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Abstract: Fixed Charger Deployment (FCD) is a key issue for Wireless Rechargeable Sensor Network 
(WRSN). Since both the cost and network utility should be taken into account, the optimization of the 
chargers’ number, transmitting power, and deployment location is particularly important. Accordingly, the 
FCD is formulated as a multi-objective optimization problem, where the objectives are to minimize the 
transmitting power of chargers and maximize the received power of sensor nodes. To quantitatively and 
visually describe the deployment, the Generalized Synchronizing Colored Cyber Petri Nets (GSCCPN) is 
presented to model the FCD. A Charger Deployment Multi-Objective Genetic Algorithm (CDMOGA) 
based on NSGA2 has been proposed. Simulation results show that the proposed algorithm can optimize 
both the charging power and the network utility, having a better performance than the algorithms of 
MOEA/D and SPEA2. 
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1. INTRODUCTION 

Wireless sensor networks have been widely used in many 
applications including transportation, fire warning, wildlife 
protection and intrusion detection etc. Sensors are deployed 
in parking lots to guide drivers to vacant parking spaces 
quickly (Wei et al., 2017). Sensors are placed in the forest for 
fire early warning and soil erosion monitoring (Lloret et al., 
2009). Sensors are utilized to track the activities of rare 
species (Dominguez-Morales et al., 2016). Sensors are 
deployed in the military region to detect intrusion attacks 
(Alqahtani et al., 2019). However, the limited battery energy 
of sensor nodes will greatly shorten the life of wireless sensor 
network and bring high maintenance cost. The wireless 
sensor network with energy harvesting came into being. 
Wireless Rechargeable Sensor Network (WRSN) is a typical 
representative. The main challenge in WRSN is how to 
deploy the fixed chargers. Though many pioneering works 
dedicated on deployment optimization, most of them 
overlooked the deployment position or preset candidate 
position (Liao et al., 2014; Ejaz et al., 2015). 

In this paper, we attempt to deploy fixed chargers without 
any candidate positions in 3D scenario, namely to determine 
their number, transmitting power and deployment location, 
where the information of sensors including position and 
energy consumption is known. Generally speaking, the 
greater the total transmitting power of chargers, the higher 
the received power of nodes. However, we hope that the 
sensors receive larger power with the minimum total 
transmitting power of the charger, that is, a higher charging 

benefit is obtained at a lower cost. Therefore, the received 
power and the total transmitting power should be optimized 
simultaneously. To address this issue, the Fixed Charger 
Deployment problem (FCD) is formulated as a 
multi-objective optimization problem. 

FCD is similar with the coverage problem in traditional 
wireless sensor networks, while the existing solutions cannot 
be used directly in our research for the following two reasons. 
Firstly, the direction of signal transmission is different. In our 
problem, the sensor node receives the RF signal from the 
charger, while the traditional coverage problem deploys the 
sensor node to sense the target states. Secondly, the wireless 
charging models are different from the coverage models in 
the traditional wireless sensor network which can be 
classified as physical coverage and probabilistic coverage. 
Physical model refers to specific deployment topology, and 
the target points in the region can be monitored by at least 
one sensor node. Probabilistic model utilizes probabilistic 
statistical methods to predict the possibility of target points 
being monitored. These two models are distinct from the 
wireless charging model. Moreover, due to the non-linearity 
of FCD, traditional optimization methods are difficult to 
solve it. Therefore, a multi-objective optimization genetic 
algorithm based on NSGA2 is proposed.  

An original approach is presented for WRSN system 
modelling for control purpose. On one hand, this 
specification can quantitatively represent the energy and 
control flow in the charging process. On the other hand, the 
position relationship between the chargers and the sensors 
should be visually demonstrated. With both mathematical and 
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graphical presentation features, Petri nets are competent. 
While both classical Petri net and other Petri nets for 
traditional wireless sensor network can’t describe such 
complex hybrid system. Therefore, it is necessary to extend 
the Petri net to characterize these properties comprehensively. 
For example, cyber Petri nets are used to control charging 
behaviour, and coloured Petri nets are used to classify 
different "resources" in the system. Based on the above 
analysis, Generalized Synchronizing Coloured Cyber Petri 
Nets (GSCCPN) is proposed to formalize the charging 
deployment in WRSN. 

The contributions are summarized as follows. To the best of 
our knowledge, it is the first work that Petri net is applied for 
WRSN, and the Generalized Synchronizing Coloured Cyber 
Petri Nets is presented, which can express energy flow, 
control flow, and position flow. Secondly, FCD is formulated 
as a multi-objective optimization problem without candidate 
positions for the first time. It has been proved to be NP-hard 
(NP-Hardness, non-deterministic polynomial-time hardness). 
A multi-objective optimization genetic algorithm is proposed 
to obtain the sub-optimal solution. Finally, the proposed 
algorithm is evaluated by large-scale simulation, and the 
impact of factors such as the number of chargers, node 
energy consumption, and number of nodes on deployment are 
studied. 

The remainder of the paper is organized as follows. Section 2 
reviews some related works on wireless charger deployment 
and Petri nets. Section 3 constructs the charging model based 
on Petri nets. Section 4 proposes the charger deployment 
strategy. Section 5 evaluates the efficiency of the proposed 
algorithm. Section 6 concludes the paper. 

2. RELATED WORK 

2.1 Charging Deployment in WRSN  

In recent years, some scholars have studied the deployment of 
wireless chargers. He et al. divided the charger deployment 
into static and dynamic ones, which involved point 
provisioning and path provisioning respectively. They were 
deployed in the vertex of equilateral triangles, and the number 
of chargers was reduced as much as possible by expanding the 
triangular area. The proposed point provisioning has been 
proved to be able to achieve sub-optimal performance, while 
the path provisioning is actually close to the optimal 
performance (He et al., 2013). On the background of 3D beam 
directed antenna, Liao et al. proposed two greedy algorithms, 
namely, greedy cone selection algorithm (NB-GCS) based on 
nodes and greedy cone selection algorithm (PB-GCS) based 
on node pair, assuming that chargers are deployed in fixed 
height grids. The latter is superior to the former in the number 
of nodes, while the complexity of the former is lower (Liao et 
al., 2014). To optimize the deployment and quantity of 
chargers, Ejaz et al. used the trade-off coefficient to balance 
charging optimization and energy fairness (Ejaz et al., 2015). 
Lin et al. developed the deployment strategy of the charger 
when the energy consumption of the nodes was not uniform 
(Lin et al., 2016). Lai et al. sought the optimization goal of 
minimum charger position and shortest charging time. A 
two-step solution was proposed to minimize the number of 

charger positions and then allocate residence time according to 
charging requirements. Compared with the minimum group 
partition scheme, the number of charging positions and the 
total charging time can be saved by 60% (Lai and Hsiang, 
2019). Nicolae et al. studied the utility of directional antennas 
and synchronization mechanism for prolonging the life of the 
sensor nodes from a ground deployed WSN. It was proved 
through simulation that the node’s life is desired to reach 
several years (Nicolae et al., 2016). Yang et al. proposed a 
firefly algorithm based on adaptive attraction factor and 
dynamic position updating mechanism to deploy chargers. 
Simulation results showed that the IFA algorithm is superior to 
several reference algorithms for comparison in terms of 
accuracy and convergence speed (Yang et al., 2018). 

In addition to charging efficiency, electromagnetic radiation 
safety is also considered. In order to ensure that the 
electromagnetic radiation intensity at any point in the charging 
area is less than a given threshold 𝑅 , Dai et al. put forward a 
safe charging problem for charger scheduling(SCP), which 
maximizes the charging effectiveness within the safe threshold 
range of electromagnetic radiation. The gap between the 
maximum electromagnetic radiation point algorithm and the 
optimal algorithm is only 6.7, which is 34.6% better than the 
greedy algorithm (Dai et al., 2017). To adjust the transmitting 
power continuously, the optimization problem was 
transformed into the traditional linear programming, and the 
redundant constraints were removed, and a series of 
distributed algorithms were designed. Simulation results 
showed that the average performance of the overall charging 
utility is 41.1% better than the existing algorithms (Dai et al., 
2018). Then, Li et al. proposed a region segmentation 
algorithm to reduce the transmission power to a safe threshold, 
so that the lowest energy utility nodes were maximized (Li et 
al., 2019). Sheikhi et al. put forward a solution for the 
combination of mobile charger and fixed charger. The fixed 
charging station uses grid elements to form a virtual area, and 
the charging stations coordinate with each other to guide the 
mobile chargers in the area (Sheikhi et al., 2019).  

However, the above researches only focused on the number of 
chargers or scheduling strategies, and locations of deployment 
were uninvolved or preset via candidate locations. 

2.2 The application of Petri Nets  

Due to the integration of mathematics and graphic 
representation, Petri nets have unique advantages in network 
modelling, especially in production scheduling, transportation 
network and so on, providing a unified environment for 
modeling, behavioral attributes, and performance analysis. Li 
et al. built the production scheduling of flexible manufacturing 
system (FMS) by using time-delay petri nets, and obtained the 
optimal scheduling strategy by means of heuristic algorithm 
(Li et al., 2015). Kadri et al. proposed a variable arc weight 
Petri net to solve the scheduling of shared bicycles, and used 
genetic algorithm to ensure that bicycles are available for pick 
up and vacant berths available for bicycle drop off at every 
station (Kadri et al., 2015). Gonsalves et al. dealt with the 
performance modeling and the optimization of concurrent 
service systems, and demonstrated the effectiveness of the 
novel Client Server Petri net model 
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editor–simulator–optimizer with the practical example of an 
automobile purchase concurrent service system (Gonsalves 
and Itoh, 2011). Wan et al. proposed a new approach for the 
modeling and VHDL implementation of digital systems 
based on an extended class of Petri nets and defined the 
generalized synchronous self-modifying net (GSSN) to 
describe digital systems. (Wan et al., 2017). G. Y. Zhang et al. 
implemented a multi-component collaborative design 
methodology for a liquid rocket engine and took Petri nets for 
performance driven design process based on extended Petri 
nets which can effectively couple existing knowledge 
resources, solve any conflict arising from different knowledge, 
and achieve an optimal strategy (G. Y. Zhang et al., 2017) . 

Although Petri nets are widely used in many fields, they only 
play a relatively minor role in the modeling and analysis of 
wireless sensor networks, and mainly used for the analysis 
and prediction of sensor nodes’ energy. Mateo et al. used 
Prioritized-Timed Colored Petri Nets (PTCPNs) to model 
routing behavior in WSN, and proposed a new routing 
algorithm to reduce node energy consumption and improve 
data routing (Mateo et al., 2014). Zeng et al. constructed a 
Stochastic Petri Net to analyze the performance of WSNs 
(Zeng and Hong, 2009). Sousa, J. R. B et al. present 
Differential Hybrid Petri Nets to model, to simulate and to 
analyze the energy consumption of a sensor node (Sousa et 
al., 2005). Yu, Z. H et al. used fuzzy Petri nets to select 
cluster heads and compute the degree of reliability in the 
route sprouting tree from cluster heads to the base station (Yu 
et al., 2011). Zairi, S et al. proposed a modeling approach 
considering the global behavior of a sensor network and 
allowing the estimation of network’s energy consumption 
based on Colored Petri Nets (Zairi et al., 2015).  

The Petri net model established in this paper not only 
considers the energy information of the sensor nodes, but also 
contains the node's position and control relationships. The 
gap of Petri nets in WRSN is to be filled in this paper. 

3. PROBLEM FOMULATION 

3.1 Charger Deployment Modelling 

Fixed chargers are deployed in complex terrain conditions, 
hence assuming that there is a set of m static chargers 
𝐶 𝑐 , 𝑐 , ⋯ , 𝑐  and n sensor nodes 𝑆 𝑠 , 𝑠 , ⋯ , 𝑠  
in a three-dimensional space. The nodes can receive power 
from the chargers and thus maintain normal operation. In this 
paper, Friis’ free space equation is used as the wireless 
charging model (He et al., 2013), namely,  

𝑃 𝑑 𝑝                    (1) 

where 𝑑  represents the Euclidean distance between charger 
i and node j, 𝐺  is the source antenna gain, 𝐺  is the receive 
antenna gain, 𝜆 is the wavelength, 𝐿  is polarization loss, 
and 𝜂  can be referred to as rectifier efficiency, 𝛽  is a 
parameter to adjust the Friis’ free space equation. Since all 
the above parameters are constants, equation (1) can be 
simplified to (2), 

𝑃 𝑑 ∙ 𝑝                       (2) 

where 𝜏 , the coordinates of charger and sensor 

node are respectively 𝑥 , 𝑦 , 𝑧 , 𝑥 , 𝑦 , 𝑧 , then 𝑑

𝑥 𝑥 𝑦 𝑦 𝑧 𝑧 , 𝑝  represents the 
transmitting power of ith charger.  

It can be seen that the greater the transmitting power and the 
smaller the distance from the charger, the more power a 
sensor node receives and vice versa. Since the power 
received varies with the location of the charger, FCD is 
fundamentally different from the traditional wireless sensor 
network coverage. It is expected that the charger will emit as 
little power as possible, while the network utility will be as 
effective as possible. Network utility can be defined as,  

 𝑢 𝑠 ∑ 𝑃 𝑑                              (3) 

With the aforementioned models, FCD can thus be described 
and mathematically formulated as follows: 

min  ∑ 𝑝 , max  ∑ 𝑢 𝑠                  

 𝑠. 𝑡.  ∀𝑢 ∈ ℝ  ,    𝑙 𝑢 𝑠                  (4) 

The constraint condition indicates that the network utility 
cannot be less than the power consumption of the node, and 
𝑙  represents the consumption power of jth node.  

It is very challenging from the above formulation. Since the 
location of deployable chargers is infinite, in other words, 
there may be an infinite number of chargers, which makes it 
extremely difficult to analyze. Moreover, even if the number 
of chargers can be reduced, the power matching is still a 
knapsack problem, and the knapsack problem is NP hard. 

3.2 Petri Nets Modelling 

In its basic form, a Petri net is a directed graph with places 
and transitions. Places and Transitions are connected by 
directed arcs. A transition can only be fired, if each of the 
input places of this transition contains at least one token. Due 
to the lack of describing the control behavior and resource 
types, the classic Petri net should be extended.  

Therefore, Generalized Synchronizing Colored Cyber Petri 
Nets (GSCCPN) is proposed for modelling, and the definition 
will be given below.  

Definition 1 The condition that six-tuple ∑ 𝑆, 𝑇; 𝐹, 𝐾, 𝑊, 𝑀  
containing k colors constitutes GSCCPN is  

① N 𝑆, 𝑇; 𝐹 , named as a basic Petri net.  

② K is the capacity function of N. 

③ W is weight function of N, representing a K-dimensional 
nonnegative vector assigned to each directed arc. 

④ 𝑀  is the initial marking. 

Definition 2 The condition of transition firing is  

M is the marking of N, t ∈ T 

Supposing that the marking 𝑀 𝑠  contains 4 colors, 
and𝑀 𝑠 𝑥, 𝑦, 𝑧, 𝑝 𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠   

① ∀ s ∈ 𝑡 ∙  : 𝑀 𝑠
𝑊 𝑠, 𝑡  ⋀  ∀ s ∈ 𝑡∙ ∶  𝑀 𝑠 𝑊 𝑡, 𝑠 𝐾 𝑠   
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If transition t is fired, it can be recorder as M t  . 

② If transition t is fired on M, M can be changed to be 𝑀,, and 
𝑀, is given as follows. 

𝑀′ 𝑠

⎩
⎪
⎨

⎪
⎧ 𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 𝑊 𝑠, 𝑡             𝑠 ∈ 𝑡 • 𝑡•

𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 𝑊 𝑡, 𝑠             𝑠 ∈ 𝑡• 𝑡 •

𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 , 𝑀 𝑠 𝑊 𝑠, 𝑡 𝑊 𝑡, 𝑠    𝑠 ∈ 𝑡 • ∩ 𝑡•
 

        𝑀 𝑠                                  𝑠 ∉ 𝑡 • ∩ 𝑡•

   (5)       

The relationship between M and 𝑀, is denoted by M t 𝑀,. 

The state equation of GSCPN can be written as 

𝑀, 𝑀 → 𝐶 ∙ 𝑈                              (6) 

where the matrix operator →  represents the substitution 
plus, C is the incidence matrix, and U is the matrix 
representation of the sequence of concurrent steps 𝑈 𝑈 ⋯ 𝑈 .  

Hence, the state equation of GSCCPN can be written as  

𝑀 𝑡 𝑀 𝐶 ∙ 𝑑𝜏                 (7) 

Definition 3 A read arc is a directed arc with an arrow in the 
middle from the place to the transition. The weight of read arc 
is 0. After the transition fired from the read arc, the marking of 
the input place is unchanged.  

Definition 4 A write arc is a directed arc with an arrow in the 
middle from the transition to the place. The write arc is a 
special weighted control arc. After the transition fired, the 
output place is updated to the value of the weight.  

Fig. 1 shows a simple GSCCPN. The initial marking is 
𝑀 𝑥 , 𝑦 , 𝑧 , 𝑝 ， 𝑥 , 𝑦 , 𝑧 , 0 . The new marking after 

firing is 𝑀 𝑥 , 𝑦 , 𝑧 , 𝑝 ， 𝑥 , 𝑦 , 𝑧 , 𝑊 𝑇 , 𝑆  by 
transition firing condition. The arc weight 𝑊 𝑇 , 𝑆  is 
variable and the marking of place 𝑆  is unchanged.  

 

 

 

 
Fig. 1. Generalized Synchronizing Colored Cyber Petri Nets, 
GSCCPN.  

The GSCCPN model of FCD is shown in Fig. 2, and the 
important symbols are shown in Table 1. 

 

 

 

 

 

 

 

 
 
 
 

Fig. 2. GSCCPN model of FCD. 

Here, The place 𝐶  and 𝑃  represents charger and sensor 
node respectively, where the red markings indicate the 3D 
coordinates, while the green marking indicates the 
transmitting power or the received power. From the above 
definition, 𝑊 𝑇 , 𝑃 is the harvesting power of jth sensor 

node from the ith charger, and 𝑊 𝑇 , 𝑃 ∙ 𝑝 , 

𝑙 𝑊 𝑃 , 𝑇
 
. It is can be known that with the change of 

place 𝐶  (represent the position and transmitting power of ith 
charger), the arc weight 𝑊 𝑇 , 𝑃  will change accordingly.  

Table 1. List notations. 

Notation Definition 
C1 ith Charger 
𝑃  jth Sensor node 

𝑇  The jth Sensor node is charged by ith 
Charger 

𝑇  The jth Sensor node is consuming 
power 

The GSCCPN dynamic equation of FCD can be expressed as 

𝑀 𝑃 ∑ 𝑊 𝑇 , 𝑃
 

𝑊 𝑃 , 𝑇
 

∙ 𝑑𝜏           (8) 

It can be seen that the following conditions must be satisfied in 
order to ensure sufficient energy of sensor nodes,   

∑ 𝑊 𝑇 , 𝑃
 

𝑊 𝑃 , 𝑇
 

0 . Hence, the GSCCPN of 

FCD is mathematically formulated as follows: 

min  𝑀 𝐶 , max  𝑊 𝑇 , 𝑃
 
               

 𝑠. 𝑡.    ∑ 𝑊 𝑇 , 𝑃
 

𝑊 𝑃 , 𝑇             (9) 

In summary, the position, energy, and charging control 
relationship in WRSN can be fully illustrated and explained 
by GSCCPN. Compared with the Hybrid Petri net, GSCCPN 
introduces location information, and assigns different colors 
to the marking, with the ability to describe different 
"resources", so as to model FCD for WRSN. 

4. CHARGER DEPLOYMENT OPTIMIZATION 

The two optimization objectives of FCD are conflict with each 
other, that is, the optimal solution cannot be achieved at the 
same time, hence it is necessary to make a trade-off between 
the two objectives. However, the problem is NP hard, and the 
traditional optimization method is difficult to solve. Therefore, 
A Charger Deployment Multi-Objective Optimization Genetic 
Algorithm (CDMOGA) based on NSGA2 is proposed. 
Assuming that all sensor nodes in the network can receive the 
power emitted by the chargers. 

4.1 NSGA2 Algorithm 

NSGA2 is one of the most popular algorithms. By means of 
fast non-dominate sorting algorithm, crowded competition 
selection method and elite strategy, the Pareto optimal 
solution can be searched efficiently. This method guarantees 
the diversity of population and prevents individual loss. The 
principle of the standard NSGA2 algorithm is as follows.  

The initial population 𝐷  is randomly generated and sorted 
according to different non-dominate hierarchies. A fitness 

M0(S1)=[x1,y1,z1,p1] M0(S2)=[x2,y2,z2,0]

S1 S2

T12

W(T12,S2)0

C1

Ci

......

P1

P2

Pj

T11

T12

T1j

Ti1

Ti2

Tij

T1

T2

Tj

[xC1,yC1,zC1,M(C1)4]

[xCi,yCi,zCi,M(Ci)4]

[xP1,yP1,zP1,M(P1)4]

[xP2,yP2,zP2,M(P2)4]

[xPj,yPj,zPj,M(Pj)4]
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value equal to the non-dominant level is assigned to each 
solution. Binary tournament selection, mutation and 
recombination operators are used to generate offspring 
population. Then the following steps is repeated until the 
number of iterations reach the maximum. 

Step1. Combine the parents and offspring populations, and 
create 𝑃 𝐷 ⋃ 𝐸 . According to algorithm 1, perform fast 
non-dominant sorting in 𝑃  and identify different frontiers 
𝐹𝑟 . 

Step2. Set a new population 𝐷 ∅, and let 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖
1 . 
𝑊ℎ𝑖𝑙𝑒 |𝐷 |  |𝐹𝑟 | 𝑁, 𝑑𝑜 𝐷 𝐷 ⋃ 𝐹𝑟  𝑎𝑛𝑑 𝑖
𝑖 1. 

Step3. Choose （N-|𝐷 |）most general solution from binary 

crowding tournament selection operator, and insert them into 
𝐷 .  

Step4. Create offspring 𝐸  from 𝐷  by binary 
crowding tournament selection, crossover and mutation 
operators, and let 𝑡 𝑡 1.  

Fast non-dominate sorting algorithm 
Input: population P 
Output: The non-dominated fronts 
(𝐹𝑟 , 𝐹𝑟 , ⋯) 
For each 𝑝 ∈ 𝑃 
 For each 𝑞 ∈ 𝑃 
  If (𝑝 𝑞) then 
   𝑆 𝑆 ⋃ 𝑞  
  else if (𝑞 𝑝) then 
   𝑛 𝑛 1 
  If 𝑛 0 then 
   𝐹 𝐹 ⋃ 𝑝  
𝑖 1 
while 𝐹 ∅ 
 𝐻  ∅ 
 For each 𝑝 ∈ 𝐹𝑟  
  For each 𝑞 ∈ 𝑆  
   𝑛 𝑛 1 
   If 𝑛 0 then 𝐻 𝐻 ⋃ 𝑞  
𝑖 𝑖 1 
𝐹𝑟 𝐻 

Algorithm1: The pseudocode of fast non-dominate sorting 
algorithm  

The non-dominant sorting process and the steps to fill the 
population 𝐷  can be performed together. The crowd 
ordering of solutions in frontier 𝐹𝑟  is performed by 
crowding distance, while 𝐹𝑟  is the last frontier which 
cannot be fully accommodated.  

The crowding comparing operator compares two solutions 
and returns the victor. The choice is based on the following 
two points: non-dominate ranking 𝑟  and the local crowding 
distance within the population. The crowding distance of 
solution i is the measurement of the search space around i, 
which is not occupied by any other solution in the population. 
Based on 𝑟  and 𝑑 , the binary crowding tournament 
selection operator works as follows.  

Solution i beats solution j in the race if the following 
conditions are true. 

(1) If 𝑟 𝑟  (This condition ensures that the selected 
solution lies in a more non-dominant position).  

(2) If  𝑟 𝑟  and 𝑑 𝑑  (When both solutions are on the 
same front and the above conditions cannot be applied, the 
method is applied; in this case, the solution in a less crowded 
area wins). 

4.2 Dynamic crowding distance Algorithm 

The horizontal diversity of the Pareto frontier is very 
important in multi-objective optimization, which is achieved 
by eliminating the redundant individuals in the dominance 
concentration. To remove redundant individuals, NSGA2 uses 
crowding distance measurement. The removed individuals 
with lower crowding distance values have a higher priority. 
The crowding distance value is calculated by the following 
formula, 

𝐶𝐷 ∑ |𝐹 𝐹 |               (10) 

Here, 𝑁  is the number of objectives, 𝐹  is zth objective 
of i+1 individual, 𝐹  is the zth target of the (i-1)th individual 
after sorting the population according to the crowding distance 
value. The main defect of crowded distance is lack of uniform 
diversity in obtaining non-dominated solutions. A dynamic 
crowding distance algorithm was proposed (Luo et al., 2008). 
The dynamic crowding distance of individuals is: 

𝐷𝐶𝐷
 /

                        (11) 

𝐶𝐷  can be obtained by (10), and 𝑉𝑎𝑟  can be obtained by 
(12),  

𝑉𝑎𝑟 ∑ |𝐹 𝐹 | 𝐶𝐷       (12) 

𝑉𝑎𝑟  is the variance of the crowded distance between the ith 
neighbouring individuals.  

4.3 Genetic representation of the algorithm 

In the traditional genetic algorithm, chromosomes are 
represented by binary strings. In order to calculate the value 
of the objective function, the binary strings (genotypes) need 
to be converted to the real number space (phenotypes), which 
will inevitably increase the calculation cost. Therefore, a 
more effective real number representation method is adopted 
in this paper, which is a direct coding mechanism, and the 
genotype and phenotype are exactly the same. As shown in 
Fig. 2, each place contains 4 markings. Hence, every charger 
gene is represented by a four-digit vector, the first of which 
represents the transmitting power of the charger, and the last 
three represent the three coordinates of the charger, as shown 
in Fig. 3.  

𝐶  𝐶  𝐶  

M(C1)4 & 
𝑥 , 𝑦 , 𝑧  

M(C2)4 & 
𝑥 , 𝑦 , 𝑧  

…… 
M(Ci)4 & 

𝑥 , 𝑦 , 𝑧  

Gene1 Gene 2 Gene N 
 

Fig. 3. Genetic representation of the algorithm. 
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4.4 Charger Deployment Multi-Objective Genetic Algorithm 

In the first, an initial population of size M is generated. G 
places of the chargers are uniformly distributed randomly, the 
marking of the sensor place 𝑀 𝑃  is computed, and the 
objective function is obtained under the constraint condition. 
Then offspring are created from existing populations through 
crowded race selection, crossover, and mutation operators. 

Charger Deployment Multi-Objective Genetic 
Algorithm (CDMOGA) 

Input： markings of sensor place 

Output： Non-dominate solution 
Step 1. Choose population of size M, crossover probability 
(PC)and mutation probability (PM), maximum iterations 
(𝑔𝑒𝑛 ), Set the iteration count from t=0;  
Step 2. Generate initial population Dt according to the 
rules below 
For 𝑖 1, ⋯ , M do 

Step 2.1. Generate G places of the chargers randomly 
Step 2.2. Assign transmitting power marking and 

position marking for each place of charger;  
Step 3.  Evaluate each solution of the initial population 
according to the objective function and constraints;  
Step 4. Create offspring population Et by crowding 
tournament selecting, crossover and mutation in Dt;  
Step 5. Let 𝑃 𝐷 ⋃ 𝐸 ;  
Step 6. Perform fast non-dominate sorting for 𝑃 , and 

generate non-dominate frontiers 𝐹𝑟 , 𝐹𝑟 , ⋯;  

Step 7. Set 𝐷 1 ∅；𝑖 1； 

While |𝐷 | |𝐹𝑟 | 𝑀 do 

𝐷 𝐷 ⋃ 𝐹𝑟 , 𝑖 𝑖 1 ； 

If |𝐷 | 𝑀 then 
Calculate DCD in 𝐹𝑟 ,  and arrange them in 
descending order, Add the first solution  𝑀 |𝐷 | 
to 𝐷  from 𝐹𝑟 ;  

If 𝑡 𝑔𝑒𝑛  then set 𝑡 𝑡 1, and return to Step 3. 

 Algorithm2: The pseudocode of CDMOGA 

A two-point crossover operator is designed, and the crossover 
point can be randomly selected between variables. The 
crossover rule is: 

(1) Select the first m vectors from the first parent 
chromosome; 

(2) choose the vector between m+1 and n from the second 
parent; 

(3) choose the vector after the nth from the first parent 
chromosome; 

These operators then combine genes to form a new progeny. 
For example, p1 and p2 are the parent chromosomes,  

 p1 = [a b c d e f g h], p2 = [1 2 3 4 5 6 7 8],  
 
 
 

If the intersection is between the third and sixth positions, 
then the offspring chromosome is:  

 child = [a b c 4 5 6 g h],  
Some genes will be randomly selected for mutation after 
crossover, which can introduce features not belonging to the 
original population and prevent the algorithm from too fast 
convergence. Mutation operators usually select a pair of 
genes on the chromosome and flip their positions. A sliding 
mutation operator is developed in this paper, as shown in Fig. 
4. Let 𝑥  and 𝑥  represent the minimum and 
maximum value of genes, and 𝑥  is the current gene value. 
Slide direction is selected randomly, right or left, and the 
slide momentum is generated arbitrarily within the allowed 
range. However, the gene mutated by sliding cannot cross the 
boundary. Thus, the boundary conditions of the decision 
variables remain unchanged. In other words, lethal genes are 
always avoided.  

 

 

 

 

Fig. 4. Mutation Operator. 

The offspring population is combined with the parent 
population. Then, a fast non-dominate sorting algorithm is 
applied to the combined population to identify different 
frontiers 𝐹𝑟  𝑖 1,2, ⋯. And the new population contains the 
solutions of different non-dominant fronts.  

A new population of size M may not be able to accommodate 
all the frontiers of a combined population of size 2M. 
Therefore, if all solutions of the existing frontier cannot be 
accommodated by the new population, the dynamic crowding 
distance in the new population will be calculated. Then the 
solution is sorted in descending order according to the 
dynamic crowding distance, and the solution required by the 
new population will be selected from the first one at the 
frontier. The above process continues until the maximum 
iterations is reached. Algorithm 2 shows the pseudocode of 
CDMOGA.  

 

(a) 

Scroll left Scroll right

xmin xmax
Current gene position
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(b) 

 

(f)

 

(c) 

 

(d) 

 

(e) 

 

(g) 

 

(h) 

 

Fig. 5. 3 chargers deployment scheme of 50 nodes. (a)~(h) 
corresponds to scheme 1-8, respectively. 

5. SIMULATION AND ANALYSIS 

In this section, large scale simulation is conducted by 
MATLAB 9.0 and the algorithm performance will be 
evaluated. 

5.1 Simulation settings 

The experiment is carried out in a solid space with a side 
length of 20 meters. It is assumed that all sensor nodes in the 
space can receive the energy emitted by the charger, and the 
energy reception is additive for different chargers. Moreover, 
each point on the simulation curve represents the average of 50
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simulation results. 𝐺 8 𝑑𝐵𝑖 , 𝐺 2 𝑑𝐵𝑖 , 𝜆 0.33 , 
𝜂 0.125 , 𝐿 0.5 ,  𝛽 0.125 . Other parameters are 
shown in Table 2. 

Table 2. Simulation parameters. 

Parameters Description 

WRSN cuboid 
20M 𝐿 20M 𝑊

20M 𝐻  
Number of sensor 

nodes 
10，20，30，40，50 

Number of Chargers 1,2,3,4,5,6,7,8 
Node Distribution Uniform Distribution 

Power consumption 50μw 

5.2 Results 

Fig. 5 shows eight schemes for the deployment of 3 chargers 
under the random distribution of 50 sensor nodes, where the 
sensor node is represented by black solid dots and the green 
triangle represents the charger. And the chargers is basically 
deployed in the same area. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Transmitting power and Received power of 8 
schemes. 
As can be seen from Fig. 6, the transmission power is not the 
same, While the total transmission power of the eight 
schemes is basically the same. This shows that although this 
algorithm can only obtain an optimal solution set, rather than 
a single optimal solution, the difference between different 
solutions is very small, which can effectively solve the 
charger deployment problem. 

Furthermore, the results also show that the genetic algorithm 
is able to schedule the GSCCPN, demonstrating the 
feasibility of this specification.   

5.3 Performance comparison  

CDMOGA is compared with MOEA/D (Q.  

(F. Zhang and Li, 2007), SPEA2 (Zitzler and Thiele, 1999), 
and the following metrics for evaluation is considered: 

(1) influence on receiving power and transmitting power with 
different nodes; 
(2) influence on transmitting power with different power 
consumption; 
(3) influence on transmitting power with heterogeneous 
nodes; 
(4) influence on receiving power and transmitting power with 

different chargers. 

Experiment 1. When the number of sensor nodes increases 
from 10 to 50, the receiving power and the transmission 
power are shown in Fig. 7 and Fig. 8, respectively. As can be 
seen in Fig. 7, the total received power is increased with the 
number of nodes, since in the case of a constant number of 
chargers and transmission power, the sensor nodes become 
more, i.e., the charged device is increased, so that the power 
received by the network is also increased. Fig. 8 shows the 
trend of transmission power changing with the number of 
sensor nodes. In general, the more sensors there are, the 
greater the transmission power is required. The reason is that 
the probability of the sensor nodes distributed to the region’s 
edge is positively correlated with their own number. In 
addition, the transmission power of CDMOGA is 6% and 
7.8%lower than that of MOEA/D and SPEA2, respectively, 
and the receiving power is 17.6% and 25.2% higher than that 
of latter. This is due to the fact that CDMOGA is more 
inclined to the elite strategy in the deployment strategy, so 
that the charger has lower transmission power and sensor 
nodes can receive higher power.  

 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Received power with the different sensor nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Transmitting power with the different sensor nodes. 

Experiment 2. The experiment simulates the trend of 
transmission power when the power consumption of sensor 
nodes increases from 50 to 250. As shown in Fig. 9, the 
transmission power of the CDMOGA is increased from 57 
mW to 285 mW, and the transmission power generated by 
MOEA/D and SPEA2 is increased from 62 mW, 63 mW to 
310 mW, 330 mW, respectively, which reflects that the 
transmission power tends to increase with node power 
consumption, while the ther two algorithms are 9.3% and 
14.3% higher than CDMOGA, respectively. Therefore, the 
performance improvement of CDMOGA is more obvious as 
the node power consumption increases. 



CONTROL ENGINEERING AND APPLIED INFORMATICS                                       11  

Experiment 3. In this experiment, the distribution position 
and number of the sensor nodes are unchanged, and the 
power consumption of 10 nodes is increased to 100μW, as 
shown by the black square in Fig. 10, and the power 
consumption of the remaining nodes is maintained at 50μW. 
The green triangle and the red pentagram represent the charger 
deployment position before and after the power consumption 
change, respectively. Since seven nodes with larger power 
consumption are on the right side of the region, two chargers 
are obviously moved to the right. At the same time, there are 
still 3 nodes with higher power consumption on the left side of 
the region, hence one charger remains in the original 
deployment area to ensure that the remaining left-hand nodes 
are not affected. Moreover, after the node power consumption 
changes, the transmitting power of the charger increases from 
57mW to 100mW, almost doubled. It can be seen that even if 
the power consumption of a small number of nodes increases, 
the transmission power will increase significantly due to the 
superposition effect of position.  

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Transmitting power with the different node power 
consumption. 

Experiment 4. This experiment evaluates the influence of the 
number of chargers on the transmission power. As shown in 
Fig. 11, the number of chargers increases from 1 to 8. When a 
single charger is deployed, its transmission power increases 
slightly because it is difficult to take into account all sensor 
nodes, but there is no significant change in the transmission 
power and reception power in the rest cases. The experimental 
results show that there is no obvious relationship between the 
number of chargers and the total transmission power. As long 
as the threshold of transmission power of a single charger is 
not exceeded, the number of chargers can be reduced as much 
as possible in order to reduce the deployment difficulty and 
maintenance cost. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Charger deployment with heterogeneous nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Charger deployment with heterogeneous nodes. 

6. CONCLUSIONS 

The paper innovatively proposes a generalized synchronizing 
colored cyber Petri net (GSCCPN) to model the fixed charger 
deployment in WRSN. And this issue is studied without 
candidate positions in 3D scenario for the first time. To make a 
tradeoff between two conflict objectives, the algorithm 
CDMOGA based on NSGA2 is proposed. The results show 
that the genetic algorithm is able to schedule the GSCCPN. 
And numerical simulation verifies the rationality and 
feasibility of the algorithm. The future work will be focused 
on extending the field to hybrid charging and crowd charging 
in 5G scenario.  
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