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Abstract: Extended state observer (ESO), which works with the augmented state variable of the 

nonlinear system, is proposed and employed to straightforwardly reject disturbances by the online 

disturbance reconstruction (estimation) and attenuation technique under the active disturbance rejection 

control (ADRC) scheme. Focused on more precise disturbance estimation on unknown high order 

perturbation signals or fast-varying disturbances, which are difficult to be dealt with by most of 

traditional ESO, yet widely emerging in practical application control systems, a novel global robust 

finite-time ESO is designed and expounded for rapidly and accurately tracking such internal and external 

disturbances. The proposed approach employs finite-time control theory and compensation control 

method by means of the sliding mode switching term to ensure that the state variable estimation error can 

converge in finite time to zero for various forms of system disturbances. The corresponding stability 

analysis is presented in terms of the Lyapunov method. In addition, the validity of the robust finite-time 

ESO is verified via simulations and revealed to be more effective than the traditional linear and nonlinear 

extended state observer. 

Keywords: Extended state observer, total disturbance, sliding mode control, finite-time stability. 

 

1. INTRODUCTION 

In physical systems, various forms of disturbances and 

uncertainties, or their superposition, are ubiquitous, however, 

it may bring about unpredictable adverse effects on control 

performance, let alone instability of the system (Gao, 2014; 

Chen, 2016). Robust and adaptive control methods have been 

the main focus of many recent studies on controller design 

for such systems (Xie, 2000; Jiang, 2015). Although, the 

common prerequisite for these approaches is to acquire a 

fairly accurate mathematical model of the control system, or 

to limit the uncertainty to a sufficiently small range. In fact, 

the accuracy of physical system models and the magnitude of 

uncertainties often exceed the assumptions. An effective 

solution is to estimate the impact of uncertainty or 

interference from measurable variables, and then take 

measures to compensate this impact based on these estimates. 

Compared with uncompensated feedback control systems, a 

smaller gain is allowed. There are a number of observers used 

for online estimation, such as disturbance observers (Ohishi, 

1987), extended state observers (Han, 2009; Gao, 2003), 

unknown input observers (Guan, 1991), equivalent input 

observers (She, 2011), neural network observers (Abdollahi, 

2006) and so on. All above disturbance observers are 

different in modeling information of the plant and 

assumptions made for the stability, but they have been proved 

to be effective practical solutions. Particularly expounding is 

that conventional observers need to obtain the disturbance 

contained in the system based on a pre-established accurate 

mathematical model excluding the ESO method (Zheng, 

2009). Therefore, the leaved question of dynamic uncertainty 

has not been dealt with completely (Miklosovic, 2006; Tian, 

2009). 

Extended state observer (ESO), which plays an important role 

in the active disturbance rejection control theory and 

technical method first proposed by Han in (Han, 1995), has 

been well applied in the design of output feedback controller 

(Huang, 2000; Gao, 2001; Guo, 2016) because of the ability 

to estimate the undetermined system nonlinearities, dynamic 

uncertainties and the unknown external disturbances (Tian, 

2007; Li, 2016; Guo, (2017a,b); Huang, 2017). For practical 

applications (Wang, 2013; Qi, 2016), the linearized and 

parameterized LESO, as a special case of the NESO, was 

proposed in (Gao, 2003). The ESO is much more effective by 

reasonably chosen nonlinear functions and related parameters 

(Wang, 2003; Han, 2009; Li, 2012; Wu, 2019; Zhao, 2015b), 

nevertheless, the observer requires rarely information about 

the plant model, only the input and output signals and the 

relative order of the control system. In ADRC framework, 

due to the estimated disturbance totality and the ingenious 

feedback, the remarkable performance of the nonlinear 

system control can be achieved, which also depends on the 

efficiency of ESO. 

With the increasing significance of the ESO-based control 

methods, a large number of analysis results of the 

convergence of the observer are discussed (Yang, 2009; Yoo, 

2006; Zheng, 2007). Furthermore, the convergence and 

stability of multiple forms of ESO or ESO-based control 

methods are also discussed in (Guo, 2011a, 2012, 2013, 2015; 

Pu, 2015; Zhao, 2015a, 2016, 2017, 2018; Wu, 2016, 2019). 

Although the traditional ESO has made great progress in 
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theory and practice, it has not achieved enough high precision 

performance (Mado ń ski, 2015; Xiong, 2015), especially 

when the disturbance is complex with a higher order and fast-

varying disturbance quantity. And another unsatisfying 

feature is either infinite time convergence or else convergent 

to a region of the error equation for tracking disturbances, 

which are also usually limited to constant and slow changing. 

The reason lies in that the derivative of the lumped 

disturbance in the observed system is not zero. In this paper, 

our solution is to find a method to eliminate the disturbance 

and ensure the finite time convergence, so that the 

observation error can be reduced to zero, and then improve 

the estimation capability, instead of adjusting the parameters 

on the basis of the original ESO design. As we all know, 

convergence performance is an important indicator of the 

observer, and the rapidity and tracking ability under various 

forms of disturbances are the eternal criteria to evaluate the 

design of the ESO (also applicable to other disturbance 

observers). In practical applications, the equivalent system 

disturbance mostly contains the composite time-varying 

disturbance of various components. Hence, robustness and 

convergence are fundamental problem in the design and 

analysis of extended state observer, with which this paper 

concerned.  

From the perspective of robust control, variable structure 

control (VSC) (Utkin, 1992; Zinober, 1994) can provide an 

effective estimation of the unknown part by means of 

equivalent control method. Inspired by the desirable 

properties of this approach, a new robust finite-time 

convergence extended state observer reconstructing with an 

integral-like chain structure by the discontinuous function is 

proposed in this paper. The basic principle of the ESO is 

derived from the following three steps. Firstly, the first time 

derivative of total disturbance is treated as an expanded state. 

In this way, the new type of integral chained observer is 

established for the new extended system, and the obtained 

observation error equation contains uncertainties. Secondly, a 

non-smooth control law is designed to make the initial 

observation error value reach the selected sliding surface in a 

limited time. Once the equivalent control is achieved, the 

uncertainty in the first step is estimated and compensated 

appropriately. Finally, combining the homogeneity theory, a 

finite-time control law is chosen for the error equation 

convergent to zero in the absent of uncertainty.  

The main contribution of this paper is the novel ESO 

proposed with excellent accuracy in terms of robustness to 

external and internal disturbances (namely total or lumped 

disturbances) and finite-time convergence to zero. 

i．Benefiting from the advantages of variable structure 

control and finite-time control theory, the proposed observer 

shows higher precision of online disturbance reconstruction 

compared with traditional ESO, which is mainly manifested 

in the convergence of error to zero.  

ii．For fast-varying disturbances, and even high order 

polynomial-type disturbance, the approach in this paper can 

also be suitable and effective instead of the ESO bandwidth 

increasing sufficiently larger. The linear or nonlinear ESO 

can only estimate the extended state variable with zero 

steady-state error in case of invariant disturbances, while the 

method discussed can still track accurately more complex 

perturbations such as ramp-like or sinusoidal-like signals.  

iii．Another distinctive feature is that it is easy to 

design and tune for practical applications, which provides an 

idea for designing efficient observers in the future.  

The rest of the paper is organized as follows. The considered 

problem of ESO is described and some preliminaries are 

presented in Section 2. The design and analysis of proposed 

finite-time extended state observer are expounded in Section 

3. Numerical simulations are performed to verify the 

performance of the designed extended state observer in 

Section 4. At last, In Section 5, this paper is concluded. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

Considering the following n-dimensional SISO (possibly 

nonlinear) system 

 (1) 

The state equation of system (1) can be concisely described 

by 

 (2) 

where  is the measured output, the control input ,  the 

external disturbance, and is possibly an unknown system 

function. Here, is called total disturbance which can be 

denoted by . 

Assuming that the total disturbance function is differentiable, 

we can chose a new state as 

 (3) 

with 

 (4) 

then an expanded system is established as 

 (5) 

Referring to (Guo, 2011b), the ESO is designed as a 

Luenberger state observer in the form of  

 (6) 
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where  denote the observer gains to be 

designed, and  denote the linear or 

nonlinear functions which are appropriately chosen to 

estimate the states of  and the total 

disturbance . It is the main idea of the ESO that the 

states  and  of (6) can approach the 

states  as accurately as possible by 

regulating constants . 

Subtracting (5) from (6), the error equation of ESO can be 

written by 

 (7) 

where  denote the state estimation error. Eq. (6) 

is designed to estimate all states of the expanded system, 

including the extended state of lumped disturbance , 

which is composed of unmodelled dynamics (or uncertainties) 

and exogenous disturbances, as the result of equation (7) 

convergent through regulating . The structure diagram of 

the extended state observer is shown in Fig. 1. 

Fig. 1. Schematic diagram of the extended observer structure. 

Letting , the ESO is reduced to the 

linear extended state observer. The stable convergence of the 

ESO is guaranteed by properly choosing the value of  

supposing that  is bounded (Yang, 2009; Talole, 2010). 

The advantage of employing the LESO is that the observer 

gains can be chosen through pole placement (e.g. via 

Ackerman’s formula (Franklin, 1998)), while the gains of 

nonlinear ESO sometimes need to be determined by the trial-

and-error method. Numerical simulation and theoretical 

analysis have proved the effectiveness of the nonlinear 

function, nevertheless, it is worth exploring other types of 

extended state observer with stronger robustness and efficient 

convergence performance. 

Reviewing systems (6) and (7), it’s easy to choose the control 

law to ensure the nominal system of observation error 

converge to the origin if there are no uncertainties, i.e. 

. In other words, if the structure and stabilization 

law of the observer are appropriately redesigned in the 

presence of disturbances, the system (7) can converge 

globally in finite time as defined below, thus the performance 

of the observer can be greatly improved. This is exactly the 

motivation underlying this paper; that is, robust stability 

design based on finite-time control theory and variable 

structure equivalent control. The specific design and 

corresponding proofs are presented in the following chapters. 

The basic elements of finite-time theory are given below. 

Definition 1. (Hong, 2002) Consider a system given by 

 (8) 

where  is a continuous function on an open 

neighborhood  of the origin . If the system is 

asymptotically stable in the open neighborhood  of 

the origin , the equilibrium of the system is finite-time 

stable. That is, there is a settling time such that the 

solution  of (8) for any initial condition  

satisfies  for ,  

and  when . When , is 

globally finite-time stable. 

Definition 2. (Qian, 2012) A vector field 

 is called homogeneous of degree 

 with respect to , if 

 (9) 

Lemma 1. (Bhat, 2005) Suppose the system (8) is 

homogeneous of degree . Then the system equilibrium 

 of (8) is globally finite-time stable if  is globally 

asymptotically stable.  

Lemma 2. (Hong, 2002) Suppose that  is a continuous 

differentiable function and it is positive definite, there exists 

an open neighborhood  of the origin  such that 

, ,   (10) 

Then the equilibrium  of the system (8)  is finite-time 

stable. Moreover, when ,  is globally 

finite-time stable. 

3. EXTENDED STATE OBSERVER DESIGN WITH 

GLOBALLY FINITE-TIME STABILITY 

This section will propose the approach for the ESO with 

global finite-time convergence for systems being confronted 

with completely unknown disturbances. Here, we use the 

finite-time control law to make the ESO converge in a finite 

time when the system disturbance , and the 

equivalent control method of variable structure control theory 

is used to compensate and eliminate the disturbance , 

so that the system error can be globally finite-time stable at 

the origin. 

To this end, we design a new ESO which is similar to the 

high-order integral chain structure as follows: 

 (11) 
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where  is a finite-time convergent control law 

with respect to the time and the vector  that denote the 

errors between the state estimation and the actual value. The 

control law is to be designed such that  will 

approach the states  of system (5). From the 

structural form, it is completely different from equations (6), 

but the design objective is consistent, that is to say, the 

dynamic process of the observer error equation can converge 

stably.  

Then, subtracting (5) from (11), the error equation can be 

written as 

                                                (12) 

It can be observed that if equations (12) is convergent to the 

equilibrium  from any initial condition , 

when , then (11) is designed as a global finite-time 

convergent observer. 

For the objective of that the ESO can work in practice as a 

global finite-time convergent observer under a wide range of 

time-varying disturbances, the function  is made 

for system (11) to render the equation (12) convergent to the 

origin within finite time, so that the total disturbance is 

estimated accurately. To this end, our approach will be first 

presented to ensure that the origin of system (12) is a finite-

time convergent equilibrium based on the control law (14) in 

the following, and the stability of which has been extensively 

studied in (Bhat, 1997; Bhat, 1998) and references therein. 

The following lemma is adapted from Proposition 8.1 of 

(Bhat, 2005).  

Lemma 3. Consider the system error (12) with  

 (13) 

The origin of (13) is a globally finite-time stable equilibrium 

in the system, if  

 (14) 

where  are selected such that the polynomial 

 is Hurwitz, and 

, with , , 

. 

Remark 1. The proof of lemma 3 is provided in (Bhat, 2005). 

Noting that it is easy to verify that the vector field  of 

(13) is homogeneous of degree by Definition 2, since 

the conditions of system (13) guarantee the asymptotic 

stability, then the system is a globally finite-time stable 

according to lemma 1. By Theorem 6.1 of Error! Reference 

source not found.(Bhat, 2005), the origin of (13) is globally 

asymptotically stable, with respect to which there exists a 

strictly positively invariant nonempty compact set. Obviously, 

the proof has not involved a Lyapunov function.  

The following assumption is adopted: 

Assumption 1. The derivative of the lumped disturbances 

 in (3) and (4) is bounded, satisfying 

 for , where  is a given constant.  

In order to design the proposed ESO which can accurately 

estimate the total disturbance of the system (2) in finite time, 

an auxiliary variable and a sliding mode variable are 

introduced to design the control law  of the equations (11) 

and (12), given by  

 (15) 

where is given by (14), and the sliding control is designed 

as  with . The sliding variable is 

chosen as 

 (16) 

where is an auxiliary variable. 

Theorem 1. Suppose that Assumption 1 holds. Considering 

the nonlinear extended state observer (11), given the sliding 

mode surface (16) and the control law (15), then the error 

equations (12) is convergent within finite time to the origin.  

Proof The derivative of the proposed sliding variable (16), 

along system dynamics (12) can be obtained 

 (17) 

A candidate Lyapunov function is selected with the form 

 (18) 

Calculating the derivative of (18) under (17), it can be 

obtained 

 (19) 

According to Assumption 1, it follows that 

 
 

 
 (20) 

where . Noting that , 

substituting it into (20), it can be obtained 

 (21) 

Thus, by Lemma 2, the equilibrium is guaranteed and 

will achieve finite-time convergence. In fact, by separating 

variables and integrating both sides of the inequation (21)  

over the time from 0 to , we obtain 

 (22) 

Consequently,  reaches zero in a finite time  that is 

bounded by . 

Once the state trajectory is moving towards the sliding 
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surface , namely  

 (23) 

then a control function satisfying (23) can be easily 

calculated as 

 (24) 

Substituting (24) into the system (12), it is obviously that the 

system will reduce to (13) of Lemma 3. The proof is 

completed. 

Remark 2. Considering the structure of the proposed ESO, 

the disturbances in the state error equation are first 

compensated equivalently, and then a finite-time control law 

is designed to guarantee the finite-time convergence for the 

system (see Lemma 3). Compared with the classical ESO, the 

validity of the designed ESO is verified based on the 

simulation results. The design flow chart of the proposed 

ESO is shown in the Fig. 2. 

Remark 3. The aforementioned analysis indicates that the 

estimation error of (11) can converge to zero in finite time 

with properly selected parameters. Moreover, it is important 

that the observer's assumption becomes one and only one, 

that is, the lumped disturbances of the system are 

differentiable and the derivative is bounded, which enlarges 

the method’s application scope. Therefore, a new type of 

ESO, which obtains the estimation of system states and 

disturbances and feeds back to the controller, is proposed in 

this paper.  

 

Fig. 2. Flowchart of the designed extended state observer. 

Remark 4. The designed observer (11) adopts the high order 

integral chain structure, coupled with the switching function 

, which is simple but effective to estimate states 

and uncertain part of the system, also the integration of both. 

Its effectiveness mainly manifests that the observer can be 

designed without perturbation model knowledge, and can 

achieve unbiased estimation in a certain time, nevertheless, 

most of the current extended state observers converge to a 

sufficiently small region in finite time (Yang, 2009; Xue, 

2014; Shao, 2017). The structure diagram of the designed 

extended state observer is shown in Fig. 3. 

 

Fig. 3. Schematic diagram of the designed extended observer 

structure 

4. ILLUSTRATIVE EXAMPLES 

In this section, the estimation efficiency of the proposed 

finite-time convergent extended state observer is verified by 

numerical simulation, especially the convergence of error to 

zero in a finite time. 

For simplicity, the proposed novel ESO in (11) and the ESO 

in (11) with are denoted as RFTESO and FTESO, 

respectively. To demonstrate the effectiveness of the 

designed RFTESO, the LESO and FTESO are employed for 

performance comparison.  

Example 1. Consider the nonlinear system with lumped 

disturbances as follows: 

 (25) 

where  denotes the lumped disturbance, 

which is regarded as the total disturbance including the 

unknown dynamics of the system, also the unknown external 

disturbance.  

The LESO for system (25) can be constructed as follows: 

 (26) 

where denote the estimation of state  of (25) 

respectively, and  is the extended state 

variable for system (25).  

In simulation,  and the unknown dynamic function 

in (25) are considered as  

 
 

 (27) 
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The parameters in the proposed ESO are chosen as 

, , 

, . It can be verified that the roots of 

 are in the open left-half plane. 

The parameters of FTESO and LESO are the same as those of 

the RFTESO for the validity of contrast verification. 

This example uses the data , 

. The results of state estimation are shown 

in Fig. 4 and Fig. 5. Fig. 4 shows the performance of the 

RFTESO estimating states of nonlinear uncertain system (25). 

It is observed that not only can the system states , , and 

the extended state , which denotes the completely unknown 

uncertainties, be accurately estimated, but also that the error 

converges to zero in a finite time. 

Fig. 5 shows the state estimation error of RFTESO, LESO 

and FTESO for comparison. It is easily observed that the 

estimation errors of both FTESO and LESO converge to a 

neighborhood of the origin. In addition, the size of the 

convergence region for the FTESO is smaller than that for the 

LESO. By using RFTESO, the estimation error can converge 

to zero in finite time, which is also the most precious feature 

for observers, especially in case of lumped disturbances. 

Remark 5. In the simulation, for obvious comparison, three 

forms of ESO have the same gain parameters, and from (27), 

the uncertain information of the system includes unknown 

states, external disturbances and their mixture. It can be seen 

in Fig. 5 that after a certain time, the total disturbance will be 

estimated by the unbiased value. With the help of input of 

feedback control signal, both linear time-varying system and 

nonlinear time-varying system can be transformed into a 

canonical form system (cascade integrators), i.e. so-called 

dynamic linearization (Huang, 2014). 

 

(a)  and its estimation 

 

(b)  and its estimation 

 

(c)  and its estimation 

Fig. 4. Estimation of the state  of system 

(31) by RFTESO. 

 

(a) Estimation error of  

 

(b) Estimation error of  

 

(c) Estimatin error of  

Fig. 5. Estimation error of the state  of 

system (31) by RFTESO, FTESO, and LESO. 
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Example 2. Next, the performance of RFTESO under a total 

disturbance that contains only external disturbances will be 

discussed, i.e. . Using the same parameters 

as the previous example, the numerical results are presented 

in Fig. 6 with  and Fig. 7 with 

. Comparing Fig. 6 and Fig. 7, it can be 

seen that RFTESO still achieve accurate estimation when the 

disturbance change accelerates, while estimation errors of 

LESO and FTESO inevitably exist. Especially using FTESO, 

as displayed in Fig. 6 (c), the tracking error of disturbance 

restrains to a neighborhood of  which is about 0.5, 

while the corresponding value in Fig. 7 (c) for FTESO is 

roughly 2.4.  

 

(a) Estimation error of   

 

(b) Estimation error of  

 

(c) Estimation error of  

Fig. 6. Estimation error of the state  of 

system (31) with . 

 

 

(a) Estimation error of   

 

(b) Estimation error of  

 

(c) Estimation error of  

Fig. 7. Estimation error of the state  of 

system (31) with  

5. CONCLUSIONS 

In this paper, the novel robust finite-time extended state 

observer is proposed for accurate estimation (i.e. achieving 

estimation error convergence to zero in a finite time) in the 

presence of total disturbance, which is lumped by system 

states, dynamic uncertainties, also external time-varying 

disturbances, and even high order disturbances. Compared 

with the conventional extended state observers, only the 

inaccurate estimation with a acceptable error convergent 

region can be achieved in a infinite time (for LESO) or a 

finite time (for NESO) under identical conditions. Finally, 

numerical simulation examples demonstrate the feasibility 

and efficiency of proposed method. 

 

 



22                                                                                                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 

ACKNOWLEDGEMENT 

This work was supported by the National Key Research and 

Development Program of China under Grant 

2016YFC0302800. 

REFERENCES 

Abdollahi, F., Talebi, H. A., and Patel, R. V. (2006). A stable 

neural network-based observer with application to 

flexible-joint manipulators. IEEE Transactions on 

Neural Networks, vol. 17, no. 1, pp. 118-129. 

Bhat, S. P. and Bernstein, D. S. (1997). Finite-time stability 

of homogeneous systems. American Control Conference, 

pp. 2513-2514. 

Bhat S. P. and Bernstein D. S. (1998). Continuous finite-time 

stabilization of the translational and rotational double 

integrators. IEEE Transactions on Automatic Control, 

vol. 43, no. 5, pp. 678-682. 

Bhat, S. P. and Bernstein. D. S. (2005). Geometric 

homogeneity with applications to finite-time stability. 

Mathematics of Control Signals Systems, vol. 17, no. 2, 

pp. 101-127.  

Chen, W. H., Yang, J., Guo, L., and Li, S. (2016). 

Disturbance-Observer-Based Control and Related 

Methods-An Overview. IEEE Transactions on Industrial 

Electronics, vol. 63, no. 2, pp. 1083-1095. 

Franklin GF, Powell JD, Workman M (1998). Digital control 

of dynamic systems, 3rd edn. Addison Wesley, pp 286–

287. 

Gao, Z., Huang, Y., and Han, J. (2001). An alternative 

paradigm for control system design. Proceedings of the 

40th IEEE Conference. pp. 4578-4585. 

Gao, Z. (2003). Scaling and bandwidth-parameterization 

based controller tuning. Proceedings of the American 

Control Conference, pp. 4989-4996. 

Gao. Z. (2014). On the centrality of disturbance rejection in 

automatic control. ISA Trans, vol. 53, no. 4, pp. 850-857. 

Guan Y. and Saif. M. (1991). A novel approach to the design 

of unknown input observers. IEEE Transactions on 

Automatic Control, vol. 36, no. 5, pp. 632-635.  

Guo, B, Z. and Zhao, Z. L. (2011a). On the convergence of 

an extended state observer for nonlinear systems with 

uncertainty. Systems Control Letters, vol. 60, no. 6, pp. 

420-430. 

Guo B Z , Zhao Z L. (2011b). Extended State Observer for 

Nonlinear Systems with Uncertainty. IFAC Proceedings, 

vol.44, pp.1855-1860. 

Guo, B, Z. and Zhao, Z. L. (2012). On convergence of non-

linear extended state observer for multi-input multi-

output systems with uncertainty. IET Control Theory 

Applications, vol. 6, no. 15, pp. 2375-2386. 

Guo, B, Z. and Zhao, Z. L. (2013). On convergence of the 

nonlinear active disturbance rejection control for MIMO 

Systems, SIAM Journal on Control and Optimization, 

Vol. 5, no. 1, pp. 1727-1757. 

Guo, B, Z. and Zhao, Z. L. (2015). On Convergence of 

Nonlinear Active Disturbance Rejection Control for 

SISO Nonlinear Systems. Journal of Dynamical and 

Control Systems, vol. 22, no. 2, pp. 385-412. 

Guo, B, Z., Wu, Z. H., and Zhou, H. C. (2016). Active 

disturbance rejection control approach to output-

feedback stabilization of a class of uncertain nonlinear 

systems subject to stochastic disturbance. IEEE Trans. 

Autom. Control, vol. 61, no. 6, pp. 1613-1618. 

Guo, B, Z. and Wu, Z. H. (2017a). Output tracking for a class 

of nonlinear systems with mismatched uncertainties by 

active disturbance rejection control. Systems Control 

Letters, vol. 100, pp. 21-31. 

Guo, B, Z. and Wu, Z.H. (2017b). Active disturbance 

rejection control approach to output-feedback 

stabilization of lower triangular nonlinear systems with 

stochastic uncertainty. Int. J. Robust Nonlinear Control, 

vol. 27, no. 16, pp. 2773-2797. 

Han, J. (1995). A Class of Extended State Observers for 

Uncertain Systems. Control Decision, vol. 10, no. 1, pp. 

85-88 (in Chinese). 

Han, J. (2009). From PID to active disturbance rejection 

control. IEEE Transactions on Industrial Electronics, vol. 

56, no. 3, pp. 900-906.  

Hong, Y., Huang, J., and Xu, Y. (2002). On an output 

feedback finite-time stabilisation problem. IEEE 

Conference on Decision and Control, Vol. 2,  pp. 1302-

1307. 

Huang Y. and Han J. (2000). Analysis and design for the 

second order nonlinear continuous extended states 

observer. Chinese Science Bulletin. Vol. 45, no. 21. pp. 

1938-1944. 

Huang, Y. and Xue, W. (2014). Active disturbance rejection 

control: methodology and theoretical analysis. ISA 

Transactions, vol. 53, no. 4, pp. 963-976. 

Huang, Y., Wang, J., Shi, D., and Shi, L. (2017). 

Performance assessment of discrete-time extended state 

observers: theoretical and experimental results. IEEE 

Transactions on Circuits and Systems, Vol. 65, no. 7, pp. 

2256-2268. 

Jiang, T., Huang, C., and Guo, L. (2015). Control of 

uncertain nonlinear systems based on observers and 

estimators. Automatica, vol. 59, 35-47. 

Li, J., Xia, Y., Qi, X. , and Gao, Z. (2016). On the Necessity, 

Scheme, and Basis of the Linear-Nonlinear Switching in 

Active Disturbance Rejection Control. IEEE 

Transactions on Industrial Electronics, vol. 64, no. 2, pp. 

1425-1435. 

Li, S., Yang, J., Chen, W. H., and Chen, X. (2012). 

Generalized extended state observer based control for 

systems with mismatched uncertainties. IEEE 

Transactions on Industrial Electronics, vol. 59, no. 12, 

pp. 4792-4802. 

Madoński, R. and Herman, P. (2015). Survey on methods of 

increasing the efficiency of extended state disturbance 

observers. ISA Transactions, Vol. 56, pp. 18-27. 

Miklosovic, R., Radke, A., and Gao, Z. (2006). Discrete 

implementation and generalization of the extended state 

observer. American Control Conference, IEEE. pp. 

2209-2214. 

Ohishi, K., Nakao, M., Ohnishi, K., and Miyachi, K. (1987). 

Microprocessor-Controlled DC Motor for Load-

Insensitive Position Servo System. IEEE Transactions 

on Industrial Electronics, vol. 34, no. 1, pp. 44-49. 

Pu, Z., Yuan, R., Yi, J., and Tan, X. (2015). A class of 

adaptive extended state observers for nonlinear disturbed 



CONTROL ENGINEERING AND APPLIED INFORMATICS                       23 

 

     

  

systems. IEEE Transactions on Industrial Electronics, 

vol. 62, no. 9, pp. 5858-5869. 

Qi, X., Li, J., Xia, Y., and Gao, Z. (2016). On the robust 

stability of active disturbance rejection control for siso 

systems. Circuits Systems and Signal Processing, vol. 36, 

no. 1, pp. 1-17. 

Qian, C., Li, S., Frye, M. T., and Du, H. (2012). Global 

finite-time stabilisation using bounded feedback for a 

class of non-linear systems. IET Control Theory and 

Applications, vol. 6, no. 14, pp. 2326-2336. 

Shao, S. and Gao, Z. (2017). On the conditions of 

exponential stability in active disturbance rejection 

control based on singular perturbation analysis. 

International Journal of Control, vol. 90, no. 10, pp. 

2085-2097. 

She, J. H., Xin, X., and Pan, Y. (2011). Equivalent-Input-

Disturbance Approach-Analysis and Application to 

Disturbance Rejection in Dual-Stage Feed Drive Control 

System. IEEE/ASME Transactions on Mechatronics, vol. 

16, no. 2, pp. 330-340.  

Talole, S. E., Kolhe, J. P. , and Phadke, S. B. (2010). 

Extended-state-observer-based control of flexible-joint 

system with experimental validation. IEEE Trans. Ind. 

Electron, vol. 57, no. 4, pp. 1411-1419. 

Tian G. and Gao Z. (2007). Frequency response analysis of 

active disturbance rejection based control system. IEEE 

International Conference on Control Applications, 

Singapore. pp. 1595-1599. 

Tian, G. and Gao, Z. (2009). From Poncelet's invariance 

principle to active disturbance rejection. American 

Control Conference. IEEE . pp. 2451-2457. 

Utkin, V. I. (1992). Sliding Modes in Control Optimization. 

New York: Springer-Verlag. 

Wang, H. Q., and Huang, H. (2013). Property and 

applications of extended state observer. Control Decision, 

vol. 28, no. 7, pp. 1078-1082, . 

Wang, W. and Gao, Z. (2003). A comparison study of 

advanced state observer design techniques. American 

Control Conference, vol.6, pp. 4754-4759. 

Wu, Z. and Guo B (2016). Extended state observer for 

uncertain lower triangular nonlinear systems subject to 

stochastic disturbance. Control Theory and Technology, 

vol. 14, no. 3, pp. 179-188. 

Wu, Z. H., and Guo, B. Z. (2019). On Convergence of Active 

Disturbance Rejection Control for a Class of Uncertain 

Stochastic Nonlinear Systems. International Journal of 

Control, pp. 1103-1116. 

Wu, Z., Huang, G., Wu, C., lv, C., and Bao, L. (2018). On 

Convergence of Extended State Observer for a Class of 

MIMO Uncertain Stochastic Nonlinear Systems. IEEE 

Access, vol. 6, pp. 37758-37766. 

 

 

 

 

 

 

 

 

Xie, L. L., and Lei, G. (2000). How much uncertainty can be 

dealt with by feedback?. IEEE Transactions on 

Automatic Control, vol. 45, no. 12, pp. 2203-2217.  

Xiong, S., Wang, W., Liu, X., Chen, Z., and Wang, S. (2015). 

A novel extended state observer. ISA transactions, vol. 

58, pp. 309-317.  

Xue, W., and Huang, Y. (2014). On performance analysis of 

ADRC for a class of MIMO lower-triangular nonlinear 

uncertain systems. ISA Transactions, vol.53, no. 4, pp. 

955-962. 

Yang X., and Huang. Y. (2009). Capabilities of extended 

state observer for estimating uncertainties. American 

Control Conference, pp. 3700-3705.  

Yoo, D., Yau, S. T., and Gao, Z. (2006). On convergence of 

the linear extended state observer. IEEE International 

Symposium on Intelligent Control, pp. 1645-1650. 

Zhao, Z. L., and Guo, B. Z. (2015a). Extended state observer 

for uncertain lower triangular nonlinear systems. Systems 

and Control Letters, vol. 85, pp. 100–108, Nov. 2015. 

Zhao, Z. L., and Guo, B. Z. (2015b). On active disturbance 

rejection control for nonlinear systems using time-

varying gain. European Journal of Control, vol. 23, pp. 

62–70. 

Zhao, Z. L., and Guo, B. Z. (2016). Active disturbance 

rejection control approach to stabilization of lower 

triangular systems with uncertainty. International 

Journal of Robust and Nonlinear Control, vol. 26, no. 11, 

2314-2337. 

Zhao, Z. L. , and Guo, B. Z. (2017). A nonlinear extended 

state observer based on fractional power functions. 

Automatica, vol. 81, pp. 286-296. 

Zhao, Z. L., and Guo, B. Z. (2018). A Novel Extended State 

Observer for Output Tracking of MIMO Systems With 

Mismatched Uncertainty. IEEE Transactions on 

Automatic Control, vol. 63, no. 1, pp. 211-218. 

Zheng, Q., Chen, Z., and Gao, Z. (2009). A practical 

approach to disturbance decoupling control. Control 

Engineering Practice, vol. 17, no. 9, pp. 1016-1025. 

Zheng, Q. , Gao, L. Q., and Gao, Z. (2007). On stability 

analysis of active disturbance rejection control for 

nonlinear time-varying plants with unknown dynamics. 

IEEE Conference on Decision and Control, pp. 3501-

3506. 

Zinober, A. S. I. (1994). Variable Structure and Lyapunov 

Control, Springer-Verlag. 

 


