reverse of dividing operation (ub) and the 
block that model the equations (36). The values calculated 
with (36) are written in red. The DAC and ADC converters 
are not shown here, considering that the conversion 
parameters are equal to 1. 

To emphasize the effect of the time delay compensation, the 
structure in Fig.16 was implemented on two dSPACE 
modules like in Fig.17. On dSPACE 2 the plant was 
implemented through equations (2), and on dSPACE 1 D-
RBOC (24)-(25) was implemented. All the models work with 
scaled values. In order to obtain real physical signals between 
boards as in (10) and (9), both modules have blocks that 
convert „scaled value  absolute value” and „absolute value 
 scaled value”, according to equations (10), (11) and (33). 
Lack of synchronization between the internal clocks of the 
modules, the algorithm computing time and the time needed 
for conversions introduce an equivalent time delay whose 
exact value is unknown (Ştefan et al., 2010). It must be 
measured and approximated. The compensation solution is 
valid for a constant value of the time delay . In case of a 
time varying delay , an adaptive compensation is necessary.  

 
Fig. 16. Block diagram of the implementation of D-RBOC 
with time delay compensation. 

 
Fig. 17. Block diagram of the implementation structure in 
Fig. 16 with two dSPACE modules. 

In Fig. 17 and Fig. 16 were noted with (1), (2), (3), (4), (5), 
(6) and (7) the points where the signals were recorded. The 
experiments were affected by perturbations due to 
electromagnetic interference.  

Fig.18 and Fig.19 present experiments performed with the 
following setup: r = 2 V; h = 0.5 s, i.e. x1b=0.5rh2 = 0.25, x2b 
= rh = 1, ub = r = 2 with initial conditions  x1,0 = 15; x2,0 = -3. 
Signals in Fig. 18 shows the situation when the time delay is 
not compensated (α=0). The effect is oscillations of variables 
in the system. The control signal switches between the upper 
and lower limits r = -2 V and r = 2 V. 

As the value of the time delay  is not known, experiments 
were made for many values of α[0, 1). In Fig. 19, the results 
of two of these experiments for α = 0.4 and α = 0.9 are 
presented. During the process, the time delay compensation is 
different. For α = 0.4 the compensation is weak. The behavior 
is still a strongly oscillating one, and the control signal 
switches between limits. However, the oscillation amplitudes 
of x1 and x2 are reduced. For α = 0.9, the compensation is 
more effective. The oscillations are very reduced. The 
notations x1r and x2r indicate, by index r, that the values of x1 
and x2 are scaled, measured after a double conversion D/A – 
A/D within the dSPACE modules. 

 

 

Fig. 18. The behavior of the system in Fig.17 in case α = 0 
(time delay is not compensated). Signals u, x1 and x2 are 
taken from points (7), (1), respectively (2). 
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Fig. 19. The behavior of the system in Fig.17 in cases α = 0.4 
(left) and α = 0.9 (right). The signals u, x1r and x2r are 
obtained from the points (7), (1), respectively (2). 

This conclusion encourages the increment of α to 0.95. The 
results are given in the left column of Fig. 20. Comparing the 
results for α=0.95 with the results for α=0.9, one can observe 
a better compensation of the time delay.  

Stopping the experiments at this point, it can be concluded 
that for the implementation from Fig. 17, when h = 0.5 s, the 
time delay is: 

 = αh = 0.950.5 = 0.475 s. (37) 

In the right column of the figure, the results are depicted 
comparatively in case: r = 2 V; h = 1 s, i.e. x1b=0.5rh2 = 1, 
x2b = rh = 2, ub = r = 2, α=0.9 and the initial conditions 
x1,0=15; x2,0=-3. Because for the chosen initial conditions the 
state variable x1 can determine values for the physical electric 
signals that exceed the voltage domain of the converters [-10 
V, 10V], the moment 0 of these time diagrams was chosen 
after all the interface signals returned into this interval and no 
limitations occurred.  

On the last two diagrams on every column of Fig. 20, the 
pairs of signals {x1,k, x1,k+α} and {x2,k, x2,k+α} are overlapped. 
They were noted {x1, x1c}, respectively {x2, x2c} and were 
expressed as scaled values. The diagrams highlight the 
evolution of the time delay compensation.  

  

  

  

  

  
Fig. 20. The behavior of the system in Fig. 17 in case α = 
0.95, h=0.5 (left diagrams) and α = 0.9, h = 1s (right 
diagrams). The signals u, x1r, x2r, x1, x2, x1c, x2c are obtained 
from the points (7), (1), (2), (3), (4), (5), (6). 

Comparing both columns of Fig. 20, obtained for different 
values for h and close to each other values of the parameter α, 
it can be seen that for h = 1s and α = 0.9 the results are 
getting worse. The explanation is that an overcompensation is 
obtained, D-RBOC acting as  = αh = 0.91 = 0.9 s.  

In order to confirm the value of  , more experiments were 
performed for h = 1 s. Using the compensation coefficient α 
= 0.475, the results from Fig. 21 are obtained. They correct 
substantially the results in case h = 1 s and α = 0.9, bringing 
them closer to the results from the left side of Fig. 20. 
Consequently, it can be stated that the time delay is 
approximately  = 0.475 s. 
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Fig. 21. The behavior of the system in Fig. 17 in case α = 
0.475, h=1 s. Signals u, x1r, x2r, x1, x2, x1c and x2c are taken in 
points (7), (1), (2), (3), (4), (5), respectively (6). 

Moreover, it can be observed that operating with αh=const. 
for  = const., the value of h has an influence over the system 
behavior. In these conditions, it seems feasible adopting the 
value of h > , so that α [0, 1) has a value as big as possible. 

7. CONCLUSIONS 

The discrete time optimal control of a double integrator plant, 
with limitation of the control signal domain, can be 
performed with the rule-based controller designed in this 
paper. It uses as a starting point the invariant realization to 
step signal of a double integrator plant.  

The proposed algorithm conducts to very similar results as 
two other solutions available in the literature, making it a 
novel alternative. Like the case studies from this article 
illustrate, the obtained system’s behavior is very close to the 
one of the control system that uses the general form from 
(Peng, 2015), form which through particularization provides 
the function from (Sun, 2010). As opposed to (Peng, 2015), 
our method implies a more intelligible and intuitive way of 
operating in the state space. 

Just like in other time optimal control, the implementation of 
the solution in real situation is associated with the occurrence 
of time delay that alters the behavior of the control system. 
The effect of the time delay can be compensated by 
modifying the optimal control signal from the ideal case 
(without time delay). The feasibility of the proposed solution 
is proved both theoretically and experimentally on a system 
comprised of two dSPACE modules.  
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